Logotipo de HISPANA
Logotipo del Ministerio de Cultura
  • Què és Hispana?
  • Cerca
  • Directori de col·leccions
  • Contacte
  • va
    • Español
    • Euskara
    • English
    • Galego
    • Català
    • Valencià
Está en:  › Dades de registre
Linked Open Data
$\omega_1$-strongly compact cardinals and normality
Identificadores del recurso
0166-8641
http://hdl.handle.net/2445/214429
744329
Procedència
(Dipòsit Digital de la Universitat de Barcelona)

Fitxa

Títol:
$\omega_1$-strongly compact cardinals and normality
Tema:
Espais topològics
Topologia
Teoria de conjunts
Nombres cardinals
Topological spaces
Topology
Set theory
Cardinal numbers
Descripció:
We present more applications of the recently introduced -strongly compact cardinals in the context of either consistency or reflection results in General Topology, focusing on issues related to normality. In particular, we show that such large cardinal notion provides a new upper bound for the consistency strength of the statement “All normal Moore spaces are metrizable” (NMSC). The proof uses random forcing, as in the original consistency proof of NMSC due to Nykos-Kunen-Solovay (see Fleissner [10]). We establish a compactness theorem for normality (i.e., reflection of non-normality) in the realm of first countable spaces, using the least -strongly compact cardinal, as well as two more similar compactness results on related topological properties. We finish the paper by combining the techniques of reflection and forcing to show that our new upper bound for the consistency strength of NMSC can be also obtained via Cohen forcing, using some arguments from Dow-Tall-Weiss.
Font:
Articles publicats en revistes (Matemàtiques i Informàtica)
Idioma:
English
Relació:
Reproducció del document publicat a: https://doi.org/10.1016/j.topol.2022.108276
Topology and its Applications, 2023, vol. 323
https://doi.org/10.1016/j.topol.2022.108276
Autor/Productor:
Bagaria, Joan
da Silva, Samuel G.
Editor:
Elsevier B.V.
Drets:
cc-by-nc-nd (c) Joan Bagaria et al., 2023
http://creativecommons.org/licenses/by-nc-nd/3.0/es/
info:eu-repo/semantics/openAccess
Data:
2024-07-08T11:23:53Z
2023-01-01
2024-07-08T11:23:59Z
Tipo de recurso:
info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
Format:
23 p.
application/pdf

oai_dc

Descarregar XML

    <?xml version="1.0" encoding="UTF-8" ?>

  1. <oai_dc:dc schemaLocation="http://www.openarchives.org/OAI/2.0/oai_dc/ http://www.openarchives.org/OAI/2.0/oai_dc.xsd">

    1. <dc:title>$\omega_1$-strongly compact cardinals and normality</dc:title>

    2. <dc:creator>Bagaria, Joan</dc:creator>

    3. <dc:creator>da Silva, Samuel G.</dc:creator>

    4. <dc:subject>Espais topològics</dc:subject>

    5. <dc:subject>Topologia</dc:subject>

    6. <dc:subject>Teoria de conjunts</dc:subject>

    7. <dc:subject>Nombres cardinals</dc:subject>

    8. <dc:subject>Topological spaces</dc:subject>

    9. <dc:subject>Topology</dc:subject>

    10. <dc:subject>Set theory</dc:subject>

    11. <dc:subject>Cardinal numbers</dc:subject>

    12. <dc:description>We present more applications of the recently introduced -strongly compact cardinals in the context of either consistency or reflection results in General Topology, focusing on issues related to normality. In particular, we show that such large cardinal notion provides a new upper bound for the consistency strength of the statement “All normal Moore spaces are metrizable” (NMSC). The proof uses random forcing, as in the original consistency proof of NMSC due to Nykos-Kunen-Solovay (see Fleissner [10]). We establish a compactness theorem for normality (i.e., reflection of non-normality) in the realm of first countable spaces, using the least -strongly compact cardinal, as well as two more similar compactness results on related topological properties. We finish the paper by combining the techniques of reflection and forcing to show that our new upper bound for the consistency strength of NMSC can be also obtained via Cohen forcing, using some arguments from Dow-Tall-Weiss.</dc:description>

    13. <dc:date>2024-07-08T11:23:53Z</dc:date>

    14. <dc:date>2024-07-08T11:23:53Z</dc:date>

    15. <dc:date>2023-01-01</dc:date>

    16. <dc:date>2024-07-08T11:23:59Z</dc:date>

    17. <dc:type>info:eu-repo/semantics/article</dc:type>

    18. <dc:type>info:eu-repo/semantics/publishedVersion</dc:type>

    19. <dc:identifier>0166-8641</dc:identifier>

    20. <dc:identifier>http://hdl.handle.net/2445/214429</dc:identifier>

    21. <dc:identifier>744329</dc:identifier>

    22. <dc:language>eng</dc:language>

    23. <dc:relation>Reproducció del document publicat a: https://doi.org/10.1016/j.topol.2022.108276</dc:relation>

    24. <dc:relation>Topology and its Applications, 2023, vol. 323</dc:relation>

    25. <dc:relation>https://doi.org/10.1016/j.topol.2022.108276</dc:relation>

    26. <dc:rights>cc-by-nc-nd (c) Joan Bagaria et al., 2023</dc:rights>

    27. <dc:rights>http://creativecommons.org/licenses/by-nc-nd/3.0/es/</dc:rights>

    28. <dc:rights>info:eu-repo/semantics/openAccess</dc:rights>

    29. <dc:format>23 p.</dc:format>

    30. <dc:format>application/pdf</dc:format>

    31. <dc:publisher>Elsevier B.V.</dc:publisher>

    32. <dc:source>Articles publicats en revistes (Matemàtiques i Informàtica)</dc:source>

    </oai_dc:dc>

marc

Descarregar XML

    <?xml version="1.0" encoding="UTF-8" ?>

  1. <record schemaLocation="http://www.loc.gov/MARC21/slim http://www.loc.gov/standards/marcxml/schema/MARC21slim.xsd">

    1. <leader>00925njm 22002777a 4500</leader>

    2. <datafield ind1=" " ind2=" " tag="042">

      1. <subfield code="a">dc</subfield>

      </datafield>

    3. <datafield ind1=" " ind2=" " tag="720">

      1. <subfield code="a">Bagaria, Joan</subfield>

      2. <subfield code="e">author</subfield>

      </datafield>

    4. <datafield ind1=" " ind2=" " tag="720">

      1. <subfield code="a">da Silva, Samuel G.</subfield>

      2. <subfield code="e">author</subfield>

      </datafield>

    5. <datafield ind1=" " ind2=" " tag="260">

      1. <subfield code="c">2023-01-01</subfield>

      </datafield>

    6. <datafield ind1=" " ind2=" " tag="520">

      1. <subfield code="a">We present more applications of the recently introduced -strongly compact cardinals in the context of either consistency or reflection results in General Topology, focusing on issues related to normality. In particular, we show that such large cardinal notion provides a new upper bound for the consistency strength of the statement “All normal Moore spaces are metrizable” (NMSC). The proof uses random forcing, as in the original consistency proof of NMSC due to Nykos-Kunen-Solovay (see Fleissner [10]). We establish a compactness theorem for normality (i.e., reflection of non-normality) in the realm of first countable spaces, using the least -strongly compact cardinal, as well as two more similar compactness results on related topological properties. We finish the paper by combining the techniques of reflection and forcing to show that our new upper bound for the consistency strength of NMSC can be also obtained via Cohen forcing, using some arguments from Dow-Tall-Weiss.</subfield>

      </datafield>

    7. <datafield ind1="8" ind2=" " tag="024">

      1. <subfield code="a">0166-8641</subfield>

      </datafield>

    8. <datafield ind1="8" ind2=" " tag="024">

      1. <subfield code="a">http://hdl.handle.net/2445/214429</subfield>

      </datafield>

    9. <datafield ind1="8" ind2=" " tag="024">

      1. <subfield code="a">744329</subfield>

      </datafield>

    10. <datafield ind1="0" ind2="0" tag="245">

      1. <subfield code="a">$\omega_1$-strongly compact cardinals and normality</subfield>

      </datafield>

    </record>

mets

Descarregar XML

    <?xml version="1.0" encoding="UTF-8" ?>

  1. <mets ID=" DSpace_ITEM_2445-214429" OBJID=" hdl:2445/214429" PROFILE="DSpace METS SIP Profile 1.0" TYPE="DSpace ITEM" schemaLocation="http://www.loc.gov/METS/ http://www.loc.gov/standards/mets/mets.xsd">

    1. <metsHdr CREATEDATE="2024-08-04T20:43:05Z">

      1. <agent ROLE="CUSTODIAN" TYPE="ORGANIZATION">

        1. <name>Dip&ograve;sit Digital de la Universitat de Barcelona</name>

        </agent>

      </metsHdr>

    2. <dmdSec ID="DMD_2445_214429">

      1. <mdWrap MDTYPE="MODS">

        1. <xmlData schemaLocation="http://www.loc.gov/mods/v3 http://www.loc.gov/standards/mods/v3/mods-3-1.xsd">

          1. <mods:mods schemaLocation="http://www.loc.gov/mods/v3 http://www.loc.gov/standards/mods/v3/mods-3-1.xsd">

            1. <mods:name>

              1. <mods:role>

                1. <mods:roleTerm type="text">author</mods:roleTerm>

                </mods:role>

              2. <mods:namePart>Bagaria, Joan</mods:namePart>

              </mods:name>

            2. <mods:name>

              1. <mods:role>

                1. <mods:roleTerm type="text">author</mods:roleTerm>

                </mods:role>

              2. <mods:namePart>da Silva, Samuel G.</mods:namePart>

              </mods:name>

            3. <mods:extension>

              1. <mods:dateAccessioned encoding="iso8601">2024-07-08T11:23:53Z</mods:dateAccessioned>

              </mods:extension>

            4. <mods:extension>

              1. <mods:dateAvailable encoding="iso8601">2024-07-08T11:23:53Z</mods:dateAvailable>

              </mods:extension>

            5. <mods:originInfo>

              1. <mods:dateIssued encoding="iso8601">2023-01-01</mods:dateIssued>

              </mods:originInfo>

            6. <mods:identifier type="issn">0166-8641</mods:identifier>

            7. <mods:identifier type="uri">http://hdl.handle.net/2445/214429</mods:identifier>

            8. <mods:identifier type="idgrec">744329</mods:identifier>

            9. <mods:abstract>We present more applications of the recently introduced -strongly compact cardinals in the context of either consistency or reflection results in General Topology, focusing on issues related to normality. In particular, we show that such large cardinal notion provides a new upper bound for the consistency strength of the statement “All normal Moore spaces are metrizable” (NMSC). The proof uses random forcing, as in the original consistency proof of NMSC due to Nykos-Kunen-Solovay (see Fleissner [10]). We establish a compactness theorem for normality (i.e., reflection of non-normality) in the realm of first countable spaces, using the least -strongly compact cardinal, as well as two more similar compactness results on related topological properties. We finish the paper by combining the techniques of reflection and forcing to show that our new upper bound for the consistency strength of NMSC can be also obtained via Cohen forcing, using some arguments from Dow-Tall-Weiss.</mods:abstract>

            10. <mods:language>

              1. <mods:languageTerm authority="rfc3066">eng</mods:languageTerm>

              </mods:language>

            11. <mods:accessCondition type="useAndReproduction">cc-by-nc-nd (c) Joan Bagaria et al., 2023</mods:accessCondition>

            12. <mods:titleInfo>

              1. <mods:title>$\omega_1$-strongly compact cardinals and normality</mods:title>

              </mods:titleInfo>

            13. <mods:genre>info:eu-repo/semantics/article</mods:genre>

            </mods:mods>

          </xmlData>

        </mdWrap>

      </dmdSec>

    3. <amdSec ID="TMD_2445_214429">

      1. <rightsMD ID="RIG_2445_214429">

        1. <mdWrap MDTYPE="OTHER" MIMETYPE="text/plain" OTHERMDTYPE="DSpaceDepositLicense">

          1. <binData>Tk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=</binData>

          </mdWrap>

        </rightsMD>

      </amdSec>

    4. <amdSec ID="FO_2445_214429_1">

      1. <techMD ID="TECH_O_2445_214429_1">

        1. <mdWrap MDTYPE="PREMIS">

          1. <xmlData schemaLocation="http://www.loc.gov/standards/premis http://www.loc.gov/standards/premis/PREMIS-v1-0.xsd">

            1. <premis:premis>

              1. <premis:object>

                1. <premis:objectIdentifier>

                  1. <premis:objectIdentifierType>URL</premis:objectIdentifierType>

                  2. <premis:objectIdentifierValue>http://diposit.ub.edu/dspace/bitstream/2445/214429/1/847279.pdf</premis:objectIdentifierValue>

                  </premis:objectIdentifier>

                2. <premis:objectCategory>File</premis:objectCategory>

                3. <premis:objectCharacteristics>

                  1. <premis:fixity>

                    1. <premis:messageDigestAlgorithm>MD5</premis:messageDigestAlgorithm>

                    2. <premis:messageDigest>ddef53180c7c8511625c4e72c144b4e8</premis:messageDigest>

                    </premis:fixity>

                  2. <premis:size>553248</premis:size>

                  3. <premis:format>

                    1. <premis:formatDesignation>

                      1. <premis:formatName>application/pdf</premis:formatName>

                      </premis:formatDesignation>

                    </premis:format>

                  </premis:objectCharacteristics>

                4. <premis:originalName>847279.pdf</premis:originalName>

                </premis:object>

              </premis:premis>

            </xmlData>

          </mdWrap>

        </techMD>

      </amdSec>

    5. <amdSec ID="FT_2445_214429_7">

      1. <techMD ID="TECH_T_2445_214429_7">

        1. <mdWrap MDTYPE="PREMIS">

          1. <xmlData schemaLocation="http://www.loc.gov/standards/premis http://www.loc.gov/standards/premis/PREMIS-v1-0.xsd">

            1. <premis:premis>

              1. <premis:object>

                1. <premis:objectIdentifier>

                  1. <premis:objectIdentifierType>URL</premis:objectIdentifierType>

                  2. <premis:objectIdentifierValue>http://diposit.ub.edu/dspace/bitstream/2445/214429/7/847279.pdf.txt</premis:objectIdentifierValue>

                  </premis:objectIdentifier>

                2. <premis:objectCategory>File</premis:objectCategory>

                3. <premis:objectCharacteristics>

                  1. <premis:fixity>

                    1. <premis:messageDigestAlgorithm>MD5</premis:messageDigestAlgorithm>

                    2. <premis:messageDigest>4b558ce8504a73cda2607bc5d71a890f</premis:messageDigest>

                    </premis:fixity>

                  2. <premis:size>75600</premis:size>

                  3. <premis:format>

                    1. <premis:formatDesignation>

                      1. <premis:formatName>text/plain</premis:formatName>

                      </premis:formatDesignation>

                    </premis:format>

                  </premis:objectCharacteristics>

                4. <premis:originalName>847279.pdf.txt</premis:originalName>

                </premis:object>

              </premis:premis>

            </xmlData>

          </mdWrap>

        </techMD>

      </amdSec>

    6. <fileSec>

      1. <fileGrp USE="ORIGINAL">

        1. <file ADMID="FO_2445_214429_1" CHECKSUM="ddef53180c7c8511625c4e72c144b4e8" CHECKSUMTYPE="MD5" GROUPID="GROUP_BITSTREAM_2445_214429_1" ID="BITSTREAM_ORIGINAL_2445_214429_1" MIMETYPE="application/pdf" SEQ="1" SIZE="553248">

          1. <FLocat LOCTYPE="URL" href="http://diposit.ub.edu/dspace/bitstream/2445/214429/1/847279.pdf" type="simple" />

          </file>

        </fileGrp>

      2. <fileGrp USE="TEXT">

        1. <file ADMID="FT_2445_214429_7" CHECKSUM="4b558ce8504a73cda2607bc5d71a890f" CHECKSUMTYPE="MD5" GROUPID="GROUP_BITSTREAM_2445_214429_7" ID="BITSTREAM_TEXT_2445_214429_7" MIMETYPE="text/plain" SEQ="7" SIZE="75600">

          1. <FLocat LOCTYPE="URL" href="http://diposit.ub.edu/dspace/bitstream/2445/214429/7/847279.pdf.txt" type="simple" />

          </file>

        </fileGrp>

      </fileSec>

    7. <structMap LABEL="DSpace Object" TYPE="LOGICAL">

      1. <div ADMID="DMD_2445_214429" TYPE="DSpace Object Contents">

        1. <div TYPE="DSpace BITSTREAM">

          1. <fptr FILEID="BITSTREAM_ORIGINAL_2445_214429_1" />

          </div>

        </div>

      </structMap>

    </mets>

mods

Descarregar XML

    <?xml version="1.0" encoding="UTF-8" ?>

  1. <mods:mods schemaLocation="http://www.loc.gov/mods/v3 http://www.loc.gov/standards/mods/v3/mods-3-1.xsd">

    1. <mods:name>

      1. <mods:namePart>Bagaria, Joan</mods:namePart>

      </mods:name>

    2. <mods:name>

      1. <mods:namePart>da Silva, Samuel G.</mods:namePart>

      </mods:name>

    3. <mods:extension>

      1. <mods:dateAvailable encoding="iso8601">2024-07-08T11:23:53Z</mods:dateAvailable>

      </mods:extension>

    4. <mods:extension>

      1. <mods:dateAccessioned encoding="iso8601">2024-07-08T11:23:53Z</mods:dateAccessioned>

      </mods:extension>

    5. <mods:originInfo>

      1. <mods:dateIssued encoding="iso8601">2023-01-01</mods:dateIssued>

      </mods:originInfo>

    6. <mods:identifier type="issn">0166-8641</mods:identifier>

    7. <mods:identifier type="uri">http://hdl.handle.net/2445/214429</mods:identifier>

    8. <mods:identifier type="idgrec">744329</mods:identifier>

    9. <mods:abstract>We present more applications of the recently introduced -strongly compact cardinals in the context of either consistency or reflection results in General Topology, focusing on issues related to normality. In particular, we show that such large cardinal notion provides a new upper bound for the consistency strength of the statement “All normal Moore spaces are metrizable” (NMSC). The proof uses random forcing, as in the original consistency proof of NMSC due to Nykos-Kunen-Solovay (see Fleissner [10]). We establish a compactness theorem for normality (i.e., reflection of non-normality) in the realm of first countable spaces, using the least -strongly compact cardinal, as well as two more similar compactness results on related topological properties. We finish the paper by combining the techniques of reflection and forcing to show that our new upper bound for the consistency strength of NMSC can be also obtained via Cohen forcing, using some arguments from Dow-Tall-Weiss.</mods:abstract>

    10. <mods:language>

      1. <mods:languageTerm>eng</mods:languageTerm>

      </mods:language>

    11. <mods:accessCondition type="useAndReproduction">http://creativecommons.org/licenses/by-nc-nd/3.0/es/</mods:accessCondition>

    12. <mods:accessCondition type="useAndReproduction">info:eu-repo/semantics/openAccess</mods:accessCondition>

    13. <mods:accessCondition type="useAndReproduction">cc-by-nc-nd (c) Joan Bagaria et al., 2023</mods:accessCondition>

    14. <mods:titleInfo>

      1. <mods:title>$\omega_1$-strongly compact cardinals and normality</mods:title>

      </mods:titleInfo>

    15. <mods:genre>info:eu-repo/semantics/article</mods:genre>

    16. <mods:genre>info:eu-repo/semantics/publishedVersion</mods:genre>

    </mods:mods>

ore

Descarregar XML

    <?xml version="1.0" encoding="UTF-8" ?>

  1. <atom:entry schemaLocation="http://www.w3.org/2005/Atom http://www.kbcafe.com/rss/atom.xsd.xml">

    1. <atom:id>http://hdl.handle.net/2445/214429/ore.xml</atom:id>

    2. <atom:link href="http://hdl.handle.net/2445/214429" rel="alternate" />
    3. <atom:link href="http://hdl.handle.net/2445/214429/ore.xml" rel="http://www.openarchives.org/ore/terms/describes" />
    4. <atom:link href="http://hdl.handle.net/2445/214429/ore.xml#atom" rel="self" type="application/atom+xml" />
    5. <atom:published>2024-07-08T11:23:53Z</atom:published>

    6. <atom:updated>2024-07-08T11:23:53Z</atom:updated>

    7. <atom:source>

      1. <atom:generator>Dip&ograve;sit Digital de la Universitat de Barcelona</atom:generator>

      </atom:source>

    8. <atom:title>$\omega_1$-strongly compact cardinals and normality</atom:title>

    9. <atom:author>

      1. <atom:name>Bagaria, Joan</atom:name>

      </atom:author>

    10. <atom:author>

      1. <atom:name>da Silva, Samuel G.</atom:name>

      </atom:author>

    11. <atom:category label="Aggregation" scheme="http://www.openarchives.org/ore/terms/" term="http://www.openarchives.org/ore/terms/Aggregation" />
    12. <atom:category scheme="http://www.openarchives.org/ore/atom/modified" term="2024-07-08T11:23:53Z" />
    13. <atom:category label="DSpace Item" scheme="http://www.dspace.org/objectModel/" term="DSpaceItem" />
    14. <atom:link href="http://diposit.ub.edu/dspace/bitstream/2445/214429/1/847279.pdf" length="553248" rel="http://www.openarchives.org/ore/terms/aggregates" title="847279.pdf" type="application/pdf" />
    15. <oreatom:triples>

      1. <rdf:Description about="http://hdl.handle.net/2445/214429/ore.xml#atom">

        1. <rdf:type resource="http://www.dspace.org/objectModel/DSpaceItem" />
        2. <dcterms:modified>2024-07-08T11:23:53Z</dcterms:modified>

        </rdf:Description>

      2. <rdf:Description about="http://diposit.ub.edu/dspace/bitstream/2445/214429/7/847279.pdf.txt">

        1. <rdf:type resource="http://www.dspace.org/objectModel/DSpaceBitstream" />
        2. <dcterms:description>TEXT</dcterms:description>

        </rdf:Description>

      3. <rdf:Description about="http://diposit.ub.edu/dspace/bitstream/2445/214429/1/847279.pdf">

        1. <rdf:type resource="http://www.dspace.org/objectModel/DSpaceBitstream" />
        2. <dcterms:description>ORIGINAL</dcterms:description>

        </rdf:Description>

      4. <rdf:Description about="http://diposit.ub.edu/dspace/bitstream/2445/214429/5/license.txt">

        1. <rdf:type resource="http://www.dspace.org/objectModel/DSpaceBitstream" />
        2. <dcterms:description>LICENSE</dcterms:description>

        </rdf:Description>

      5. <rdf:Description about="http://diposit.ub.edu/dspace/bitstream/2445/214429/6/license_rdf">

        1. <rdf:type resource="http://www.dspace.org/objectModel/DSpaceBitstream" />
        2. <dcterms:description>CC-LICENSE</dcterms:description>

        </rdf:Description>

      </oreatom:triples>

    </atom:entry>

qdc

Descarregar XML

    <?xml version="1.0" encoding="UTF-8" ?>

  1. <qdc:qualifieddc schemaLocation="http://purl.org/dc/elements/1.1/ http://dublincore.org/schemas/xmls/qdc/2006/01/06/dc.xsd http://purl.org/dc/terms/ http://dublincore.org/schemas/xmls/qdc/2006/01/06/dcterms.xsd http://dspace.org/qualifieddc/ http://www.ukoln.ac.uk/metadata/dcmi/xmlschema/qualifieddc.xsd">

    1. <dc:title>$\omega_1$-strongly compact cardinals and normality</dc:title>

    2. <dc:creator>Bagaria, Joan</dc:creator>

    3. <dc:creator>da Silva, Samuel G.</dc:creator>

    4. <dc:subject.classification>Espais topològics</dc:subject.classification>

    5. <dc:subject.classification>Topologia</dc:subject.classification>

    6. <dc:subject.classification>Teoria de conjunts</dc:subject.classification>

    7. <dc:subject.classification>Nombres cardinals</dc:subject.classification>

    8. <dc:subject.other>Topological spaces</dc:subject.other>

    9. <dc:subject.other>Topology</dc:subject.other>

    10. <dc:subject.other>Set theory</dc:subject.other>

    11. <dc:subject.other>Cardinal numbers</dc:subject.other>

    12. <dcterms:abstract>We present more applications of the recently introduced -strongly compact cardinals in the context of either consistency or reflection results in General Topology, focusing on issues related to normality. In particular, we show that such large cardinal notion provides a new upper bound for the consistency strength of the statement “All normal Moore spaces are metrizable” (NMSC). The proof uses random forcing, as in the original consistency proof of NMSC due to Nykos-Kunen-Solovay (see Fleissner [10]). We establish a compactness theorem for normality (i.e., reflection of non-normality) in the realm of first countable spaces, using the least -strongly compact cardinal, as well as two more similar compactness results on related topological properties. We finish the paper by combining the techniques of reflection and forcing to show that our new upper bound for the consistency strength of NMSC can be also obtained via Cohen forcing, using some arguments from Dow-Tall-Weiss.</dcterms:abstract>

    13. <dcterms:dateAccepted>2024-07-08T11:23:53Z</dcterms:dateAccepted>

    14. <dcterms:available>2024-07-08T11:23:53Z</dcterms:available>

    15. <dcterms:created>2024-07-08T11:23:53Z</dcterms:created>

    16. <dcterms:issued>2023-01-01</dcterms:issued>

    17. <dc:type>info:eu-repo/semantics/article</dc:type>

    18. <dc:type>info:eu-repo/semantics/publishedVersion</dc:type>

    19. <dc:identifier>0166-8641</dc:identifier>

    20. <dc:identifier>http://hdl.handle.net/2445/214429</dc:identifier>

    21. <dc:identifier>744329</dc:identifier>

    22. <dc:identifier.issn>0166-8641</dc:identifier.issn>

    23. <dc:language>eng</dc:language>

    24. <dc:relation>Reproducció del document publicat a: https://doi.org/10.1016/j.topol.2022.108276</dc:relation>

    25. <dc:relation>Topology and its Applications, 2023, vol. 323</dc:relation>

    26. <dc:relation>https://doi.org/10.1016/j.topol.2022.108276</dc:relation>

    27. <dc:rights>http://creativecommons.org/licenses/by-nc-nd/3.0/es/</dc:rights>

    28. <dc:rights>info:eu-repo/semantics/openAccess</dc:rights>

    29. <dc:rights>cc-by-nc-nd (c) Joan Bagaria et al., 2023</dc:rights>

    30. <dc:publisher>Elsevier B.V.</dc:publisher>

    31. <dc:source>Articles publicats en revistes (Matemàtiques i Informàtica)</dc:source>

    </qdc:qualifieddc>

rdf

Descarregar XML

    <?xml version="1.0" encoding="UTF-8" ?>

  1. <rdf:RDF schemaLocation="http://www.openarchives.org/OAI/2.0/rdf/ http://www.openarchives.org/OAI/2.0/rdf.xsd">

    1. <ow:Publication about="oai:diposit.ub.edu:2445/214429">

      1. <dc:title>$\omega_1$-strongly compact cardinals and normality</dc:title>

      2. <dc:creator>Bagaria, Joan</dc:creator>

      3. <dc:creator>da Silva, Samuel G.</dc:creator>

      4. <dc:description>We present more applications of the recently introduced -strongly compact cardinals in the context of either consistency or reflection results in General Topology, focusing on issues related to normality. In particular, we show that such large cardinal notion provides a new upper bound for the consistency strength of the statement “All normal Moore spaces are metrizable” (NMSC). The proof uses random forcing, as in the original consistency proof of NMSC due to Nykos-Kunen-Solovay (see Fleissner [10]). We establish a compactness theorem for normality (i.e., reflection of non-normality) in the realm of first countable spaces, using the least -strongly compact cardinal, as well as two more similar compactness results on related topological properties. We finish the paper by combining the techniques of reflection and forcing to show that our new upper bound for the consistency strength of NMSC can be also obtained via Cohen forcing, using some arguments from Dow-Tall-Weiss.</dc:description>

      5. <dc:date>2024-07-08T11:23:53Z</dc:date>

      6. <dc:date>2024-07-08T11:23:53Z</dc:date>

      7. <dc:date>2023-01-01</dc:date>

      8. <dc:date>2024-07-08T11:23:59Z</dc:date>

      9. <dc:type>info:eu-repo/semantics/article</dc:type>

      10. <dc:type>info:eu-repo/semantics/publishedVersion</dc:type>

      11. <dc:identifier>0166-8641</dc:identifier>

      12. <dc:identifier>http://hdl.handle.net/2445/214429</dc:identifier>

      13. <dc:identifier>744329</dc:identifier>

      14. <dc:language>eng</dc:language>

      15. <dc:relation>Reproducció del document publicat a: https://doi.org/10.1016/j.topol.2022.108276</dc:relation>

      16. <dc:relation>Topology and its Applications, 2023, vol. 323</dc:relation>

      17. <dc:relation>https://doi.org/10.1016/j.topol.2022.108276</dc:relation>

      18. <dc:rights>http://creativecommons.org/licenses/by-nc-nd/3.0/es/</dc:rights>

      19. <dc:rights>info:eu-repo/semantics/openAccess</dc:rights>

      20. <dc:rights>cc-by-nc-nd (c) Joan Bagaria et al., 2023</dc:rights>

      21. <dc:publisher>Elsevier B.V.</dc:publisher>

      22. <dc:source>Articles publicats en revistes (Matemàtiques i Informàtica)</dc:source>

      </ow:Publication>

    </rdf:RDF>

Hispana

Portal d'accés al patrimoni digital i l'agregador nacional de continguts a Europeana

Contacte

Accedeix al nostre formulari i et contestarem com més prompte millor.

Contacte

X

Tweets by Hispana_roai

Facebook

HISPANA
© Ministeri de Cultura
  • Avís legal