<?xml version="1.0" encoding="UTF-8" ?>
<oai_dc:dc schemaLocation="http://www.openarchives.org/OAI/2.0/oai_dc/ http://www.openarchives.org/OAI/2.0/oai_dc.xsd">
<dc:title>2D Nanomaterials wrapped Janus micromotors with built-in multiengines for bubble, magnetic, and light driven propulsion</dc:title>
<dc:creator>Escarpa Miguel, Jesús Alberto</dc:creator>
<dc:creator>Kaisong, Yuan</dc:creator>
<dc:creator>Asunción Nadal, Víctor de la</dc:creator>
<dc:creator>Jurado Sánchez, Beatriz</dc:creator>
<dc:subject>Química</dc:subject>
<dc:subject>Chemistry</dc:subject>
<dc:description>Graphene oxide, graphdyine oxide, and blackphosphorus coated micromotors integrating "three engines" for motion control using different stimuli such as chemical fuel, light, and magnetic fields are described. Micromotors can be massproduced by wrapping gold-sputtered polystyrene microspheres with the 2D nanomaterials, followed by simultaneous assembly of Pt or MnO2 nanoparticles (NPs) as bubble (catalytic)-engines, Fe2O3 NPs as magnetic engines, and quantum dots (QDs) as light engines. The design and composition of micromotors are key to get the desired propulsion performance. In bubble-magnetic and bubble-light mode, a built-in acceleration system allows micromotor speed to be increased up to 3.0 and 1.5 times after application of the magnetic field or light irradiation, respectively. In the bubble-magnetic-light mode, such speed increase can be combined in a single unit for on-demand braking and accelerating systems. Fluid dynamics simulations illustrate that such adaptative behavior and improved propulsion efficiency is produced by a better distribution of the fuel and thus energy propelling the micromotor by activation of the magnetic and/or light engines. The new micromotors described here, which combine multiple engines with functional nanomaterials, hold considerable promise to develop novel nanovehicles with adaptative behavior to perform complex tasks in lab-on-a-chips or dynamic micropatterning applications.</dc:description>
<dc:description>Ministerio de Ciencia e Innovación</dc:description>
<dc:description>Comunidad de Madrid</dc:description>
<dc:description>European Commission</dc:description>
<dc:date>2024-01-08T09:27:21Z</dc:date>
<dc:date>2024-01-08T09:27:21Z</dc:date>
<dc:date>2020-02-14</dc:date>
<dc:date>2024-01-08T09:26:57Z</dc:date>
<dc:type>info:eu-repo/semantics/article</dc:type>
<dc:type>info:eu-repo/semantics/aceptedVersion</dc:type>
<dc:identifier>Chemistry of Materials, 2020, v. 32, n. 5, p. 1938-1992</dc:identifier>
<dc:identifier>0897-4756</dc:identifier>
<dc:identifier>http://hdl.handle.net/10017/59149</dc:identifier>
<dc:identifier>10.1021/acs.chemmater.9b04873</dc:identifier>
<dc:identifier>AR/0000034930</dc:identifier>
<dc:identifier>Chemistry of Materials</dc:identifier>
<dc:identifier>32</dc:identifier>
<dc:identifier>1992</dc:identifier>
<dc:identifier>5</dc:identifier>
<dc:identifier>1938</dc:identifier>
<dc:language>eng</dc:language>
<dc:relation>info:eu-repo/grantAgreement/MICINN//RYC-2015-17558/ES/</dc:relation>
<dc:relation>info:eu-repo/grantAgreement/EU//CTQ2017-86441-C2-1-R/</dc:relation>
<dc:relation>info:eu-repo/grantAgreement/CAM//CM/JIN%2F2019-007/ES/</dc:relation>
<dc:relation>info:eu-repo/grantAgreement/CAM//S2018%2FNMT-4349/ES/</dc:relation>
<dc:rights>Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)</dc:rights>
<dc:rights>© ACS</dc:rights>
<dc:rights>http://creativecommons.org/licenses/by-nc-nd/4.0/</dc:rights>
<dc:rights>info:eu-repo/semantics/openAccess</dc:rights>
<dc:format>application/pdf</dc:format>
</oai_dc:dc>
<?xml version="1.0" encoding="UTF-8" ?>
<d:DIDL schemaLocation="urn:mpeg:mpeg21:2002:02-DIDL-NS http://standards.iso.org/ittf/PubliclyAvailableStandards/MPEG-21_schema_files/did/didl.xsd">
<dcterms:created schemaLocation="http://purl.org/dc/terms/ http://dublincore.org/schemas/xmls/qdc/dcterms.xsd">2024-01-08T09:27:21Z</dcterms:created>
</d:DIDLInfo>
<d:Statement mimeType="application/xml; charset=utf-8">
<oai_dc:dc schemaLocation="http://www.openarchives.org/OAI/2.0/oai_dc/ http://www.openarchives.org/OAI/2.0/oai_dc.xsd">
<dc:title>2D Nanomaterials wrapped Janus micromotors with built-in multiengines for bubble, magnetic, and light driven propulsion</dc:title>
<dc:creator>Escarpa Miguel, Jesús Alberto</dc:creator>
<dc:creator>Kaisong, Yuan</dc:creator>
<dc:creator>Asunción Nadal, Víctor de la</dc:creator>
<dc:creator>Jurado Sánchez, Beatriz</dc:creator>
<dc:description>Graphene oxide, graphdyine oxide, and blackphosphorus coated micromotors integrating "three engines" for motion control using different stimuli such as chemical fuel, light, and magnetic fields are described. Micromotors can be massproduced by wrapping gold-sputtered polystyrene microspheres with the 2D nanomaterials, followed by simultaneous assembly of Pt or MnO2 nanoparticles (NPs) as bubble (catalytic)-engines, Fe2O3 NPs as magnetic engines, and quantum dots (QDs) as light engines. The design and composition of micromotors are key to get the desired propulsion performance. In bubble-magnetic and bubble-light mode, a built-in acceleration system allows micromotor speed to be increased up to 3.0 and 1.5 times after application of the magnetic field or light irradiation, respectively. In the bubble-magnetic-light mode, such speed increase can be combined in a single unit for on-demand braking and accelerating systems. Fluid dynamics simulations illustrate that such adaptative behavior and improved propulsion efficiency is produced by a better distribution of the fuel and thus energy propelling the micromotor by activation of the magnetic and/or light engines. The new micromotors described here, which combine multiple engines with functional nanomaterials, hold considerable promise to develop novel nanovehicles with adaptative behavior to perform complex tasks in lab-on-a-chips or dynamic micropatterning applications.</dc:description>
<dc:date>2024-01-08T09:27:21Z</dc:date>
<dc:date>2024-01-08T09:27:21Z</dc:date>
<dc:date>2020-02-14</dc:date>
<dc:date>2024-01-08T09:26:57Z</dc:date>
<dc:type>info:eu-repo/semantics/article</dc:type>
<dc:identifier>Chemistry of Materials, 2020, v. 32, n. 5, p. 1938-1992</dc:identifier>
<dc:identifier>0897-4756</dc:identifier>
<dc:identifier>http://hdl.handle.net/10017/59149</dc:identifier>
<dc:identifier>10.1021/acs.chemmater.9b04873</dc:identifier>
<dc:identifier>AR/0000034930</dc:identifier>
<dc:identifier>Chemistry of Materials</dc:identifier>
<dc:identifier>32</dc:identifier>
<dc:identifier>1992</dc:identifier>
<dc:identifier>5</dc:identifier>
<dc:identifier>1938</dc:identifier>
<dc:language>eng</dc:language>
<dc:relation>info:eu-repo/grantAgreement/MICINN//RYC-2015-17558/ES/</dc:relation>
<dc:relation>info:eu-repo/grantAgreement/EU//CTQ2017-86441-C2-1-R/</dc:relation>
<dc:relation>info:eu-repo/grantAgreement/CAM//CM/JIN%2F2019-007/ES/</dc:relation>
<dc:relation>info:eu-repo/grantAgreement/CAM//S2018%2FNMT-4349/ES/</dc:relation>
<dc:rights>http://creativecommons.org/licenses/by-nc-nd/4.0/</dc:rights>
<dc:rights>info:eu-repo/semantics/openAccess</dc:rights>
<dc:rights>Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)</dc:rights>
<dc:rights>© ACS</dc:rights>
</oai_dc:dc>
</d:Statement>
</d:Descriptor>
<d:Component id="10017_59149_6">
</d:Component>
</d:Item>
</d:DIDL>
<?xml version="1.0" encoding="UTF-8" ?>
<dim:dim schemaLocation="http://www.dspace.org/xmlns/dspace/dim http://www.dspace.org/schema/dim.xsd">
<dim:field authority="32680" confidence="600" element="contributor" mdschema="dc" orcid_id="" qualifier="author">Escarpa Miguel, Jesús Alberto</dim:field>
<dim:field authority="122228" confidence="600" element="contributor" mdschema="dc" orcid_id="" qualifier="author">Kaisong, Yuan</dim:field>
<dim:field authority="115933" confidence="600" element="contributor" mdschema="dc" orcid_id="" qualifier="author">Asunción Nadal, Víctor de la</dim:field>
<dim:field authority="75696" confidence="600" element="contributor" mdschema="dc" orcid_id="" qualifier="author">Jurado Sánchez, Beatriz</dim:field>
<dim:field element="date" mdschema="dc" qualifier="accessioned">2024-01-08T09:27:21Z</dim:field>
<dim:field element="date" mdschema="dc" qualifier="available">2024-01-08T09:27:21Z</dim:field>
<dim:field element="date" mdschema="dc" qualifier="issued">2020-02-14</dim:field>
<dim:field element="date" mdschema="dc" qualifier="updated">2024-01-08T09:26:57Z</dim:field>
<dim:field element="identifier" lang="en" mdschema="dc" qualifier="bibliographicCitation">Chemistry of Materials, 2020, v. 32, n. 5, p. 1938-1992</dim:field>
<dim:field element="identifier" mdschema="dc" qualifier="issn">0897-4756</dim:field>
<dim:field element="identifier" lang="en" mdschema="dc" qualifier="uri">http://hdl.handle.net/10017/59149</dim:field>
<dim:field element="identifier" lang="en" mdschema="dc" qualifier="doi">10.1021/acs.chemmater.9b04873</dim:field>
<dim:field element="identifier" lang="en" mdschema="dc" qualifier="uxxi">AR/0000034930</dim:field>
<dim:field element="identifier" lang="en" mdschema="dc" qualifier="publicationtitle">Chemistry of Materials</dim:field>
<dim:field element="identifier" mdschema="dc" qualifier="publicationvolume">32</dim:field>
<dim:field element="identifier" mdschema="dc" qualifier="publicationlastpage">1992</dim:field>
<dim:field element="identifier" mdschema="dc" qualifier="publicationissue">5</dim:field>
<dim:field element="identifier" mdschema="dc" qualifier="publicationfirstpage">1938</dim:field>
<dim:field element="description" lang="en" mdschema="dc" qualifier="abstract">Graphene oxide, graphdyine oxide, and blackphosphorus coated micromotors integrating "three engines" for motion control using different stimuli such as chemical fuel, light, and magnetic fields are described. Micromotors can be massproduced by wrapping gold-sputtered polystyrene microspheres with the 2D nanomaterials, followed by simultaneous assembly of Pt or MnO2 nanoparticles (NPs) as bubble (catalytic)-engines, Fe2O3 NPs as magnetic engines, and quantum dots (QDs) as light engines. The design and composition of micromotors are key to get the desired propulsion performance. In bubble-magnetic and bubble-light mode, a built-in acceleration system allows micromotor speed to be increased up to 3.0 and 1.5 times after application of the magnetic field or light irradiation, respectively. In the bubble-magnetic-light mode, such speed increase can be combined in a single unit for on-demand braking and accelerating systems. Fluid dynamics simulations illustrate that such adaptative behavior and improved propulsion efficiency is produced by a better distribution of the fuel and thus energy propelling the micromotor by activation of the magnetic and/or light engines. The new micromotors described here, which combine multiple engines with functional nanomaterials, hold considerable promise to develop novel nanovehicles with adaptative behavior to perform complex tasks in lab-on-a-chips or dynamic micropatterning applications.</dim:field>
<dim:field element="description" lang="es_ES" mdschema="dc" qualifier="sponsorship">Ministerio de Ciencia e Innovación</dim:field>
<dim:field element="description" lang="es_ES" mdschema="dc" qualifier="sponsorship">Comunidad de Madrid</dim:field>
<dim:field element="description" lang="en" mdschema="dc" qualifier="sponsorship">European Commission</dim:field>
<dim:field element="format" lang="en" mdschema="dc" qualifier="mimetype">application/pdf</dim:field>
<dim:field element="language" lang="en" mdschema="dc" qualifier="iso">eng</dim:field>
<dim:field element="rights" lang="en" mdschema="dc">Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)</dim:field>
<dim:field element="rights" lang="en" mdschema="dc">© ACS</dim:field>
<dim:field element="rights" lang="en" mdschema="dc" qualifier="uri">http://creativecommons.org/licenses/by-nc-nd/4.0/</dim:field>
<dim:field element="rights" lang="en" mdschema="dc" qualifier="accessRights">info:eu-repo/semantics/openAccess</dim:field>
<dim:field element="title" lang="en" mdschema="dc">2D Nanomaterials wrapped Janus micromotors with built-in multiengines for bubble, magnetic, and light driven propulsion</dim:field>
<dim:field element="type" lang="en" mdschema="dc">info:eu-repo/semantics/article</dim:field>
<dim:field element="type" lang="en" mdschema="dc" qualifier="version">info:eu-repo/semantics/aceptedVersion</dim:field>
<dim:field element="subject" lang="es_ES" mdschema="dc" qualifier="eciencia">Química</dim:field>
<dim:field element="subject" lang="en" mdschema="dc" qualifier="eciencia">Chemistry</dim:field>
<dim:field element="relation" lang="en" mdschema="dc" qualifier="projectID">info:eu-repo/grantAgreement/MICINN//RYC-2015-17558/ES/</dim:field>
<dim:field element="relation" lang="en" mdschema="dc" qualifier="projectID">info:eu-repo/grantAgreement/EU//CTQ2017-86441-C2-1-R/</dim:field>
<dim:field element="relation" lang="en" mdschema="dc" qualifier="projectID">info:eu-repo/grantAgreement/CAM//CM/JIN%2F2019-007/ES/</dim:field>
<dim:field element="relation" lang="en" mdschema="dc" qualifier="projectID">info:eu-repo/grantAgreement/CAM//S2018%2FNMT-4349/ES/</dim:field>
<dim:field element="affiliation" lang="es_ES" mdschema="dc" qualifier="dpto">Universidad de Alcalá. Departamento de Química Analítica, Química Física e Ingeniería Química</dim:field>
<dim:field element="affiliation" lang="es_ES" mdschema="dc" qualifier="unidad">Unidad docente Química Analítica e Ingeniería Quimica</dim:field>
</dim:dim>
<?xml version="1.0" encoding="UTF-8" ?>
<rdf:RDF schemaLocation="http://www.w3.org/1999/02/22-rdf-syntax-ns# http://www.europeana.eu/schemas/edm/EDM.xsd">
<edm:ProvidedCHO about="http://hdl.handle.net/10017/59149">
<dc:creator>Escarpa Miguel, Jesús Alberto</dc:creator>
<dc:creator>Kaisong, Yuan</dc:creator>
<dc:creator>Asunción Nadal, Víctor de la</dc:creator>
<dc:creator>Jurado Sánchez, Beatriz</dc:creator>
<dc:date>2020-02-14</dc:date>
<dc:description>Graphene oxide, graphdyine oxide, and blackphosphorus coated micromotors integrating "three engines" for motion control using different stimuli such as chemical fuel, light, and magnetic fields are described. Micromotors can be massproduced by wrapping gold-sputtered polystyrene microspheres with the 2D nanomaterials, followed by simultaneous assembly of Pt or MnO2 nanoparticles (NPs) as bubble (catalytic)-engines, Fe2O3 NPs as magnetic engines, and quantum dots (QDs) as light engines. The design and composition of micromotors are key to get the desired propulsion performance. In bubble-magnetic and bubble-light mode, a built-in acceleration system allows micromotor speed to be increased up to 3.0 and 1.5 times after application of the magnetic field or light irradiation, respectively. In the bubble-magnetic-light mode, such speed increase can be combined in a single unit for on-demand braking and accelerating systems. Fluid dynamics simulations illustrate that such adaptative behavior and improved propulsion efficiency is produced by a better distribution of the fuel and thus energy propelling the micromotor by activation of the magnetic and/or light engines. The new micromotors described here, which combine multiple engines with functional nanomaterials, hold considerable promise to develop novel nanovehicles with adaptative behavior to perform complex tasks in lab-on-a-chips or dynamic micropatterning applications.</dc:description>
<dc:format>application/pdf</dc:format>
<dc:identifier>http://hdl.handle.net/10017/59149</dc:identifier>
<dc:language>eng</dc:language>
<dc:subject>Sin materia</dc:subject>
<dc:subject>Química</dc:subject>
<dc:subject>Chemistry</dc:subject>
<dc:title>2D Nanomaterials wrapped Janus micromotors with built-in multiengines for bubble, magnetic, and light driven propulsion</dc:title>
<dc:type>info:eu-repo/semantics/article</dc:type>
<edm:type>TEXT</edm:type>
</edm:ProvidedCHO>
<ore:Aggregation about="http://hdl.handle.net/10017/59149#aggregation">
<edm:dataProvider>e_Buah Biblioteca Digital de la Universidad de Alcalá</edm:dataProvider>
<edm:provider>Hispana</edm:provider>
</ore:Aggregation>
<edm:WebResource about="https://ebuah.uah.es/dspace/bitstream/10017/59149/6/Nanomaterials_Yuan_ChemMat_2020.pdf">
<dc:format>application/pdf</dc:format>
</edm:WebResource>
</rdf:RDF>
<?xml version="1.0" encoding="UTF-8" ?>
<europeana:record schemaLocation="http://www.europeana.eu/schemas/ese/ http://www.europeana.eu/schemas/ese/ESE-V3.4.xsd">
<dc:title>2D Nanomaterials wrapped Janus micromotors with built-in multiengines for bubble, magnetic, and light driven propulsion</dc:title>
<dc:creator>Escarpa Miguel, Jesús Alberto</dc:creator>
<dc:creator>Kaisong, Yuan</dc:creator>
<dc:creator>Asunción Nadal, Víctor de la</dc:creator>
<dc:creator>Jurado Sánchez, Beatriz</dc:creator>
<dc:subject>Química</dc:subject>
<dc:subject>Chemistry</dc:subject>
<dc:description>Graphene oxide, graphdyine oxide, and blackphosphorus coated micromotors integrating "three engines" for motion control using different stimuli such as chemical fuel, light, and magnetic fields are described. Micromotors can be massproduced by wrapping gold-sputtered polystyrene microspheres with the 2D nanomaterials, followed by simultaneous assembly of Pt or MnO2 nanoparticles (NPs) as bubble (catalytic)-engines, Fe2O3 NPs as magnetic engines, and quantum dots (QDs) as light engines. The design and composition of micromotors are key to get the desired propulsion performance. In bubble-magnetic and bubble-light mode, a built-in acceleration system allows micromotor speed to be increased up to 3.0 and 1.5 times after application of the magnetic field or light irradiation, respectively. In the bubble-magnetic-light mode, such speed increase can be combined in a single unit for on-demand braking and accelerating systems. Fluid dynamics simulations illustrate that such adaptative behavior and improved propulsion efficiency is produced by a better distribution of the fuel and thus energy propelling the micromotor by activation of the magnetic and/or light engines. The new micromotors described here, which combine multiple engines with functional nanomaterials, hold considerable promise to develop novel nanovehicles with adaptative behavior to perform complex tasks in lab-on-a-chips or dynamic micropatterning applications.</dc:description>
<dc:description>Ministerio de Ciencia e Innovación</dc:description>
<dc:description>Comunidad de Madrid</dc:description>
<dc:description>European Commission</dc:description>
<dc:date>2024-01-08T09:27:21Z</dc:date>
<dc:date>2024-01-08T09:27:21Z</dc:date>
<dc:date>2020-02-14</dc:date>
<dc:date>2024-01-08T09:26:57Z</dc:date>
<dc:type>info:eu-repo/semantics/article</dc:type>
<dc:type>info:eu-repo/semantics/aceptedVersion</dc:type>
<dc:identifier>Chemistry of Materials, 2020, v. 32, n. 5, p. 1938-1992</dc:identifier>
<dc:identifier>0897-4756</dc:identifier>
<dc:identifier>http://hdl.handle.net/10017/59149</dc:identifier>
<dc:identifier>10.1021/acs.chemmater.9b04873</dc:identifier>
<dc:identifier>AR/0000034930</dc:identifier>
<dc:identifier>Chemistry of Materials</dc:identifier>
<dc:identifier>32</dc:identifier>
<dc:identifier>1992</dc:identifier>
<dc:identifier>5</dc:identifier>
<dc:identifier>1938</dc:identifier>
<dc:language>eng</dc:language>
<dc:relation>info:eu-repo/grantAgreement/MICINN//RYC-2015-17558/ES/</dc:relation>
<dc:relation>info:eu-repo/grantAgreement/EU//CTQ2017-86441-C2-1-R/</dc:relation>
<dc:relation>info:eu-repo/grantAgreement/CAM//CM/JIN%2F2019-007/ES/</dc:relation>
<dc:relation>info:eu-repo/grantAgreement/CAM//S2018%2FNMT-4349/ES/</dc:relation>
<dc:rights>Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)</dc:rights>
<dc:rights>© ACS</dc:rights>
<dc:rights>http://creativecommons.org/licenses/by-nc-nd/4.0/</dc:rights>
<dc:rights>info:eu-repo/semantics/openAccess</dc:rights>
<dc:format>application/pdf</dc:format>
<europeana:provider>Hispana</europeana:provider>
<europeana:type>TEXT</europeana:type>
<europeana:rights>http://creativecommons.org/licenses/by-nc-nd/4.0/</europeana:rights>
<europeana:dataProvider>Universidad de Alcalá</europeana:dataProvider>
<europeana:isShownAt>http://hdl.handle.net/10017/59149</europeana:isShownAt>
</europeana:record>
<?xml version="1.0" encoding="UTF-8" ?>
<thesis schemaLocation="http://www.ndltd.org/standards/metadata/etdms/1.0/ http://www.ndltd.org/standards/metadata/etdms/1.0/etdms.xsd">
<title>2D Nanomaterials wrapped Janus micromotors with built-in multiengines for bubble, magnetic, and light driven propulsion</title>
<creator>Escarpa Miguel, Jesús Alberto</creator>
<creator>Kaisong, Yuan</creator>
<creator>Asunción Nadal, Víctor de la</creator>
<creator>Jurado Sánchez, Beatriz</creator>
<description>Graphene oxide, graphdyine oxide, and blackphosphorus coated micromotors integrating "three engines" for motion control using different stimuli such as chemical fuel, light, and magnetic fields are described. Micromotors can be massproduced by wrapping gold-sputtered polystyrene microspheres with the 2D nanomaterials, followed by simultaneous assembly of Pt or MnO2 nanoparticles (NPs) as bubble (catalytic)-engines, Fe2O3 NPs as magnetic engines, and quantum dots (QDs) as light engines. The design and composition of micromotors are key to get the desired propulsion performance. In bubble-magnetic and bubble-light mode, a built-in acceleration system allows micromotor speed to be increased up to 3.0 and 1.5 times after application of the magnetic field or light irradiation, respectively. In the bubble-magnetic-light mode, such speed increase can be combined in a single unit for on-demand braking and accelerating systems. Fluid dynamics simulations illustrate that such adaptative behavior and improved propulsion efficiency is produced by a better distribution of the fuel and thus energy propelling the micromotor by activation of the magnetic and/or light engines. The new micromotors described here, which combine multiple engines with functional nanomaterials, hold considerable promise to develop novel nanovehicles with adaptative behavior to perform complex tasks in lab-on-a-chips or dynamic micropatterning applications.</description>
<date>2024-01-08</date>
<date>2024-01-08</date>
<date>2020-02-14</date>
<date>2024-01-08</date>
<type>info:eu-repo/semantics/article</type>
<identifier>Chemistry of Materials, 2020, v. 32, n. 5, p. 1938-1992</identifier>
<identifier>0897-4756</identifier>
<identifier>http://hdl.handle.net/10017/59149</identifier>
<identifier>10.1021/acs.chemmater.9b04873</identifier>
<identifier>AR/0000034930</identifier>
<identifier>Chemistry of Materials</identifier>
<identifier>32</identifier>
<identifier>1992</identifier>
<identifier>5</identifier>
<identifier>1938</identifier>
<language>eng</language>
<relation>info:eu-repo/grantAgreement/MICINN//RYC-2015-17558/ES/</relation>
<relation>info:eu-repo/grantAgreement/EU//CTQ2017-86441-C2-1-R/</relation>
<relation>info:eu-repo/grantAgreement/CAM//CM/JIN%2F2019-007/ES/</relation>
<relation>info:eu-repo/grantAgreement/CAM//S2018%2FNMT-4349/ES/</relation>
<rights>http://creativecommons.org/licenses/by-nc-nd/4.0/</rights>
<rights>info:eu-repo/semantics/openAccess</rights>
<rights>Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)</rights>
<rights>© ACS</rights>
</thesis>
<?xml version="1.0" encoding="UTF-8" ?>
<record schemaLocation="http://www.loc.gov/MARC21/slim http://www.loc.gov/standards/marcxml/schema/MARC21slim.xsd">
<leader>00925njm 22002777a 4500</leader>
<datafield ind1=" " ind2=" " tag="042">
<subfield code="a">dc</subfield>
</datafield>
<datafield ind1=" " ind2=" " tag="720">
<subfield code="a">Escarpa Miguel, Jesús Alberto</subfield>
<subfield code="e">author</subfield>
</datafield>
<datafield ind1=" " ind2=" " tag="720">
<subfield code="a">Kaisong, Yuan</subfield>
<subfield code="e">author</subfield>
</datafield>
<datafield ind1=" " ind2=" " tag="720">
<subfield code="a">Asunción Nadal, Víctor de la</subfield>
<subfield code="e">author</subfield>
</datafield>
<datafield ind1=" " ind2=" " tag="720">
<subfield code="a">Jurado Sánchez, Beatriz</subfield>
<subfield code="e">author</subfield>
</datafield>
<datafield ind1=" " ind2=" " tag="260">
<subfield code="c">2020-02-14</subfield>
</datafield>
<datafield ind1=" " ind2=" " tag="520">
<subfield code="a">Graphene oxide, graphdyine oxide, and blackphosphorus coated micromotors integrating "three engines" for motion control using different stimuli such as chemical fuel, light, and magnetic fields are described. Micromotors can be massproduced by wrapping gold-sputtered polystyrene microspheres with the 2D nanomaterials, followed by simultaneous assembly of Pt or MnO2 nanoparticles (NPs) as bubble (catalytic)-engines, Fe2O3 NPs as magnetic engines, and quantum dots (QDs) as light engines. The design and composition of micromotors are key to get the desired propulsion performance. In bubble-magnetic and bubble-light mode, a built-in acceleration system allows micromotor speed to be increased up to 3.0 and 1.5 times after application of the magnetic field or light irradiation, respectively. In the bubble-magnetic-light mode, such speed increase can be combined in a single unit for on-demand braking and accelerating systems. Fluid dynamics simulations illustrate that such adaptative behavior and improved propulsion efficiency is produced by a better distribution of the fuel and thus energy propelling the micromotor by activation of the magnetic and/or light engines. The new micromotors described here, which combine multiple engines with functional nanomaterials, hold considerable promise to develop novel nanovehicles with adaptative behavior to perform complex tasks in lab-on-a-chips or dynamic micropatterning applications.</subfield>
</datafield>
<datafield ind1="8" ind2=" " tag="024">
<subfield code="a">Chemistry of Materials, 2020, v. 32, n. 5, p. 1938-1992</subfield>
</datafield>
<datafield ind1="8" ind2=" " tag="024">
<subfield code="a">0897-4756</subfield>
</datafield>
<datafield ind1="8" ind2=" " tag="024">
<subfield code="a">http://hdl.handle.net/10017/59149</subfield>
</datafield>
<datafield ind1="8" ind2=" " tag="024">
<subfield code="a">10.1021/acs.chemmater.9b04873</subfield>
</datafield>
<datafield ind1="8" ind2=" " tag="024">
<subfield code="a">AR/0000034930</subfield>
</datafield>
<datafield ind1="8" ind2=" " tag="024">
<subfield code="a">Chemistry of Materials</subfield>
</datafield>
<datafield ind1="8" ind2=" " tag="024">
<subfield code="a">32</subfield>
</datafield>
<datafield ind1="8" ind2=" " tag="024">
<subfield code="a">1992</subfield>
</datafield>
<datafield ind1="8" ind2=" " tag="024">
<subfield code="a">5</subfield>
</datafield>
<datafield ind1="8" ind2=" " tag="024">
<subfield code="a">1938</subfield>
</datafield>
<datafield ind1="0" ind2="0" tag="245">
<subfield code="a">2D Nanomaterials wrapped Janus micromotors with built-in multiengines for bubble, magnetic, and light driven propulsion</subfield>
</datafield>
</record>
<?xml version="1.0" encoding="UTF-8" ?>
<mets ID=" DSpace_ITEM_10017-59149" OBJID=" hdl:10017/59149" PROFILE="DSpace METS SIP Profile 1.0" TYPE="DSpace ITEM" schemaLocation="http://www.loc.gov/METS/ http://www.loc.gov/standards/mets/mets.xsd">
<xmlData schemaLocation="http://www.loc.gov/mods/v3 http://www.loc.gov/standards/mods/v3/mods-3-1.xsd">
<mods:mods schemaLocation="http://www.loc.gov/mods/v3 http://www.loc.gov/standards/mods/v3/mods-3-1.xsd">
<mods:dateAccessioned encoding="iso8601">2024-01-08T09:27:21Z</mods:dateAccessioned>
</mods:extension>
<mods:dateAvailable encoding="iso8601">2024-01-08T09:27:21Z</mods:dateAvailable>
</mods:extension>
<mods:dateIssued encoding="iso8601">2020-02-14</mods:dateIssued>
</mods:originInfo>
<mods:identifier type="bibliographicCitation">Chemistry of Materials, 2020, v. 32, n. 5, p. 1938-1992</mods:identifier>
<mods:identifier type="issn">0897-4756</mods:identifier>
<mods:identifier type="uri">http://hdl.handle.net/10017/59149</mods:identifier>
<mods:identifier type="doi">10.1021/acs.chemmater.9b04873</mods:identifier>
<mods:identifier type="uxxi">AR/0000034930</mods:identifier>
<mods:identifier type="publicationtitle">Chemistry of Materials</mods:identifier>
<mods:identifier type="publicationvolume">32</mods:identifier>
<mods:identifier type="publicationlastpage">1992</mods:identifier>
<mods:identifier type="publicationissue">5</mods:identifier>
<mods:identifier type="publicationfirstpage">1938</mods:identifier>
<mods:abstract>Graphene oxide, graphdyine oxide, and blackphosphorus coated micromotors integrating "three engines" for motion control using different stimuli such as chemical fuel, light, and magnetic fields are described. Micromotors can be massproduced by wrapping gold-sputtered polystyrene microspheres with the 2D nanomaterials, followed by simultaneous assembly of Pt or MnO2 nanoparticles (NPs) as bubble (catalytic)-engines, Fe2O3 NPs as magnetic engines, and quantum dots (QDs) as light engines. The design and composition of micromotors are key to get the desired propulsion performance. In bubble-magnetic and bubble-light mode, a built-in acceleration system allows micromotor speed to be increased up to 3.0 and 1.5 times after application of the magnetic field or light irradiation, respectively. In the bubble-magnetic-light mode, such speed increase can be combined in a single unit for on-demand braking and accelerating systems. Fluid dynamics simulations illustrate that such adaptative behavior and improved propulsion efficiency is produced by a better distribution of the fuel and thus energy propelling the micromotor by activation of the magnetic and/or light engines. The new micromotors described here, which combine multiple engines with functional nanomaterials, hold considerable promise to develop novel nanovehicles with adaptative behavior to perform complex tasks in lab-on-a-chips or dynamic micropatterning applications.</mods:abstract>
<mods:languageTerm authority="rfc3066">eng</mods:languageTerm>
</mods:language>
<mods:accessCondition type="useAndReproduction">Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)</mods:accessCondition>
<mods:title>2D Nanomaterials wrapped Janus micromotors with built-in multiengines for bubble, magnetic, and light driven propulsion</mods:title>
</mods:titleInfo>
<mods:genre>info:eu-repo/semantics/article</mods:genre>
</mods:mods>
</xmlData>
</mdWrap>
</dmdSec>
<rightsMD ID="RIG_10017_59149">
<mdWrap MDTYPE="OTHER" MIMETYPE="text/plain" OTHERMDTYPE="DSpaceDepositLicense">
<binData>TElDRU5DSUEgIFBBUkEgQVVUT0FSQ0hJVk8KKEFwcm9iYWRhIGVuIENvbnNlam8gZGUgR29iaWVybm8gZWwgMTggZGUgRGljaWVtYnJlIGRlIDIwMDgpCgpEZSBjYXJhIGEgZm9ybWFsaXphciBjb3JyZWN0YW1lbnRlIHRvZGFzIGxhcyBmYXNlcyBkZWwgcHJvY2VzbyBkZSAKYXV0b2FyY2hpdm8sIGVzIE1VWSBJTVBPUlRBTlRFIHF1ZSBsZWEgeSBjb21wcmVuZGEgZW4gc3UgdG90YWxpZGFkCmVsIGNvbnRlbmlkbyBkZSBsYXMgc2lndWllbnRlcyBub3JtYXMgeSBsb3MgdO+/vXJtaW5vcyBkZSBlc3RhIGxpY2VuY2lhLCAKYW50ZXMgZGUgZXhwcmVzYXIgc3UgY29uc2VudGltaWVudG8geSBhY2VwdGFjae+/vW4gbWVkaWFudGUgdW4gY2xpYyBlbiBlbCAKYm9077+9biBkZSBBQ0VQVEFSLgoKQSBlc3RvcyBlZmVjdG9zIGVsIHJlcG9zaXRvcmlvIHNlIGRlbm9taW5hIGVfQnVhaCBzdSBhZG1pbmlzdHJhZG9yIGVzIGxhIEJpYmxpb3RlY2EgZGUgbGEgVUFILCBlYnVhaEB1YWguZXMsIGNvbiBsYSBzaWd1aWVudGUgZGlyZWNjae+/vW46IEJpYmxpb3RlY2EgQ2VudHJhbCwgRmFjdWx0YWQgCmRlIE1lZGljaW5hLCBDYW1wdXMgdW5pdmVyc2l0YXJpbyBzLm4uLCAyODg3MSBBbGNhbO+/vSBkZSBIZW5hcmVzLgoKRWwgIGF1dG9yIGRlY2xhcmEgcXVlIGVzIGVsIHRpdHVsYXIgZGUgbG9zIGRlcmVjaG9zIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCwgCm9iamV0byBkZSBsYSBwcmVzZW50ZSBjZXNp77+9biwgZW4gcmVsYWNp77+9biBjb24gbGEgb2JyYSBxdWUgYXV0b2FyY2hpdmEsIHF1ZSAK77+9c3RhIGVzIHVuYSBvYnJhIG9yaWdpbmFsLCB5IHF1ZSBvc3RlbnRhIGxhIGNvbmRpY2nvv71uIGRlIGF1dG9yIGRlIGVzdGEgb2JyYS4KCkVuIGNhc28gZGUgc2VyIGNvdGl0dWxhciBkZSB0YWxlcyBkZXJlY2hvcywgZWwgYXV0b3IgZGVjbGFyYSBxdWUgY3VlbnRhIGNvbgogbGEgYXV0b3JpemFjae+/vW4gZGUgbG9zIHJlc3RhbnRlcyB0aXR1bGFyZXMgcGFyYSBoYWNlciBsYSBwcmVzZW50ZSBjZXNp77+9biwgeSBxdWUKIGxvcyBub21icmVzIGRlIHRvZG9zIGxvcyBjb2F1dG9yZXMgYXBhcmVjZW4gbWVuY2lvbmFkb3MgZW4gbGEgb2JyYS4KCkVuIGNhc28gZGUgcHJldmlhIGNlc2nvv71uIGEgdGVyY2Vyb3MgZGUgZGVyZWNob3MgZGUgZXhwbG90YWNp77+9biBkZSBsYSBvYnJhLCAKZWwgYXV0b3IgZGVjbGFyYSBxdWUgdGllbmUgbGEgb3BvcnR1bmEgcmVzZXJ2YSBvIGF1dG9yaXphY2nvv71uIGRlIGRpY2hvcyB0aXR1bGFyZXMgCmRlIGRlcmVjaG9zIGEgbG9zIGZpbmVzIGRlIGVzdGEgY2Vzae+/vW4uCgpDb24gZWwgZmluIGRlIGRhciBsYSBt77+9eGltYSBkaWZ1c2nvv71uIGEgZXN0YSBvYnJhIGEgdHJhdu+/vXMgZGUgaW50ZXJuZXQsIGVsIGF1dG9yIApjZWRlIGEgbGEgVW5pdmVyc2lkYWQgZGUgQWxjYWzvv70sIGRlIGZvcm1hIGdyYXR1aXRhIHkgbm8gZXhjbHVzaXZhLCBwb3IgZWwgbe+/vXhpbW8gCnBsYXpvIGxlZ2FsIHkgY29uIO+/vW1iaXRvIHVuaXZlcnNhbCwgcGFyYSBxdWUgcHVlZGEgc2VyIHV0aWxpemFkYSBkZSBmb3JtYSBsaWJyZQogeSBncmF0dWl0YSBwb3IgdG9kb3MgbG9zIHVzdWFyaW9zIGRlIGludGVybmV0LCBzaWVtcHJlIHF1ZSBzZSBjaXRlIHN1IGF1dG9y77+9YSwgCnF1ZSBubyBzZSBvYnRlbmdhIGJlbmVmaWNpbyBjb21lcmNpYWwsIHkgcXVlIG5vIHNlIHJlYWxpY2VuIG9icmFzIGRlcml2YWRhcywgCmxvcyBkZXJlY2hvcyBkZSByZXByb2R1Y2Np77+9biwgZGUgZGlzdHJpYnVjae+/vW4sIGRlIGNvbXVuaWNhY2nvv71uIHDvv71ibGljYSwgaW5jbHVpZG8KIGVsIGRlcmVjaG8gZGUgcHVlc3RhIGEgZGlzcG9zaWNp77+9biBlbGVjdHLvv71uaWNhLiBTZSBlbnRpZW5kZW4gYXV0b3JpemFkb3MgdG9kb3MgCmxvcyBhY3RvcyBuZWNlc2FyaW9zIHBhcmEgZWwgcmVnaXN0cm8gZGUgbGEgb2JyYSwgc3Ugc2VndXJpZGFkIHkgc3UgY29uc2VydmFjae+/vW4uCgpFbCBhdXRvciBnYXJhbnRpemEgcXVlIGVsIGNvbXByb21pc28gcXVlIGFxde+/vSBhZHF1aWVyZSBubyBpbmZyaW5nZSBuaW5n77+9biAKZGVyZWNobyBkZSBwcm9waWVkYWQgaW5kdXN0cmlhbCwgaW50ZWxlY3R1YWwsIGRlcmVjaG8gYWwgaG9ub3IsIGludGltaWRhZCwgbyAKaW1hZ2VuLCBvIGN1YWxxdWllciBvdHJvIGRlcmVjaG8gZGUgdGVyY2Vyb3MuIAoKRWwgYXV0b3IgYXN1bWUgdG9kYSByZWNsYW1hY2nvv71uIHF1ZSBwdWRpZXJhIGVqZXJjaXRhcnNlIGNvbnRyYSBsYSBVbml2ZXJzaWRhZCBkZQogQWxjYWzvv70gcG9yIHRlcmNlcm9zIHF1ZSB2aWVyYW4gaW5mcmluZ2lkb3Mgc3VzIGRlcmVjaG9zIGEgY2F1c2EgZGUgbGEgY2Vzae+/vW4uIAoKRWwgYXV0b3IgcmVudW5jaWEgYSBjdWFscXVpZXIgcmVjbGFtYWNp77+9biBmcmVudGUgYSBsYSBVbml2ZXJzaWRhZCBwb3IgbGFzIGZvcm1hcwogbm8gYWp1c3RhZGFzIGEgbGEgbGVnaXNsYWNp77+9biB2aWdlbnRlIGVuIHF1ZSBsb3MgdXN1YXJpb3MgaGFnYW4gdXNvIGRlIGxhcyBvYnJhcy4KCkVsIGF1dG9yIHBvZHLvv70gc29saWNpdGFyIGxhIHJldGlyYWRhIGRlIGxhIG9icmEgZGVsIHJlcG9zaXRvcmlvIHBvciBjYXVzYSBqdXN0aWZpY2FkYS4KIEEgdGFsIGZpbiBkZWJlcu+/vSBwb25lcnNlIGVuIGNvbnRhY3RvIGNvbiBlbCBhZG1pbmlzdHJhZG9yIGRlIGVfQnVhaCBlYnVhaEB1YWguZXMuCiBBc2ltaXNtbywgZWwgcmVwb3NpdG9yaW8gcG9kcu+/vSByZXRpcmFyIGxhIG9icmEsIHByZXZpYSBub3RpZmljYWNp77+9biBhbCBhdXRvciwgZW4gCnN1cHVlc3RvcyBzdWZpY2llbnRlbWVudGUganVzdGlmaWNhZG9zLCBvIGVuIGNhc28gZGUgIHJlY2xhbWFjaW9uZXMgZGUgdGVyY2Vyb3MuCgpFbCBhdXRvciBzZXLvv70gY29udmVuaWVudGVtZW50ZSBub3RpZmljYWRvIGRlIGN1YWxxdWllciByZWNsYW1hY2nvv71uIHF1ZSBwdWVkYW4KIGZvcm11bGFyIHRlcmNlcmFzIHBlcnNvbmFzIGVuIHJlbGFjae+/vW4gY29uIGxhIG9icmEuCg==</binData>
</mdWrap>
</rightsMD>
</amdSec>
<amdSec ID="FO_10017_59149_6">
<techMD ID="TECH_O_10017_59149_6">
<xmlData schemaLocation="http://www.loc.gov/standards/premis http://www.loc.gov/standards/premis/PREMIS-v1-0.xsd">
<premis:objectIdentifierType>URL</premis:objectIdentifierType>
<premis:objectIdentifierValue>https://ebuah.uah.es/dspace/bitstream/10017/59149/6/Nanomaterials_Yuan_ChemMat_2020.pdf</premis:objectIdentifierValue>
</premis:objectIdentifier>
<premis:objectCategory>File</premis:objectCategory>
<premis:objectCharacteristics>
<premis:messageDigestAlgorithm>MD5</premis:messageDigestAlgorithm>
<premis:messageDigest>8ec0ae0e25d721f9cfbe902256d53ee2</premis:messageDigest>
</premis:fixity>
<premis:size>1104855</premis:size>
</premis:objectCharacteristics>
<premis:originalName>Nanomaterials_Yuan_ChemMat_2020.pdf</premis:originalName>
</premis:object>
</premis:premis>
</xmlData>
</mdWrap>
</techMD>
</amdSec>
<amdSec ID="FT_10017_59149_5">
<techMD ID="TECH_T_10017_59149_5">
<xmlData schemaLocation="http://www.loc.gov/standards/premis http://www.loc.gov/standards/premis/PREMIS-v1-0.xsd">
<premis:objectIdentifierType>URL</premis:objectIdentifierType>
<premis:objectIdentifierValue>https://ebuah.uah.es/dspace/bitstream/10017/59149/5/2D_nanomaterials.pdf.txt</premis:objectIdentifierValue>
</premis:objectIdentifier>
<premis:objectCategory>File</premis:objectCategory>
<premis:objectCharacteristics>
<premis:messageDigestAlgorithm>MD5</premis:messageDigestAlgorithm>
<premis:messageDigest>035a73991947d295c921943ad1f6cc84</premis:messageDigest>
</premis:fixity>
<premis:size>51918</premis:size>
</premis:objectCharacteristics>
<premis:originalName>2D_nanomaterials.pdf.txt</premis:originalName>
</premis:object>
</premis:premis>
</xmlData>
</mdWrap>
</techMD>
</amdSec>
<amdSec ID="FT_10017_59149_7">
<techMD ID="TECH_T_10017_59149_7">
<xmlData schemaLocation="http://www.loc.gov/standards/premis http://www.loc.gov/standards/premis/PREMIS-v1-0.xsd">
<premis:objectIdentifierType>URL</premis:objectIdentifierType>
<premis:objectIdentifierValue>https://ebuah.uah.es/dspace/bitstream/10017/59149/7/Nanomaterials_Yuan_ChemMat_2020.pdf.txt</premis:objectIdentifierValue>
</premis:objectIdentifier>
<premis:objectCategory>File</premis:objectCategory>
<premis:objectCharacteristics>
<premis:messageDigestAlgorithm>MD5</premis:messageDigestAlgorithm>
<premis:messageDigest>186ce71260ac9df216b77d36d28d2a2f</premis:messageDigest>
</premis:fixity>
<premis:size>52606</premis:size>
</premis:objectCharacteristics>
<premis:originalName>Nanomaterials_Yuan_ChemMat_2020.pdf.txt</premis:originalName>
</premis:object>
</premis:premis>
</xmlData>
</mdWrap>
</techMD>
</amdSec>
<file ADMID="FO_10017_59149_6" CHECKSUM="8ec0ae0e25d721f9cfbe902256d53ee2" CHECKSUMTYPE="MD5" GROUPID="GROUP_BITSTREAM_10017_59149_6" ID="BITSTREAM_ORIGINAL_10017_59149_6" MIMETYPE="application/pdf" SEQ="6" SIZE="1104855">
</file>
</fileGrp>
<file ADMID="FT_10017_59149_5" CHECKSUM="035a73991947d295c921943ad1f6cc84" CHECKSUMTYPE="MD5" GROUPID="GROUP_BITSTREAM_10017_59149_5" ID="BITSTREAM_TEXT_10017_59149_5" MIMETYPE="text/plain" SEQ="5" SIZE="51918">
</file>
<file ADMID="FT_10017_59149_7" CHECKSUM="186ce71260ac9df216b77d36d28d2a2f" CHECKSUMTYPE="MD5" GROUPID="GROUP_BITSTREAM_10017_59149_7" ID="BITSTREAM_TEXT_10017_59149_7" MIMETYPE="text/plain" SEQ="7" SIZE="52606">
</file>
</fileGrp>
</fileSec>
</mets>
<?xml version="1.0" encoding="UTF-8" ?>
<mods:mods schemaLocation="http://www.loc.gov/mods/v3 http://www.loc.gov/standards/mods/v3/mods-3-1.xsd">
<mods:namePart>Escarpa Miguel, Jesús Alberto</mods:namePart>
</mods:name>
<mods:namePart>Kaisong, Yuan</mods:namePart>
</mods:name>
<mods:namePart>Asunción Nadal, Víctor de la</mods:namePart>
</mods:name>
<mods:namePart>Jurado Sánchez, Beatriz</mods:namePart>
</mods:name>
<mods:dateAvailable encoding="iso8601">2024-01-08T09:27:21Z</mods:dateAvailable>
</mods:extension>
<mods:dateAccessioned encoding="iso8601">2024-01-08T09:27:21Z</mods:dateAccessioned>
</mods:extension>
<mods:dateIssued encoding="iso8601">2020-02-14</mods:dateIssued>
</mods:originInfo>
<mods:identifier type="bibliographicCitation">Chemistry of Materials, 2020, v. 32, n. 5, p. 1938-1992</mods:identifier>
<mods:identifier type="issn">0897-4756</mods:identifier>
<mods:identifier type="uri">http://hdl.handle.net/10017/59149</mods:identifier>
<mods:identifier type="doi">10.1021/acs.chemmater.9b04873</mods:identifier>
<mods:identifier type="uxxi">AR/0000034930</mods:identifier>
<mods:identifier type="publicationtitle">Chemistry of Materials</mods:identifier>
<mods:identifier type="publicationvolume">32</mods:identifier>
<mods:identifier type="publicationlastpage">1992</mods:identifier>
<mods:identifier type="publicationissue">5</mods:identifier>
<mods:identifier type="publicationfirstpage">1938</mods:identifier>
<mods:abstract>Graphene oxide, graphdyine oxide, and blackphosphorus coated micromotors integrating "three engines" for motion control using different stimuli such as chemical fuel, light, and magnetic fields are described. Micromotors can be massproduced by wrapping gold-sputtered polystyrene microspheres with the 2D nanomaterials, followed by simultaneous assembly of Pt or MnO2 nanoparticles (NPs) as bubble (catalytic)-engines, Fe2O3 NPs as magnetic engines, and quantum dots (QDs) as light engines. The design and composition of micromotors are key to get the desired propulsion performance. In bubble-magnetic and bubble-light mode, a built-in acceleration system allows micromotor speed to be increased up to 3.0 and 1.5 times after application of the magnetic field or light irradiation, respectively. In the bubble-magnetic-light mode, such speed increase can be combined in a single unit for on-demand braking and accelerating systems. Fluid dynamics simulations illustrate that such adaptative behavior and improved propulsion efficiency is produced by a better distribution of the fuel and thus energy propelling the micromotor by activation of the magnetic and/or light engines. The new micromotors described here, which combine multiple engines with functional nanomaterials, hold considerable promise to develop novel nanovehicles with adaptative behavior to perform complex tasks in lab-on-a-chips or dynamic micropatterning applications.</mods:abstract>
<mods:languageTerm>eng</mods:languageTerm>
</mods:language>
<mods:accessCondition type="useAndReproduction">http://creativecommons.org/licenses/by-nc-nd/4.0/</mods:accessCondition>
<mods:accessCondition type="useAndReproduction">info:eu-repo/semantics/openAccess</mods:accessCondition>
<mods:accessCondition type="useAndReproduction">Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)</mods:accessCondition>
<mods:accessCondition type="useAndReproduction">© ACS</mods:accessCondition>
<mods:title>2D Nanomaterials wrapped Janus micromotors with built-in multiengines for bubble, magnetic, and light driven propulsion</mods:title>
</mods:titleInfo>
<mods:genre>info:eu-repo/semantics/article</mods:genre>
</mods:mods>
<?xml version="1.0" encoding="UTF-8" ?>
<atom:entry schemaLocation="http://www.w3.org/2005/Atom http://www.kbcafe.com/rss/atom.xsd.xml">
<atom:id>http://hdl.handle.net/10017/59149/ore.xml</atom:id>
<atom:published>2024-01-08T09:27:21Z</atom:published>
<atom:updated>2024-01-08T09:27:21Z</atom:updated>
<atom:generator>e_Buah Biblioteca Digital de la Universidad de Alcalá</atom:generator>
</atom:source>
<atom:title>2D Nanomaterials wrapped Janus micromotors with built-in multiengines for bubble, magnetic, and light driven propulsion</atom:title>
<atom:name>Escarpa Miguel, Jesús Alberto</atom:name>
</atom:author>
<atom:name>Kaisong, Yuan</atom:name>
</atom:author>
<atom:name>Asunción Nadal, Víctor de la</atom:name>
</atom:author>
<atom:name>Jurado Sánchez, Beatriz</atom:name>
</atom:author>
<rdf:Description about="http://hdl.handle.net/10017/59149/ore.xml#atom">
<dcterms:modified>2024-01-08T09:27:21Z</dcterms:modified>
</rdf:Description>
<rdf:Description about="https://ebuah.uah.es/dspace/bitstream/10017/59149/1/license.txt">
<dcterms:description>LICENSE</dcterms:description>
</rdf:Description>
<rdf:Description about="https://ebuah.uah.es/dspace/bitstream/10017/59149/2/license_text">
<dcterms:description>CC-LICENSE</dcterms:description>
</rdf:Description>
<rdf:Description about="https://ebuah.uah.es/dspace/bitstream/10017/59149/6/Nanomaterials_Yuan_ChemMat_2020.pdf">
<dcterms:description>ORIGINAL</dcterms:description>
</rdf:Description>
<rdf:Description about="https://ebuah.uah.es/dspace/bitstream/10017/59149/4/mets.zip">
<dcterms:description>SWORD</dcterms:description>
</rdf:Description>
<rdf:Description about="https://ebuah.uah.es/dspace/bitstream/10017/59149/5/2D_nanomaterials.pdf.txt">
<dcterms:description>TEXT</dcterms:description>
</rdf:Description>
<rdf:Description about="https://ebuah.uah.es/dspace/bitstream/10017/59149/7/Nanomaterials_Yuan_ChemMat_2020.pdf.txt">
<dcterms:description>TEXT</dcterms:description>
</rdf:Description>
</oreatom:triples>
</atom:entry>
<?xml version="1.0" encoding="UTF-8" ?>
<qdc:qualifieddc schemaLocation="http://purl.org/dc/elements/1.1/ http://dublincore.org/schemas/xmls/qdc/2006/01/06/dc.xsd http://purl.org/dc/terms/ http://dublincore.org/schemas/xmls/qdc/2006/01/06/dcterms.xsd http://dspace.org/qualifieddc/ http://www.ukoln.ac.uk/metadata/dcmi/xmlschema/qualifieddc.xsd">
<dc:title>2D Nanomaterials wrapped Janus micromotors with built-in multiengines for bubble, magnetic, and light driven propulsion</dc:title>
<dc:creator>Escarpa Miguel, Jesús Alberto</dc:creator>
<dc:creator>Kaisong, Yuan</dc:creator>
<dc:creator>Asunción Nadal, Víctor de la</dc:creator>
<dc:creator>Jurado Sánchez, Beatriz</dc:creator>
<dcterms:abstract>Graphene oxide, graphdyine oxide, and blackphosphorus coated micromotors integrating "three engines" for motion control using different stimuli such as chemical fuel, light, and magnetic fields are described. Micromotors can be massproduced by wrapping gold-sputtered polystyrene microspheres with the 2D nanomaterials, followed by simultaneous assembly of Pt or MnO2 nanoparticles (NPs) as bubble (catalytic)-engines, Fe2O3 NPs as magnetic engines, and quantum dots (QDs) as light engines. The design and composition of micromotors are key to get the desired propulsion performance. In bubble-magnetic and bubble-light mode, a built-in acceleration system allows micromotor speed to be increased up to 3.0 and 1.5 times after application of the magnetic field or light irradiation, respectively. In the bubble-magnetic-light mode, such speed increase can be combined in a single unit for on-demand braking and accelerating systems. Fluid dynamics simulations illustrate that such adaptative behavior and improved propulsion efficiency is produced by a better distribution of the fuel and thus energy propelling the micromotor by activation of the magnetic and/or light engines. The new micromotors described here, which combine multiple engines with functional nanomaterials, hold considerable promise to develop novel nanovehicles with adaptative behavior to perform complex tasks in lab-on-a-chips or dynamic micropatterning applications.</dcterms:abstract>
<dcterms:dateAccepted>2024-01-08T09:27:21Z</dcterms:dateAccepted>
<dcterms:available>2024-01-08T09:27:21Z</dcterms:available>
<dcterms:created>2024-01-08T09:27:21Z</dcterms:created>
<dcterms:issued>2020-02-14</dcterms:issued>
<dc:type>info:eu-repo/semantics/article</dc:type>
<dc:identifier>Chemistry of Materials, 2020, v. 32, n. 5, p. 1938-1992</dc:identifier>
<dc:identifier>0897-4756</dc:identifier>
<dc:identifier>http://hdl.handle.net/10017/59149</dc:identifier>
<dc:identifier>10.1021/acs.chemmater.9b04873</dc:identifier>
<dc:identifier>AR/0000034930</dc:identifier>
<dc:identifier>Chemistry of Materials</dc:identifier>
<dc:identifier>32</dc:identifier>
<dc:identifier>1992</dc:identifier>
<dc:identifier>5</dc:identifier>
<dc:identifier>1938</dc:identifier>
<dc:language>eng</dc:language>
<dc:relation>info:eu-repo/grantAgreement/MICINN//RYC-2015-17558/ES/</dc:relation>
<dc:relation>info:eu-repo/grantAgreement/EU//CTQ2017-86441-C2-1-R/</dc:relation>
<dc:relation>info:eu-repo/grantAgreement/CAM//CM/JIN%2F2019-007/ES/</dc:relation>
<dc:relation>info:eu-repo/grantAgreement/CAM//S2018%2FNMT-4349/ES/</dc:relation>
<dc:rights>http://creativecommons.org/licenses/by-nc-nd/4.0/</dc:rights>
<dc:rights>info:eu-repo/semantics/openAccess</dc:rights>
<dc:rights>Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)</dc:rights>
<dc:rights>© ACS</dc:rights>
</qdc:qualifieddc>
<?xml version="1.0" encoding="UTF-8" ?>
<rdf:RDF schemaLocation="http://www.openarchives.org/OAI/2.0/rdf/ http://www.openarchives.org/OAI/2.0/rdf.xsd">
<ow:Publication about="oai:ebuah.uah.es:10017/59149">
<dc:title>2D Nanomaterials wrapped Janus micromotors with built-in multiengines for bubble, magnetic, and light driven propulsion</dc:title>
<dc:creator>Escarpa Miguel, Jesús Alberto</dc:creator>
<dc:creator>Kaisong, Yuan</dc:creator>
<dc:creator>Asunción Nadal, Víctor de la</dc:creator>
<dc:creator>Jurado Sánchez, Beatriz</dc:creator>
<dc:description>Graphene oxide, graphdyine oxide, and blackphosphorus coated micromotors integrating "three engines" for motion control using different stimuli such as chemical fuel, light, and magnetic fields are described. Micromotors can be massproduced by wrapping gold-sputtered polystyrene microspheres with the 2D nanomaterials, followed by simultaneous assembly of Pt or MnO2 nanoparticles (NPs) as bubble (catalytic)-engines, Fe2O3 NPs as magnetic engines, and quantum dots (QDs) as light engines. The design and composition of micromotors are key to get the desired propulsion performance. In bubble-magnetic and bubble-light mode, a built-in acceleration system allows micromotor speed to be increased up to 3.0 and 1.5 times after application of the magnetic field or light irradiation, respectively. In the bubble-magnetic-light mode, such speed increase can be combined in a single unit for on-demand braking and accelerating systems. Fluid dynamics simulations illustrate that such adaptative behavior and improved propulsion efficiency is produced by a better distribution of the fuel and thus energy propelling the micromotor by activation of the magnetic and/or light engines. The new micromotors described here, which combine multiple engines with functional nanomaterials, hold considerable promise to develop novel nanovehicles with adaptative behavior to perform complex tasks in lab-on-a-chips or dynamic micropatterning applications.</dc:description>
<dc:date>2024-01-08T09:27:21Z</dc:date>
<dc:date>2024-01-08T09:27:21Z</dc:date>
<dc:date>2020-02-14</dc:date>
<dc:date>2024-01-08T09:26:57Z</dc:date>
<dc:type>info:eu-repo/semantics/article</dc:type>
<dc:identifier>Chemistry of Materials, 2020, v. 32, n. 5, p. 1938-1992</dc:identifier>
<dc:identifier>0897-4756</dc:identifier>
<dc:identifier>http://hdl.handle.net/10017/59149</dc:identifier>
<dc:identifier>10.1021/acs.chemmater.9b04873</dc:identifier>
<dc:identifier>AR/0000034930</dc:identifier>
<dc:identifier>Chemistry of Materials</dc:identifier>
<dc:identifier>32</dc:identifier>
<dc:identifier>1992</dc:identifier>
<dc:identifier>5</dc:identifier>
<dc:identifier>1938</dc:identifier>
<dc:language>eng</dc:language>
<dc:relation>info:eu-repo/grantAgreement/MICINN//RYC-2015-17558/ES/</dc:relation>
<dc:relation>info:eu-repo/grantAgreement/EU//CTQ2017-86441-C2-1-R/</dc:relation>
<dc:relation>info:eu-repo/grantAgreement/CAM//CM/JIN%2F2019-007/ES/</dc:relation>
<dc:relation>info:eu-repo/grantAgreement/CAM//S2018%2FNMT-4349/ES/</dc:relation>
<dc:rights>http://creativecommons.org/licenses/by-nc-nd/4.0/</dc:rights>
<dc:rights>info:eu-repo/semantics/openAccess</dc:rights>
<dc:rights>Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)</dc:rights>
<dc:rights>© ACS</dc:rights>
</ow:Publication>
</rdf:RDF>
<?xml version="1.0" encoding="UTF-8" ?>
<metadata schemaLocation="http://www.lyncode.com/xoai http://www.lyncode.com/xsd/xoai.xsd">
<field name="value">Escarpa Miguel, Jesús Alberto</field>
<field name="authority">32680</field>
<field name="confidence">600</field>
<field name="value">Kaisong, Yuan</field>
<field name="authority">122228</field>
<field name="confidence">600</field>
<field name="value">Asunción Nadal, Víctor de la</field>
<field name="authority">115933</field>
<field name="confidence">600</field>
<field name="value">Jurado Sánchez, Beatriz</field>
<field name="authority">75696</field>
<field name="confidence">600</field>
</element>
</element>
</element>
</element>
</element>
<field name="value">Graphene oxide, graphdyine oxide, and blackphosphorus coated micromotors integrating "three engines" for motion control using different stimuli such as chemical fuel, light, and magnetic fields are described. Micromotors can be massproduced by wrapping gold-sputtered polystyrene microspheres with the 2D nanomaterials, followed by simultaneous assembly of Pt or MnO2 nanoparticles (NPs) as bubble (catalytic)-engines, Fe2O3 NPs as magnetic engines, and quantum dots (QDs) as light engines. The design and composition of micromotors are key to get the desired propulsion performance. In bubble-magnetic and bubble-light mode, a built-in acceleration system allows micromotor speed to be increased up to 3.0 and 1.5 times after application of the magnetic field or light irradiation, respectively. In the bubble-magnetic-light mode, such speed increase can be combined in a single unit for on-demand braking and accelerating systems. Fluid dynamics simulations illustrate that such adaptative behavior and improved propulsion efficiency is produced by a better distribution of the fuel and thus energy propelling the micromotor by activation of the magnetic and/or light engines. The new micromotors described here, which combine multiple engines with functional nanomaterials, hold considerable promise to develop novel nanovehicles with adaptative behavior to perform complex tasks in lab-on-a-chips or dynamic micropatterning applications.</field>
</element>
</element>
</element>
<field name="value">Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)</field>
<field name="value">© ACS</field>
</element>
</element>
<field name="value">info:eu-repo/grantAgreement/MICINN//RYC-2015-17558/ES/</field>
<field name="value">info:eu-repo/grantAgreement/EU//CTQ2017-86441-C2-1-R/</field>
<field name="value">info:eu-repo/grantAgreement/CAM//CM/JIN%2F2019-007/ES/</field>
<field name="value">info:eu-repo/grantAgreement/CAM//S2018%2FNMT-4349/ES/</field>
</element>
</element>
</element>
</element>
</element>
<field name="name">LICENSE</field>
<field name="name">license.txt</field>
<field name="originalName">license.txt</field>
<field name="format">text/plain</field>
<field name="size">3007</field>
<field name="url">https://ebuah.uah.es/dspace/bitstream/10017/59149/1/license.txt</field>
<field name="checksum">9c3114f95644cc3ab5d84f6e856e041a</field>
<field name="checksumAlgorithm">MD5</field>
<field name="sid">1</field>
</element>
</element>
</element>
<field name="name">CC-LICENSE</field>
<field name="name">license_text</field>
<field name="originalName">license_text</field>
<field name="format">text/plain</field>
<field name="size">22131</field>
<field name="url">https://ebuah.uah.es/dspace/bitstream/10017/59149/2/license_text</field>
<field name="checksum">f2b5d0043d54b50b5a756c6820e1cc08</field>
<field name="checksumAlgorithm">MD5</field>
<field name="sid">2</field>
</element>
</element>
</element>
<field name="name">ORIGINAL</field>
<field name="name">Nanomaterials_Yuan_ChemMat_2020.pdf</field>
<field name="originalName">Nanomaterials_Yuan_ChemMat_2020.pdf</field>
<field name="format">application/pdf</field>
<field name="size">1104855</field>
<field name="url">https://ebuah.uah.es/dspace/bitstream/10017/59149/6/Nanomaterials_Yuan_ChemMat_2020.pdf</field>
<field name="checksum">8ec0ae0e25d721f9cfbe902256d53ee2</field>
<field name="checksumAlgorithm">MD5</field>
<field name="sid">6</field>
</element>
</element>
</element>
<field name="name">SWORD</field>
<field name="name">mets.zip</field>
<field name="description">Original SWORD deposit file</field>
<field name="format">application/zip</field>
<field name="size">721201</field>
<field name="url">https://ebuah.uah.es/dspace/bitstream/10017/59149/4/mets.zip</field>
<field name="checksum">343c4495bae7d0dce7c7906289c789af</field>
<field name="checksumAlgorithm">MD5</field>
<field name="sid">4</field>
</element>
</element>
</element>
<field name="name">TEXT</field>
<field name="name">2D_nanomaterials.pdf.txt</field>
<field name="originalName">2D_nanomaterials.pdf.txt</field>
<field name="description">Extracted text</field>
<field name="format">text/plain</field>
<field name="size">51918</field>
<field name="url">https://ebuah.uah.es/dspace/bitstream/10017/59149/5/2D_nanomaterials.pdf.txt</field>
<field name="checksum">035a73991947d295c921943ad1f6cc84</field>
<field name="checksumAlgorithm">MD5</field>
<field name="sid">5</field>
</element>
<field name="name">Nanomaterials_Yuan_ChemMat_2020.pdf.txt</field>
<field name="originalName">Nanomaterials_Yuan_ChemMat_2020.pdf.txt</field>
<field name="description">Extracted text</field>
<field name="format">text/plain</field>
<field name="size">52606</field>
<field name="url">https://ebuah.uah.es/dspace/bitstream/10017/59149/7/Nanomaterials_Yuan_ChemMat_2020.pdf.txt</field>
<field name="checksum">186ce71260ac9df216b77d36d28d2a2f</field>
<field name="checksumAlgorithm">MD5</field>
<field name="sid">7</field>
</element>
</element>
</element>
</element>
<field name="handle">10017/59149</field>
<field name="identifier">oai:ebuah.uah.es:10017/59149</field>
<field name="lastModifyDate">2024-07-19 10:13:31.313</field>
</element>
<field name="name">e_Buah Biblioteca Digital de la Universidad de Alcalá</field>
<field name="mail">ebuah@uah.es</field>
</element>
<field name="bin">TElDRU5DSUEgIFBBUkEgQVVUT0FSQ0hJVk8KKEFwcm9iYWRhIGVuIENvbnNlam8gZGUgR29iaWVybm8gZWwgMTggZGUgRGljaWVtYnJlIGRlIDIwMDgpCgpEZSBjYXJhIGEgZm9ybWFsaXphciBjb3JyZWN0YW1lbnRlIHRvZGFzIGxhcyBmYXNlcyBkZWwgcHJvY2VzbyBkZSAKYXV0b2FyY2hpdm8sIGVzIE1VWSBJTVBPUlRBTlRFIHF1ZSBsZWEgeSBjb21wcmVuZGEgZW4gc3UgdG90YWxpZGFkCmVsIGNvbnRlbmlkbyBkZSBsYXMgc2lndWllbnRlcyBub3JtYXMgeSBsb3MgdO+/vXJtaW5vcyBkZSBlc3RhIGxpY2VuY2lhLCAKYW50ZXMgZGUgZXhwcmVzYXIgc3UgY29uc2VudGltaWVudG8geSBhY2VwdGFjae+/vW4gbWVkaWFudGUgdW4gY2xpYyBlbiBlbCAKYm9077+9biBkZSBBQ0VQVEFSLgoKQSBlc3RvcyBlZmVjdG9zIGVsIHJlcG9zaXRvcmlvIHNlIGRlbm9taW5hIGVfQnVhaCBzdSBhZG1pbmlzdHJhZG9yIGVzIGxhIEJpYmxpb3RlY2EgZGUgbGEgVUFILCBlYnVhaEB1YWguZXMsIGNvbiBsYSBzaWd1aWVudGUgZGlyZWNjae+/vW46IEJpYmxpb3RlY2EgQ2VudHJhbCwgRmFjdWx0YWQgCmRlIE1lZGljaW5hLCBDYW1wdXMgdW5pdmVyc2l0YXJpbyBzLm4uLCAyODg3MSBBbGNhbO+/vSBkZSBIZW5hcmVzLgoKRWwgIGF1dG9yIGRlY2xhcmEgcXVlIGVzIGVsIHRpdHVsYXIgZGUgbG9zIGRlcmVjaG9zIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCwgCm9iamV0byBkZSBsYSBwcmVzZW50ZSBjZXNp77+9biwgZW4gcmVsYWNp77+9biBjb24gbGEgb2JyYSBxdWUgYXV0b2FyY2hpdmEsIHF1ZSAK77+9c3RhIGVzIHVuYSBvYnJhIG9yaWdpbmFsLCB5IHF1ZSBvc3RlbnRhIGxhIGNvbmRpY2nvv71uIGRlIGF1dG9yIGRlIGVzdGEgb2JyYS4KCkVuIGNhc28gZGUgc2VyIGNvdGl0dWxhciBkZSB0YWxlcyBkZXJlY2hvcywgZWwgYXV0b3IgZGVjbGFyYSBxdWUgY3VlbnRhIGNvbgogbGEgYXV0b3JpemFjae+/vW4gZGUgbG9zIHJlc3RhbnRlcyB0aXR1bGFyZXMgcGFyYSBoYWNlciBsYSBwcmVzZW50ZSBjZXNp77+9biwgeSBxdWUKIGxvcyBub21icmVzIGRlIHRvZG9zIGxvcyBjb2F1dG9yZXMgYXBhcmVjZW4gbWVuY2lvbmFkb3MgZW4gbGEgb2JyYS4KCkVuIGNhc28gZGUgcHJldmlhIGNlc2nvv71uIGEgdGVyY2Vyb3MgZGUgZGVyZWNob3MgZGUgZXhwbG90YWNp77+9biBkZSBsYSBvYnJhLCAKZWwgYXV0b3IgZGVjbGFyYSBxdWUgdGllbmUgbGEgb3BvcnR1bmEgcmVzZXJ2YSBvIGF1dG9yaXphY2nvv71uIGRlIGRpY2hvcyB0aXR1bGFyZXMgCmRlIGRlcmVjaG9zIGEgbG9zIGZpbmVzIGRlIGVzdGEgY2Vzae+/vW4uCgpDb24gZWwgZmluIGRlIGRhciBsYSBt77+9eGltYSBkaWZ1c2nvv71uIGEgZXN0YSBvYnJhIGEgdHJhdu+/vXMgZGUgaW50ZXJuZXQsIGVsIGF1dG9yIApjZWRlIGEgbGEgVW5pdmVyc2lkYWQgZGUgQWxjYWzvv70sIGRlIGZvcm1hIGdyYXR1aXRhIHkgbm8gZXhjbHVzaXZhLCBwb3IgZWwgbe+/vXhpbW8gCnBsYXpvIGxlZ2FsIHkgY29uIO+/vW1iaXRvIHVuaXZlcnNhbCwgcGFyYSBxdWUgcHVlZGEgc2VyIHV0aWxpemFkYSBkZSBmb3JtYSBsaWJyZQogeSBncmF0dWl0YSBwb3IgdG9kb3MgbG9zIHVzdWFyaW9zIGRlIGludGVybmV0LCBzaWVtcHJlIHF1ZSBzZSBjaXRlIHN1IGF1dG9y77+9YSwgCnF1ZSBubyBzZSBvYnRlbmdhIGJlbmVmaWNpbyBjb21lcmNpYWwsIHkgcXVlIG5vIHNlIHJlYWxpY2VuIG9icmFzIGRlcml2YWRhcywgCmxvcyBkZXJlY2hvcyBkZSByZXByb2R1Y2Np77+9biwgZGUgZGlzdHJpYnVjae+/vW4sIGRlIGNvbXVuaWNhY2nvv71uIHDvv71ibGljYSwgaW5jbHVpZG8KIGVsIGRlcmVjaG8gZGUgcHVlc3RhIGEgZGlzcG9zaWNp77+9biBlbGVjdHLvv71uaWNhLiBTZSBlbnRpZW5kZW4gYXV0b3JpemFkb3MgdG9kb3MgCmxvcyBhY3RvcyBuZWNlc2FyaW9zIHBhcmEgZWwgcmVnaXN0cm8gZGUgbGEgb2JyYSwgc3Ugc2VndXJpZGFkIHkgc3UgY29uc2VydmFjae+/vW4uCgpFbCBhdXRvciBnYXJhbnRpemEgcXVlIGVsIGNvbXByb21pc28gcXVlIGFxde+/vSBhZHF1aWVyZSBubyBpbmZyaW5nZSBuaW5n77+9biAKZGVyZWNobyBkZSBwcm9waWVkYWQgaW5kdXN0cmlhbCwgaW50ZWxlY3R1YWwsIGRlcmVjaG8gYWwgaG9ub3IsIGludGltaWRhZCwgbyAKaW1hZ2VuLCBvIGN1YWxxdWllciBvdHJvIGRlcmVjaG8gZGUgdGVyY2Vyb3MuIAoKRWwgYXV0b3IgYXN1bWUgdG9kYSByZWNsYW1hY2nvv71uIHF1ZSBwdWRpZXJhIGVqZXJjaXRhcnNlIGNvbnRyYSBsYSBVbml2ZXJzaWRhZCBkZQogQWxjYWzvv70gcG9yIHRlcmNlcm9zIHF1ZSB2aWVyYW4gaW5mcmluZ2lkb3Mgc3VzIGRlcmVjaG9zIGEgY2F1c2EgZGUgbGEgY2Vzae+/vW4uIAoKRWwgYXV0b3IgcmVudW5jaWEgYSBjdWFscXVpZXIgcmVjbGFtYWNp77+9biBmcmVudGUgYSBsYSBVbml2ZXJzaWRhZCBwb3IgbGFzIGZvcm1hcwogbm8gYWp1c3RhZGFzIGEgbGEgbGVnaXNsYWNp77+9biB2aWdlbnRlIGVuIHF1ZSBsb3MgdXN1YXJpb3MgaGFnYW4gdXNvIGRlIGxhcyBvYnJhcy4KCkVsIGF1dG9yIHBvZHLvv70gc29saWNpdGFyIGxhIHJldGlyYWRhIGRlIGxhIG9icmEgZGVsIHJlcG9zaXRvcmlvIHBvciBjYXVzYSBqdXN0aWZpY2FkYS4KIEEgdGFsIGZpbiBkZWJlcu+/vSBwb25lcnNlIGVuIGNvbnRhY3RvIGNvbiBlbCBhZG1pbmlzdHJhZG9yIGRlIGVfQnVhaCBlYnVhaEB1YWguZXMuCiBBc2ltaXNtbywgZWwgcmVwb3NpdG9yaW8gcG9kcu+/vSByZXRpcmFyIGxhIG9icmEsIHByZXZpYSBub3RpZmljYWNp77+9biBhbCBhdXRvciwgZW4gCnN1cHVlc3RvcyBzdWZpY2llbnRlbWVudGUganVzdGlmaWNhZG9zLCBvIGVuIGNhc28gZGUgIHJlY2xhbWFjaW9uZXMgZGUgdGVyY2Vyb3MuCgpFbCBhdXRvciBzZXLvv70gY29udmVuaWVudGVtZW50ZSBub3RpZmljYWRvIGRlIGN1YWxxdWllciByZWNsYW1hY2nvv71uIHF1ZSBwdWVkYW4KIGZvcm11bGFyIHRlcmNlcmFzIHBlcnNvbmFzIGVuIHJlbGFjae+/vW4gY29uIGxhIG9icmEuCg==</field>
</element>
</metadata>