<?xml version="1.0" encoding="UTF-8" ?>
<oai_dc:dc schemaLocation="http://www.openarchives.org/OAI/2.0/oai_dc/ http://www.openarchives.org/OAI/2.0/oai_dc.xsd">
<dc:title>A criterion and incremental design construction for simultaneous kriging predictions</dc:title>
<dc:creator>Waldl, Helmut</dc:creator>
<dc:creator>Müller, Werner G.</dc:creator>
<dc:creator>0000-0002-6939-391X</dc:creator>
<dc:contributor>Universidad Pública de Navarra. Departamento de Estadística, Informática y Matemáticas</dc:contributor>
<dc:contributor>Nafarroako Unibertsitate Publikoa. Estatistika, Informatika eta Matematika Saila</dc:contributor>
<dc:subject>Active learning</dc:subject>
<dc:subject>Gaussian process</dc:subject>
<dc:subject>Optimal experimental design</dc:subject>
<dc:description>In this paper, we further investigate the problem of selecting a set of design points for universal kriging, which is a widely used technique for spatial data analysis. Our goal is to select the design points in order to make simultaneous predictions of the random variable of interest at a finite number of unsampled locations with maximum precision. Specifically, we consider as response a correlated random field given by a linear model with an unknown parameter vector and a spatial error correlation structure. We propose a new design criterion that aims at simultaneously minimizing the variation of the prediction errors at various points. We also present various efficient techniques for incrementally building designs for that criterion scaling well for high dimensions. Thus the method is particularly suitable for big data applications in areas of spatial data analysis such as mining, hydrogeology, natural resource monitoring, and environmental sciences or equivalently for any computer simulation experiments. We have demonstrated the effectiveness of the proposed designs through two illustrative examples: one by simulation and another based on real data from Upper Austria.</dc:description>
<dc:description>This work was partly supported by project INDEX(INcremental Design of EXperiments), Austria I3903-N32 of the Austrian Science Fund(FWF). The third author received support for this research from a fellowship provided by the Spanish Ministry of Universities, Spain ( PRX22/00578 ).</dc:description>
<dc:date>2024</dc:date>
<dc:type>info:eu-repo/semantics/article</dc:type>
<dc:type>info:eu-repo/semantics/publishedVersion</dc:type>
<dc:identifier>Waldl, H., Müller, W. G., Trandafir, P. C. (2024) A criterion and incremental design construction for simultaneous kriging predictions. Spatial Statistics, 59, 1-16. https://doi.org/10.1016/j.spasta.2023.100798.</dc:identifier>
<dc:identifier>2211-6753</dc:identifier>
<dc:identifier>https://hdl.handle.net/2454/47799</dc:identifier>
<dc:identifier>10.1016/j.spasta.2023.100798</dc:identifier>
<dc:language>eng</dc:language>
<dc:relation>Spatial Statistics 59, (2024), 100798</dc:relation>
<dc:relation>https://doi.org/10.1016/j.spasta.2023.100798</dc:relation>
<dc:rights>©2023 The Authors. This is an open access article under the CC BY license.</dc:rights>
<dc:rights>http://creativecommons.org/licenses/by/4.0/</dc:rights>
<dc:rights>Acceso abierto / Sarbide irekia</dc:rights>
<dc:rights>info:eu-repo/semantics/openAccess</dc:rights>
<dc:format>application/pdf</dc:format>
<dc:publisher>Elsevier</dc:publisher>
</oai_dc:dc>
<?xml version="1.0" encoding="UTF-8" ?>
<d:DIDL schemaLocation="urn:mpeg:mpeg21:2002:02-DIDL-NS http://standards.iso.org/ittf/PubliclyAvailableStandards/MPEG-21_schema_files/did/didl.xsd">
<d:Item id="hdl_2454_47799">
<d:Descriptor>
<d:Statement mimeType="application/xml; charset=utf-8">
<dii:Identifier schemaLocation="urn:mpeg:mpeg21:2002:01-DII-NS http://standards.iso.org/ittf/PubliclyAvailableStandards/MPEG-21_schema_files/dii/dii.xsd">urn:hdl:2454/47799</dii:Identifier>
</d:Statement>
</d:Descriptor>
<d:Descriptor>
<d:Statement mimeType="application/xml; charset=utf-8">
<oai_dc:dc schemaLocation="http://www.openarchives.org/OAI/2.0/oai_dc/ http://www.openarchives.org/OAI/2.0/oai_dc.xsd">
<dc:title>A criterion and incremental design construction for simultaneous kriging predictions</dc:title>
<dc:contributor>Universidad Pública de Navarra. Departamento de Estadística, Informática y Matemáticas</dc:contributor>
<dc:contributor>Nafarroako Unibertsitate Publikoa. Estatistika, Informatika eta Matematika Saila</dc:contributor>
<dc:subject>Active learning</dc:subject>
<dc:subject>Gaussian process</dc:subject>
<dc:subject>Optimal experimental design</dc:subject>
<dc:description>In this paper, we further investigate the problem of selecting a set of design points for universal kriging, which is a widely used technique for spatial data analysis. Our goal is to select the design points in order to make simultaneous predictions of the random variable of interest at a finite number of unsampled locations with maximum precision. Specifically, we consider as response a correlated random field given by a linear model with an unknown parameter vector and a spatial error correlation structure. We propose a new design criterion that aims at simultaneously minimizing the variation of the prediction errors at various points. We also present various efficient techniques for incrementally building designs for that criterion scaling well for high dimensions. Thus the method is particularly suitable for big data applications in areas of spatial data analysis such as mining, hydrogeology, natural resource monitoring, and environmental sciences or equivalently for any computer simulation experiments. We have demonstrated the effectiveness of the proposed designs through two illustrative examples: one by simulation and another based on real data from Upper Austria.</dc:description>
<dc:date>2024</dc:date>
<dc:type>Artículo / Artikulua</dc:type>
<dc:type>info:eu-repo/semantics/article</dc:type>
<dc:identifier>Waldl, H., Müller, W. G., Trandafir, P. C. (2024) A criterion and incremental design construction for simultaneous kriging predictions. Spatial Statistics, 59, 1-16. https://doi.org/10.1016/j.spasta.2023.100798.</dc:identifier>
<dc:identifier>2211-6753</dc:identifier>
<dc:identifier>https://hdl.handle.net/2454/47799</dc:identifier>
<dc:identifier>10.1016/j.spasta.2023.100798</dc:identifier>
<dc:language>eng</dc:language>
<dc:relation>Spatial Statistics 59, (2024), 100798</dc:relation>
<dc:relation>https://doi.org/10.1016/j.spasta.2023.100798</dc:relation>
<dc:rights>http://creativecommons.org/licenses/by/4.0/</dc:rights>
<dc:rights>Acceso abierto / Sarbide irekia</dc:rights>
<dc:rights>info:eu-repo/semantics/openAccess</dc:rights>
<dc:rights>©2023 The Authors. This is an open access article under the CC BY license.</dc:rights>
<dc:publisher>Elsevier</dc:publisher>
</oai_dc:dc>
</d:Statement>
</d:Descriptor>
<d:Component id="2454_47799_1">
</d:Component>
</d:Item>
</d:DIDL>
<?xml version="1.0" encoding="UTF-8" ?>
<dim:dim schemaLocation="http://www.dspace.org/xmlns/dspace/dim http://www.dspace.org/schema/dim.xsd">
<dim:field authority="2660063f-3f19-4e60-9508-f928ffe5f8f8" confidence="600" element="creator" lang="es_ES" mdschema="dc">Waldl, Helmut</dim:field>
<dim:field authority="2660063f-3f19-4e60-9508-f928ffe5f8f8" confidence="600" element="creator" lang="es_ES" mdschema="dc">Müller, Werner G.</dim:field>
<dim:field authority="2660063f-3f19-4e60-9508-f928ffe5f8f8" confidence="600" element="creator" lang="es_ES" mdschema="dc">Trandafir, Paula Camelia</dim:field>
<dim:field element="date" mdschema="dc" qualifier="issued">2024</dim:field>
<dim:field element="identifier" lang="en" mdschema="dc" qualifier="citation">Waldl, H., Müller, W. G., Trandafir, P. C. (2024) A criterion and incremental design construction for simultaneous kriging predictions. Spatial Statistics, 59, 1-16. https://doi.org/10.1016/j.spasta.2023.100798.</dim:field>
<dim:field element="identifier" mdschema="dc" qualifier="issn">2211-6753</dim:field>
<dim:field element="identifier" mdschema="dc" qualifier="uri">https://hdl.handle.net/2454/47799</dim:field>
<dim:field element="identifier" mdschema="dc" qualifier="doi">10.1016/j.spasta.2023.100798</dim:field>
<dim:field element="description" lang="en" mdschema="dc" qualifier="abstract">In this paper, we further investigate the problem of selecting a set of design points for universal kriging, which is a widely used technique for spatial data analysis. Our goal is to select the design points in order to make simultaneous predictions of the random variable of interest at a finite number of unsampled locations with maximum precision. Specifically, we consider as response a correlated random field given by a linear model with an unknown parameter vector and a spatial error correlation structure. We propose a new design criterion that aims at simultaneously minimizing the variation of the prediction errors at various points. We also present various efficient techniques for incrementally building designs for that criterion scaling well for high dimensions. Thus the method is particularly suitable for big data applications in areas of spatial data analysis such as mining, hydrogeology, natural resource monitoring, and environmental sciences or equivalently for any computer simulation experiments. We have demonstrated the effectiveness of the proposed designs through two illustrative examples: one by simulation and another based on real data from Upper Austria.</dim:field>
<dim:field element="description" lang="en" mdschema="dc" qualifier="provenance">Submitted by Entrada dspace (entrada.dspace@unavarra.es) on 2024-03-27T14:41:53Z No. of bitstreams: 2 Waldl_CriterionIncremental.pdf: 1638271 bytes, checksum: b8a3b68fc782694da7f04c24dcf89efd (MD5) dublinCore_20240327154148681.zip: 1302224 bytes, checksum: 505b882d4cba0d3d9e6253a72c884274 (MD5)</dim:field>
<dim:field element="description" lang="en" mdschema="dc" qualifier="provenance">Approved for entry into archive by Mª TERESA ITURGAIZ SAINZ (teresa.iturgaiz@unavarra.es) on 2024-03-27T14:53:43Z (GMT) No. of bitstreams: 2 Waldl_CriterionIncremental.pdf: 1638271 bytes, checksum: b8a3b68fc782694da7f04c24dcf89efd (MD5) dublinCore_20240327154148681.zip: 1302224 bytes, checksum: 505b882d4cba0d3d9e6253a72c884274 (MD5)</dim:field>
<dim:field element="description" lang="en" mdschema="dc" qualifier="provenance">Made available in DSpace on 2024-03-27T14:53:44Z (GMT). No. of bitstreams: 2 Waldl_CriterionIncremental.pdf: 1638271 bytes, checksum: b8a3b68fc782694da7f04c24dcf89efd (MD5) dublinCore_20240327154148681.zip: 1302224 bytes, checksum: 505b882d4cba0d3d9e6253a72c884274 (MD5) Previous issue date: 2024</dim:field>
<dim:field element="description" lang="en" mdschema="dc" qualifier="sponsorship">This work was partly supported by project INDEX(INcremental Design of EXperiments), Austria I3903-N32 of the Austrian Science Fund(FWF). The third author received support for this research from a fellowship provided by the Spanish Ministry of Universities, Spain ( PRX22/00578 ).</dim:field>
<dim:field element="format" lang="en" mdschema="dc" qualifier="mimetype">application/pdf</dim:field>
<dim:field element="language" lang="en" mdschema="dc" qualifier="iso">eng</dim:field>
<dim:field element="publisher" lang="en" mdschema="dc">Elsevier</dim:field>
<dim:field element="relation" lang="en" mdschema="dc" qualifier="ispartof">Spatial Statistics 59, (2024), 100798</dim:field>
<dim:field element="relation" mdschema="dc" qualifier="publisherversion">https://doi.org/10.1016/j.spasta.2023.100798</dim:field>
<dim:field element="rights" lang="en" mdschema="dc">©2023 The Authors. This is an open access article under the CC BY license.</dim:field>
<dim:field element="rights" mdschema="dc" qualifier="uri">http://creativecommons.org/licenses/by/4.0/</dim:field>
<dim:field element="rights" lang="es" mdschema="dc" qualifier="accessRights">Acceso abierto / Sarbide irekia</dim:field>
<dim:field element="rights" lang="en" mdschema="dc" qualifier="accessRights">info:eu-repo/semantics/openAccess</dim:field>
<dim:field element="subject" lang="en" mdschema="dc">Active learning</dim:field>
<dim:field element="subject" lang="en" mdschema="dc">Gaussian process</dim:field>
<dim:field element="subject" lang="en" mdschema="dc">Optimal experimental design</dim:field>
<dim:field element="title" lang="en" mdschema="dc">A criterion and incremental design construction for simultaneous kriging predictions</dim:field>
<dim:field element="type" lang="es" mdschema="dc">Artículo / Artikulua</dim:field>
<dim:field element="type" lang="en" mdschema="dc">info:eu-repo/semantics/article</dim:field>
<dim:field element="type" lang="es" mdschema="dc" qualifier="version">Versión publicada / Argitaratu den bertsioa</dim:field>
<dim:field element="type" lang="en" mdschema="dc" qualifier="version">info:eu-repo/semantics/publishedVersion</dim:field>
<dim:field element="contributor" lang="es_ES" mdschema="dc" qualifier="department">Universidad Pública de Navarra. Departamento de Estadística, Informática y Matemáticas</dim:field>
<dim:field element="contributor" lang="eu" mdschema="dc" qualifier="department">Nafarroako Unibertsitate Publikoa. Estatistika, Informatika eta Matematika Saila</dim:field>
</dim:dim>
<?xml version="1.0" encoding="UTF-8" ?>
<rdf:RDF schemaLocation="http://www.w3.org/1999/02/22-rdf-syntax-ns# http://www.europeana.eu/schemas/edm">
<edm:ProvidedCHO about="https://hdl.handle.net/2454/47799">
<dc:title>A criterion and incremental design construction for simultaneous kriging predictions</dc:title>
<dc:creator>Waldl, Helmut</dc:creator>
<dc:creator>Müller, Werner G.</dc:creator>
<dc:creator>Trandafir, Paula Camelia</dc:creator>
<dc:contributor>Universidad Pública de Navarra. Departamento de Estadística, Informática y Matemáticas</dc:contributor>
<dc:contributor>Nafarroako Unibertsitate Publikoa. Estatistika, Informatika eta Matematika Saila</dc:contributor>
<dc:subject>Active learning</dc:subject>
<dc:subject>Gaussian process</dc:subject>
<dc:subject>Optimal experimental design</dc:subject>
<dc:description>In this paper, we further investigate the problem of selecting a set of design points for universal kriging, which is a widely used technique for spatial data analysis. Our goal is to select the design points in order to make simultaneous predictions of the random variable of interest at a finite number of unsampled locations with maximum precision. Specifically, we consider as response a correlated random field given by a linear model with an unknown parameter vector and a spatial error correlation structure. We propose a new design criterion that aims at simultaneously minimizing the variation of the prediction errors at various points. We also present various efficient techniques for incrementally building designs for that criterion scaling well for high dimensions. Thus the method is particularly suitable for big data applications in areas of spatial data analysis such as mining, hydrogeology, natural resource monitoring, and environmental sciences or equivalently for any computer simulation experiments. We have demonstrated the effectiveness of the proposed designs through two illustrative examples: one by simulation and another based on real data from Upper Austria.</dc:description>
<dc:date>2024</dc:date>
<dc:type>Artículo / Artikulua</dc:type>
<dc:type>info:eu-repo/semantics/article</dc:type>
<dc:identifier>Waldl, H., Müller, W. G., Trandafir, P. C. (2024) A criterion and incremental design construction for simultaneous kriging predictions. Spatial Statistics, 59, 1-16. https://doi.org/10.1016/j.spasta.2023.100798.</dc:identifier>
<dc:identifier>2211-6753</dc:identifier>
<dc:identifier>https://hdl.handle.net/2454/47799</dc:identifier>
<dc:identifier>10.1016/j.spasta.2023.100798</dc:identifier>
<dc:language>eng</dc:language>
<dc:relation>Spatial Statistics 59, (2024), 100798</dc:relation>
<dc:relation>https://doi.org/10.1016/j.spasta.2023.100798</dc:relation>
<dc:publisher>Elsevier</dc:publisher>
<edm:type>TEXT</edm:type>
</edm:ProvidedCHO>
<ore:Aggregation about="https://hdl.handle.net/2454/47799">
<edm:dataProvider>Academica-e. Repositorio institucional de la Universidad Pública de Navarra</edm:dataProvider>
<edm:provider>Hispana</edm:provider>
</ore:Aggregation>
<edm:WebResource about="https://academica-e.unavarra.es/xmlui/bitstream/2454/47799/1/Waldl_CriterionIncremental.pdf">
</edm:WebResource>
</rdf:RDF>
<?xml version="1.0" encoding="UTF-8" ?>
<thesis schemaLocation="http://www.ndltd.org/standards/metadata/etdms/1.0/ http://www.ndltd.org/standards/metadata/etdms/1.0/etdms.xsd">
<title>A criterion and incremental design construction for simultaneous kriging predictions</title>
<contributor>Universidad Pública de Navarra. Departamento de Estadística, Informática y Matemáticas</contributor>
<contributor>Nafarroako Unibertsitate Publikoa. Estatistika, Informatika eta Matematika Saila</contributor>
<subject>Active learning</subject>
<subject>Gaussian process</subject>
<subject>Optimal experimental design</subject>
<description>In this paper, we further investigate the problem of selecting a set of design points for universal kriging, which is a widely used technique for spatial data analysis. Our goal is to select the design points in order to make simultaneous predictions of the random variable of interest at a finite number of unsampled locations with maximum precision. Specifically, we consider as response a correlated random field given by a linear model with an unknown parameter vector and a spatial error correlation structure. We propose a new design criterion that aims at simultaneously minimizing the variation of the prediction errors at various points. We also present various efficient techniques for incrementally building designs for that criterion scaling well for high dimensions. Thus the method is particularly suitable for big data applications in areas of spatial data analysis such as mining, hydrogeology, natural resource monitoring, and environmental sciences or equivalently for any computer simulation experiments. We have demonstrated the effectiveness of the proposed designs through two illustrative examples: one by simulation and another based on real data from Upper Austria.</description>
<date>2024</date>
<type>Artículo / Artikulua</type>
<type>info:eu-repo/semantics/article</type>
<identifier>Waldl, H., Müller, W. G., Trandafir, P. C. (2024) A criterion and incremental design construction for simultaneous kriging predictions. Spatial Statistics, 59, 1-16. https://doi.org/10.1016/j.spasta.2023.100798.</identifier>
<identifier>2211-6753</identifier>
<identifier>https://hdl.handle.net/2454/47799</identifier>
<identifier>10.1016/j.spasta.2023.100798</identifier>
<language>eng</language>
<relation>Spatial Statistics 59, (2024), 100798</relation>
<relation>https://doi.org/10.1016/j.spasta.2023.100798</relation>
<rights>http://creativecommons.org/licenses/by/4.0/</rights>
<rights>Acceso abierto / Sarbide irekia</rights>
<rights>info:eu-repo/semantics/openAccess</rights>
<rights>©2023 The Authors. This is an open access article under the CC BY license.</rights>
<publisher>Elsevier</publisher>
</thesis>
<?xml version="1.0" encoding="UTF-8" ?>
<record schemaLocation="http://www.loc.gov/MARC21/slim http://www.loc.gov/standards/marcxml/schema/MARC21slim.xsd">
<leader>00925njm 22002777a 4500</leader>
<datafield ind1=" " ind2=" " tag="042">
<subfield code="a">dc</subfield>
</datafield>
<datafield ind1=" " ind2=" " tag="720">
<subfield code="a">Waldl, Helmut</subfield>
<subfield code="e">author</subfield>
</datafield>
<datafield ind1=" " ind2=" " tag="720">
<subfield code="a">Müller, Werner G.</subfield>
<subfield code="e">author</subfield>
</datafield>
<datafield ind1=" " ind2=" " tag="720">
<subfield code="a">Trandafir, Paula Camelia</subfield>
<subfield code="e">author</subfield>
</datafield>
<datafield ind1=" " ind2=" " tag="260">
<subfield code="c">2024</subfield>
</datafield>
<datafield ind1=" " ind2=" " tag="520">
<subfield code="a">In this paper, we further investigate the problem of selecting a set of design points for universal kriging, which is a widely used technique for spatial data analysis. Our goal is to select the design points in order to make simultaneous predictions of the random variable of interest at a finite number of unsampled locations with maximum precision. Specifically, we consider as response a correlated random field given by a linear model with an unknown parameter vector and a spatial error correlation structure. We propose a new design criterion that aims at simultaneously minimizing the variation of the prediction errors at various points. We also present various efficient techniques for incrementally building designs for that criterion scaling well for high dimensions. Thus the method is particularly suitable for big data applications in areas of spatial data analysis such as mining, hydrogeology, natural resource monitoring, and environmental sciences or equivalently for any computer simulation experiments. We have demonstrated the effectiveness of the proposed designs through two illustrative examples: one by simulation and another based on real data from Upper Austria.</subfield>
</datafield>
<datafield ind1="8" ind2=" " tag="024">
<subfield code="a">Waldl, H., Müller, W. G., Trandafir, P. C. (2024) A criterion and incremental design construction for simultaneous kriging predictions. Spatial Statistics, 59, 1-16. https://doi.org/10.1016/j.spasta.2023.100798.</subfield>
</datafield>
<datafield ind1="8" ind2=" " tag="024">
<subfield code="a">2211-6753</subfield>
</datafield>
<datafield ind1="8" ind2=" " tag="024">
<subfield code="a">https://hdl.handle.net/2454/47799</subfield>
</datafield>
<datafield ind1="8" ind2=" " tag="024">
<subfield code="a">10.1016/j.spasta.2023.100798</subfield>
</datafield>
<datafield ind1=" " ind2=" " tag="653">
<subfield code="a">Active learning</subfield>
</datafield>
<datafield ind1=" " ind2=" " tag="653">
<subfield code="a">Gaussian process</subfield>
</datafield>
<datafield ind1=" " ind2=" " tag="653">
<subfield code="a">Optimal experimental design</subfield>
</datafield>
<datafield ind1="0" ind2="0" tag="245">
<subfield code="a">A criterion and incremental design construction for simultaneous kriging predictions</subfield>
</datafield>
</record>
<?xml version="1.0" encoding="UTF-8" ?>
<mets ID=" DSpace_ITEM_2454-47799" OBJID=" hdl:2454/47799" PROFILE="DSpace METS SIP Profile 1.0" TYPE="DSpace ITEM" schemaLocation="http://www.loc.gov/METS/ http://www.loc.gov/standards/mets/mets.xsd">
<metsHdr CREATEDATE="2024-04-30T20:36:29Z">
<agent ROLE="CUSTODIAN" TYPE="ORGANIZATION">
<name>Academica-e</name>
</agent>
</metsHdr>
<dmdSec ID="DMD_2454_47799">
<mdWrap MDTYPE="MODS">
<xmlData schemaLocation="http://www.loc.gov/mods/v3 http://www.loc.gov/standards/mods/v3/mods-3-1.xsd">
<mods:mods schemaLocation="http://www.loc.gov/mods/v3 http://www.loc.gov/standards/mods/v3/mods-3-1.xsd">
<mods:name>
<mods:role>
<mods:roleTerm type="text">department</mods:roleTerm>
</mods:role>
<mods:namePart>Universidad Pública de Navarra. Departamento de Estadística, Informática y Matemáticas</mods:namePart>
</mods:name>
<mods:name>
<mods:role>
<mods:roleTerm type="text">department</mods:roleTerm>
</mods:role>
<mods:namePart>Nafarroako Unibertsitate Publikoa. Estatistika, Informatika eta Matematika Saila</mods:namePart>
</mods:name>
<mods:originInfo>
<mods:dateIssued encoding="iso8601">2024</mods:dateIssued>
</mods:originInfo>
<mods:identifier type="citation">Waldl, H., Müller, W. G., Trandafir, P. C. (2024) A criterion and incremental design construction for simultaneous kriging predictions. Spatial Statistics, 59, 1-16. https://doi.org/10.1016/j.spasta.2023.100798.</mods:identifier>
<mods:identifier type="issn">2211-6753</mods:identifier>
<mods:identifier type="uri">https://hdl.handle.net/2454/47799</mods:identifier>
<mods:identifier type="doi">10.1016/j.spasta.2023.100798</mods:identifier>
<mods:abstract>In this paper, we further investigate the problem of selecting a set of design points for universal kriging, which is a widely used technique for spatial data analysis. Our goal is to select the design points in order to make simultaneous predictions of the random variable of interest at a finite number of unsampled locations with maximum precision. Specifically, we consider as response a correlated random field given by a linear model with an unknown parameter vector and a spatial error correlation structure. We propose a new design criterion that aims at simultaneously minimizing the variation of the prediction errors at various points. We also present various efficient techniques for incrementally building designs for that criterion scaling well for high dimensions. Thus the method is particularly suitable for big data applications in areas of spatial data analysis such as mining, hydrogeology, natural resource monitoring, and environmental sciences or equivalently for any computer simulation experiments. We have demonstrated the effectiveness of the proposed designs through two illustrative examples: one by simulation and another based on real data from Upper Austria.</mods:abstract>
<mods:language>
<mods:languageTerm authority="rfc3066">eng</mods:languageTerm>
</mods:language>
<mods:accessCondition type="useAndReproduction">©2023 The Authors. This is an open access article under the CC BY license.</mods:accessCondition>
<mods:subject>
<mods:topic>Active learning</mods:topic>
</mods:subject>
<mods:subject>
<mods:topic>Gaussian process</mods:topic>
</mods:subject>
<mods:subject>
<mods:topic>Optimal experimental design</mods:topic>
</mods:subject>
<mods:titleInfo>
<mods:title>A criterion and incremental design construction for simultaneous kriging predictions</mods:title>
</mods:titleInfo>
<mods:genre>Artículo / Artikulua</mods:genre>
</mods:mods>
</xmlData>
</mdWrap>
</dmdSec>
<amdSec ID="TMD_2454_47799">
<rightsMD ID="RIG_2454_47799">
<mdWrap MDTYPE="OTHER" MIMETYPE="text/plain" OTHERMDTYPE="DSpaceDepositLicense">
<binData>TElDRU5DSUEgREUgRElTVFJJQlVDScOTTiBOTyBFWENMVVNJVkEKCkFsIGZpcm1hciB5IHJlbWl0aXIgZXN0YSBsaWNlbmNpYSwgdXN0ZWQgKGVsIGF1dG9yL2VzIG8gZWwgcHJvcGlldGFyaW8gZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yKSBjb25jZWRlIGEgbGEgVW5pdmVyc2lkYWQgUMO6YmxpY2EgZGUgTmF2YXJyYSBlbCBkZXJlY2hvIG5vIGV4Y2x1c2l2byBhIHJldXRpbGl6YXIsIHRyYXNmb3JtYXIgKGVuIGxvcyB0w6lybWlub3MgZGVmaW5pZG9zIG3DoXMgYWRlbGFudGUpIHkvbyBhIGRpc3RyaWJ1aXIgZWwgZG9jdW1lbnRvIHF1ZSBsYSBhY29tcGHDsWEgKGluY2x1eWVuZG8gZWwgcmVzdW1lbikgZW4gZm9ybWF0byBpbXByZXNvIG8gZWxlY3Ryw7NuaWNvIHkgZW4gY3VhbHF1aWVyIG90cm8sIGNvbW8gcG9yIGVqZW1wbG8sIGF1ZGlvIG8gdsOtZGVvLgoKQWNlcHRhIHF1ZSBsYSBVbml2ZXJzaWRhZCBQw7pibGljYSBkZSBOYXZhcnJhIHB1ZWRhLCBzaW4gbW9kaWZpY2FyIGVsIGNvbnRlbmlkbyBkZWwgZG9jdW1lbnRvLCB0cmFuc2Zvcm1hcmxvIGEgY3VhbHF1aWVyIHNvcG9ydGUgbyBmb3JtYXRvIGNvbiBmaW5lcyBkZSBwcmVzZXJ2YWNpw7NuLgoKVGFtYmnDqW4gYWNlcHRhIHF1ZSBsYSBVbml2ZXJzaWRhZCBQw7pibGljYSBkZSBOYXZhcnJhIHB1ZWRhIGd1YXJkYXIgbcOhcyBkZSB1bmEgY29waWEgZGUgw6lsIGNvbiBmaW5lcyBkZSBzZWd1cmlkYWQgeSBwcmVzZXJ2YWNpw7NuLiAKCk1hbmlmaWVzdGEgcXVlIGVzdGUgZG9jdW1lbnRvIGVzIG9icmEgb3JpZ2luYWwgc3V5YSB5IHF1ZSB0aWVuZSBkZXJlY2hvIGEgY2VkZXIgbG9zIGRlcmVjaG9zIHF1ZSBzZSBleHByZXNhbiBlbiBlc3RhIGxpY2VuY2lhLiBUYW1iacOpbiBtYW5pZmllc3RhIHF1ZSwgaGFzdGEgZG9uZGUgc2FiZSwgbm8gaW5mcmluZ2UgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGRlIG90cm9zLiAKClNpIGVzdGUgZG9jdW1lbnRvIGNvbnRpZW5lIG1hdGVyaWFsIHNvYnJlIGVsIHF1ZSB1c3RlZCBubyB0aWVuZSBkZXJlY2hvcyBkZSBhdXRvciwgbWFuaWZpZXN0YSBxdWUgaGEgb2J0ZW5pZG8gZWwgcGVybWlzbyBzaW4gcmVzdHJpY2Npb25lcyBkZWwgcHJvcGlldGFyaW8gZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHBhcmEgY2VkZXIgYSBsYSBVbml2ZXJzaWRhZCBQw7pibGljYSBkZSBOYXZhcnJhIGxvcyBkZXJlY2hvcyBleGlnaWRvcyBwb3IgZXN0YSBsaWNlbmNpYSB5IHF1ZSBlbCBtYXRlcmlhbCBwZXJ0ZW5lY2llbnRlIGEgdGVyY2Vyb3MgZXN0w6EgY2xhcmFtZW50ZSBpZGVudGlmaWNhZG8geSByZWNvbm9jaWRvIGRlbnRybyBkZWwgdGV4dG8gbyBlbCBjb250ZW5pZG8gZGUgZXN0ZSBkb2N1bWVudG8uIAoKU2kgZXN0ZSBkb2N1bWVudG8gZXN0w6EgYmFzYWRvIGVuIHVuYSBvYnJhIHF1ZSBoYSBzaWRvIHBhdHJvY2luYWRhIG8gcHJvbW92aWRhIHBvciB1biBvcmdhbmlzbW8gZGlzdGludG8gZGUgbGEgVW5pdmVyc2lkYWQgUMO6YmxpY2EgZGUgTmF2YXJyYSwgdXN0ZWQgYWNlcHRhIHF1ZSBoYSBzYXRpc2ZlY2hvIGN1YWxxdWllciBkZXJlY2hvIGRlIHJldmlzacOzbiB5IGRlbcOhcyBvYmxpZ2FjaW9uZXMgZXhpZ2lkYXMgcG9yIGRpY2hvIGNvbnRyYXRvIG8gYWN1ZXJkby4KCkxhIFVuaXZlcnNpZGFkIFDDumJsaWNhIGRlIE5hdmFycmEgaWRlbnRpZmljYXLDoSBjbGFyYW1lbnRlIHN1KHMpIG5vbWJyZShzKSBjb21vIGF1dG9yKGVzKSBvIHByb3BpZXRhcmlvKHMpIGRlIGVzdGUgZG9jdW1lbnRvIHkgbm8gaGFyw6EgY2FtYmlvcyBxdWUgbm8gc2VhbiBsb3MgcGVybWl0aWRvcyBwb3IgZXN0YSBsaWNlbmNpYS4KCg==</binData>
</mdWrap>
</rightsMD>
</amdSec>
<amdSec ID="FO_2454_47799_1">
<techMD ID="TECH_O_2454_47799_1">
<mdWrap MDTYPE="PREMIS">
<xmlData schemaLocation="http://www.loc.gov/standards/premis http://www.loc.gov/standards/premis/PREMIS-v1-0.xsd">
<premis:premis>
<premis:object>
<premis:objectIdentifier>
<premis:objectIdentifierType>URL</premis:objectIdentifierType>
<premis:objectIdentifierValue>https://academica-e.unavarra.es/xmlui/bitstream/2454/47799/1/Waldl_CriterionIncremental.pdf</premis:objectIdentifierValue>
</premis:objectIdentifier>
<premis:objectCategory>File</premis:objectCategory>
<premis:objectCharacteristics>
<premis:fixity>
<premis:messageDigestAlgorithm>MD5</premis:messageDigestAlgorithm>
<premis:messageDigest>b8a3b68fc782694da7f04c24dcf89efd</premis:messageDigest>
</premis:fixity>
<premis:size>1638271</premis:size>
<premis:format>
<premis:formatDesignation>
<premis:formatName>application/pdf</premis:formatName>
</premis:formatDesignation>
</premis:format>
</premis:objectCharacteristics>
<premis:originalName>Waldl_CriterionIncremental.pdf</premis:originalName>
</premis:object>
</premis:premis>
</xmlData>
</mdWrap>
</techMD>
</amdSec>
<amdSec ID="FT_2454_47799_4">
<techMD ID="TECH_T_2454_47799_4">
<mdWrap MDTYPE="PREMIS">
<xmlData schemaLocation="http://www.loc.gov/standards/premis http://www.loc.gov/standards/premis/PREMIS-v1-0.xsd">
<premis:premis>
<premis:object>
<premis:objectIdentifier>
<premis:objectIdentifierType>URL</premis:objectIdentifierType>
<premis:objectIdentifierValue>https://academica-e.unavarra.es/xmlui/bitstream/2454/47799/4/Waldl_CriterionIncremental.pdf.txt</premis:objectIdentifierValue>
</premis:objectIdentifier>
<premis:objectCategory>File</premis:objectCategory>
<premis:objectCharacteristics>
<premis:fixity>
<premis:messageDigestAlgorithm>MD5</premis:messageDigestAlgorithm>
<premis:messageDigest>c2e36e074532dccd585d47e02e751f71</premis:messageDigest>
</premis:fixity>
<premis:size>70893</premis:size>
<premis:format>
<premis:formatDesignation>
<premis:formatName>text/plain</premis:formatName>
</premis:formatDesignation>
</premis:format>
</premis:objectCharacteristics>
<premis:originalName>Waldl_CriterionIncremental.pdf.txt</premis:originalName>
</premis:object>
</premis:premis>
</xmlData>
</mdWrap>
</techMD>
</amdSec>
<fileSec>
<fileGrp USE="ORIGINAL">
<file ADMID="FO_2454_47799_1" CHECKSUM="b8a3b68fc782694da7f04c24dcf89efd" CHECKSUMTYPE="MD5" GROUPID="GROUP_BITSTREAM_2454_47799_1" ID="BITSTREAM_ORIGINAL_2454_47799_1" MIMETYPE="application/pdf" SEQ="1" SIZE="1638271">
</file>
</fileGrp>
<fileGrp USE="TEXT">
<file ADMID="FT_2454_47799_4" CHECKSUM="c2e36e074532dccd585d47e02e751f71" CHECKSUMTYPE="MD5" GROUPID="GROUP_BITSTREAM_2454_47799_4" ID="BITSTREAM_TEXT_2454_47799_4" MIMETYPE="text/plain" SEQ="4" SIZE="70893">
</file>
</fileGrp>
</fileSec>
<structMap LABEL="DSpace Object" TYPE="LOGICAL">
<div ADMID="DMD_2454_47799" TYPE="DSpace Object Contents">
<div TYPE="DSpace BITSTREAM">
</div>
</div>
</structMap>
</mets>
<?xml version="1.0" encoding="UTF-8" ?>
<mods:mods schemaLocation="http://www.loc.gov/mods/v3 http://www.loc.gov/standards/mods/v3/mods-3-1.xsd">
<mods:originInfo>
<mods:dateIssued encoding="iso8601">2024</mods:dateIssued>
</mods:originInfo>
<mods:identifier type="citation">Waldl, H., Müller, W. G., Trandafir, P. C. (2024) A criterion and incremental design construction for simultaneous kriging predictions. Spatial Statistics, 59, 1-16. https://doi.org/10.1016/j.spasta.2023.100798.</mods:identifier>
<mods:identifier type="issn">2211-6753</mods:identifier>
<mods:identifier type="uri">https://hdl.handle.net/2454/47799</mods:identifier>
<mods:identifier type="doi">10.1016/j.spasta.2023.100798</mods:identifier>
<mods:abstract>In this paper, we further investigate the problem of selecting a set of design points for universal kriging, which is a widely used technique for spatial data analysis. Our goal is to select the design points in order to make simultaneous predictions of the random variable of interest at a finite number of unsampled locations with maximum precision. Specifically, we consider as response a correlated random field given by a linear model with an unknown parameter vector and a spatial error correlation structure. We propose a new design criterion that aims at simultaneously minimizing the variation of the prediction errors at various points. We also present various efficient techniques for incrementally building designs for that criterion scaling well for high dimensions. Thus the method is particularly suitable for big data applications in areas of spatial data analysis such as mining, hydrogeology, natural resource monitoring, and environmental sciences or equivalently for any computer simulation experiments. We have demonstrated the effectiveness of the proposed designs through two illustrative examples: one by simulation and another based on real data from Upper Austria.</mods:abstract>
<mods:language>
<mods:languageTerm>eng</mods:languageTerm>
</mods:language>
<mods:accessCondition type="useAndReproduction">http://creativecommons.org/licenses/by/4.0/</mods:accessCondition>
<mods:accessCondition type="useAndReproduction">Acceso abierto / Sarbide irekia</mods:accessCondition>
<mods:accessCondition type="useAndReproduction">info:eu-repo/semantics/openAccess</mods:accessCondition>
<mods:accessCondition type="useAndReproduction">©2023 The Authors. This is an open access article under the CC BY license.</mods:accessCondition>
<mods:subject>
<mods:topic>Active learning</mods:topic>
</mods:subject>
<mods:subject>
<mods:topic>Gaussian process</mods:topic>
</mods:subject>
<mods:subject>
<mods:topic>Optimal experimental design</mods:topic>
</mods:subject>
<mods:titleInfo>
<mods:title>A criterion and incremental design construction for simultaneous kriging predictions</mods:title>
</mods:titleInfo>
<mods:genre>Artículo / Artikulua</mods:genre>
<mods:genre>info:eu-repo/semantics/article</mods:genre>
</mods:mods>
<?xml version="1.0" encoding="UTF-8" ?>
<oaire:record schemaLocation="http://namespace.openaire.eu/schema/oaire/">
<datacite:titles>
<datacite:title>A criterion and incremental design construction for simultaneous kriging predictions</datacite:title>
</datacite:titles>
<datacite:creators>
<datacite:creator>
<datacite:creatorName>Waldl, Helmut</datacite:creatorName>
</datacite:creator>
<datacite:creator>
<datacite:creatorName>Müller, Werner G.</datacite:creatorName>
</datacite:creator>
<datacite:creator>
<datacite:creatorName>Trandafir, Paula Camelia</datacite:creatorName>
<datacite:affiliation>Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa</datacite:affiliation>
<datacite:nameIdentifier nameIdentifierScheme="ORCID" schemeURI="https://orcid.org">0000-0002-6939-391X</datacite:nameIdentifier>
</datacite:creator>
</datacite:creators>
<datacite:contributors>
<datacite:contributor contributorType="ResearchGroup">
<datacite:contributorName nameType="Organizational">Universidad Pública de Navarra. Departamento de Estadística, Informática y Matemáticas</datacite:contributorName>
</datacite:contributor>
<datacite:contributor contributorType="ResearchGroup">
<datacite:contributorName nameType="Organizational">Nafarroako Unibertsitate Publikoa. Estatistika, Informatika eta Matematika Saila</datacite:contributorName>
</datacite:contributor>
</datacite:contributors>
<datacite:subject>Active learning</datacite:subject>
<datacite:subject>Gaussian process</datacite:subject>
<datacite:subject>Optimal experimental design</datacite:subject>
<dc:description>In this paper, we further investigate the problem of selecting a set of design points for universal kriging, which is a widely used technique for spatial data analysis. Our goal is to select the design points in order to make simultaneous predictions of the random variable of interest at a finite number of unsampled locations with maximum precision. Specifically, we consider as response a correlated random field given by a linear model with an unknown parameter vector and a spatial error correlation structure. We propose a new design criterion that aims at simultaneously minimizing the variation of the prediction errors at various points. We also present various efficient techniques for incrementally building designs for that criterion scaling well for high dimensions. Thus the method is particularly suitable for big data applications in areas of spatial data analysis such as mining, hydrogeology, natural resource monitoring, and environmental sciences or equivalently for any computer simulation experiments. We have demonstrated the effectiveness of the proposed designs through two illustrative examples: one by simulation and another based on real data from Upper Austria.</dc:description>
<dc:description>This work was partly supported by project INDEX(INcremental Design of EXperiments), Austria I3903-N32 of the Austrian Science Fund(FWF). The third author received support for this research from a fellowship provided by the Spanish Ministry of Universities, Spain ( PRX22/00578 ).</dc:description>
<datacite:date dateType="Issued">2024</datacite:date>
<oaire:resourceType resourceTypeGeneral="literature" uri="http://purl.org/coar/resource_type/c_6501">article</oaire:resourceType>
<oaire:version uri="http://purl.org/coar/version/c_970fb48d4fbd8a85">VoR</oaire:version>
<datacite:identifier>https://hdl.handle.net/2454/47799</datacite:identifier>
<datacite:alternateIdentifiers>
<datacite:alternateIdentifier alternateIdentifierType="ISSN">2211-6753</datacite:alternateIdentifier>
<datacite:alternateIdentifier alternateIdentifierType="DOI">10.1016/j.spasta.2023.100798</datacite:alternateIdentifier>
</datacite:alternateIdentifiers>
<dc:language>eng</dc:language>
<dc:rights>©2023 The Authors. This is an open access article under the CC BY license.</dc:rights>
<datacite:rights rightsURI="http://purl.org/coar/access_right/c_abf2">open access</datacite:rights>
<dc:format>application/pdf</dc:format>
<dc:publisher>Elsevier</dc:publisher>
<oaire:file>https://academica-e.unavarra.es/xmlui/bitstream/2454/47799/1/Waldl_CriterionIncremental.pdf</oaire:file>
</oaire:record>
<?xml version="1.0" encoding="UTF-8" ?>
<atom:entry schemaLocation="http://www.w3.org/2005/Atom http://www.kbcafe.com/rss/atom.xsd.xml">
<atom:id>https://hdl.handle.net/2454/47799/ore.xml</atom:id>
<atom:source>
<atom:generator>Academica-e</atom:generator>
</atom:source>
<atom:title>A criterion and incremental design construction for simultaneous kriging predictions</atom:title>
<oreatom:triples>
<rdf:Description about="https://hdl.handle.net/2454/47799/ore.xml#atom">
</rdf:Description>
<rdf:Description about="https://academica-e.unavarra.es/xmlui/bitstream/2454/47799/1/Waldl_CriterionIncremental.pdf">
<dcterms:description>ORIGINAL</dcterms:description>
</rdf:Description>
<rdf:Description about="https://academica-e.unavarra.es/xmlui/bitstream/2454/47799/2/license.txt">
<dcterms:description>LICENSE</dcterms:description>
</rdf:Description>
<rdf:Description about="https://academica-e.unavarra.es/xmlui/bitstream/2454/47799/3/dublinCore_20240327154148681.zip">
<dcterms:description>SWORD</dcterms:description>
</rdf:Description>
<rdf:Description about="https://academica-e.unavarra.es/xmlui/bitstream/2454/47799/4/Waldl_CriterionIncremental.pdf.txt">
<dcterms:description>TEXT</dcterms:description>
</rdf:Description>
<rdf:Description about="https://academica-e.unavarra.es/xmlui/bitstream/2454/47799/5/Waldl_CriterionIncremental.pdf.jpg">
<dcterms:description>THUMBNAIL</dcterms:description>
</rdf:Description>
</oreatom:triples>
</atom:entry>
<?xml version="1.0" encoding="UTF-8" ?>
<qdc:qualifieddc schemaLocation="http://purl.org/dc/elements/1.1/ http://dublincore.org/schemas/xmls/qdc/2006/01/06/dc.xsd http://purl.org/dc/terms/ http://dublincore.org/schemas/xmls/qdc/2006/01/06/dcterms.xsd http://dspace.org/qualifieddc/ http://www.ukoln.ac.uk/metadata/dcmi/xmlschema/qualifieddc.xsd">
<dc:title>A criterion and incremental design construction for simultaneous kriging predictions</dc:title>
<dc:creator>Waldl, Helmut</dc:creator>
<dc:creator>Müller, Werner G.</dc:creator>
<dc:creator>Trandafir, Paula Camelia</dc:creator>
<dc:contributor>Universidad Pública de Navarra. Departamento de Estadística, Informática y Matemáticas</dc:contributor>
<dc:contributor>Nafarroako Unibertsitate Publikoa. Estatistika, Informatika eta Matematika Saila</dc:contributor>
<dc:subject>Active learning</dc:subject>
<dc:subject>Gaussian process</dc:subject>
<dc:subject>Optimal experimental design</dc:subject>
<dcterms:abstract>In this paper, we further investigate the problem of selecting a set of design points for universal kriging, which is a widely used technique for spatial data analysis. Our goal is to select the design points in order to make simultaneous predictions of the random variable of interest at a finite number of unsampled locations with maximum precision. Specifically, we consider as response a correlated random field given by a linear model with an unknown parameter vector and a spatial error correlation structure. We propose a new design criterion that aims at simultaneously minimizing the variation of the prediction errors at various points. We also present various efficient techniques for incrementally building designs for that criterion scaling well for high dimensions. Thus the method is particularly suitable for big data applications in areas of spatial data analysis such as mining, hydrogeology, natural resource monitoring, and environmental sciences or equivalently for any computer simulation experiments. We have demonstrated the effectiveness of the proposed designs through two illustrative examples: one by simulation and another based on real data from Upper Austria.</dcterms:abstract>
<dcterms:issued>2024</dcterms:issued>
<dc:type>Artículo / Artikulua</dc:type>
<dc:type>info:eu-repo/semantics/article</dc:type>
<dc:identifier>Waldl, H., Müller, W. G., Trandafir, P. C. (2024) A criterion and incremental design construction for simultaneous kriging predictions. Spatial Statistics, 59, 1-16. https://doi.org/10.1016/j.spasta.2023.100798.</dc:identifier>
<dc:identifier>2211-6753</dc:identifier>
<dc:identifier>https://hdl.handle.net/2454/47799</dc:identifier>
<dc:identifier>10.1016/j.spasta.2023.100798</dc:identifier>
<dc:language>eng</dc:language>
<dc:relation>Spatial Statistics 59, (2024), 100798</dc:relation>
<dc:relation>https://doi.org/10.1016/j.spasta.2023.100798</dc:relation>
<dc:rights>http://creativecommons.org/licenses/by/4.0/</dc:rights>
<dc:rights>Acceso abierto / Sarbide irekia</dc:rights>
<dc:rights>info:eu-repo/semantics/openAccess</dc:rights>
<dc:rights>©2023 The Authors. This is an open access article under the CC BY license.</dc:rights>
<dc:publisher>Elsevier</dc:publisher>
</qdc:qualifieddc>
<?xml version="1.0" encoding="UTF-8" ?>
<rdf:RDF schemaLocation="http://www.openarchives.org/OAI/2.0/rdf/ http://www.openarchives.org/OAI/2.0/rdf.xsd">
<ow:Publication about="oai:academica-e.unavarra.es:2454/47799">
<dc:title>A criterion and incremental design construction for simultaneous kriging predictions</dc:title>
<dc:contributor>Universidad Pública de Navarra. Departamento de Estadística, Informática y Matemáticas</dc:contributor>
<dc:contributor>Nafarroako Unibertsitate Publikoa. Estatistika, Informatika eta Matematika Saila</dc:contributor>
<dc:subject>Active learning</dc:subject>
<dc:subject>Gaussian process</dc:subject>
<dc:subject>Optimal experimental design</dc:subject>
<dc:description>In this paper, we further investigate the problem of selecting a set of design points for universal kriging, which is a widely used technique for spatial data analysis. Our goal is to select the design points in order to make simultaneous predictions of the random variable of interest at a finite number of unsampled locations with maximum precision. Specifically, we consider as response a correlated random field given by a linear model with an unknown parameter vector and a spatial error correlation structure. We propose a new design criterion that aims at simultaneously minimizing the variation of the prediction errors at various points. We also present various efficient techniques for incrementally building designs for that criterion scaling well for high dimensions. Thus the method is particularly suitable for big data applications in areas of spatial data analysis such as mining, hydrogeology, natural resource monitoring, and environmental sciences or equivalently for any computer simulation experiments. We have demonstrated the effectiveness of the proposed designs through two illustrative examples: one by simulation and another based on real data from Upper Austria.</dc:description>
<dc:date>2024</dc:date>
<dc:type>Artículo / Artikulua</dc:type>
<dc:type>info:eu-repo/semantics/article</dc:type>
<dc:identifier>Waldl, H., Müller, W. G., Trandafir, P. C. (2024) A criterion and incremental design construction for simultaneous kriging predictions. Spatial Statistics, 59, 1-16. https://doi.org/10.1016/j.spasta.2023.100798.</dc:identifier>
<dc:identifier>2211-6753</dc:identifier>
<dc:identifier>https://hdl.handle.net/2454/47799</dc:identifier>
<dc:identifier>10.1016/j.spasta.2023.100798</dc:identifier>
<dc:language>eng</dc:language>
<dc:relation>Spatial Statistics 59, (2024), 100798</dc:relation>
<dc:relation>https://doi.org/10.1016/j.spasta.2023.100798</dc:relation>
<dc:rights>http://creativecommons.org/licenses/by/4.0/</dc:rights>
<dc:rights>Acceso abierto / Sarbide irekia</dc:rights>
<dc:rights>info:eu-repo/semantics/openAccess</dc:rights>
<dc:rights>©2023 The Authors. This is an open access article under the CC BY license.</dc:rights>
<dc:publisher>Elsevier</dc:publisher>
</ow:Publication>
</rdf:RDF>
<?xml version="1.0" encoding="UTF-8" ?>
<metadata schemaLocation="http://www.lyncode.com/xoai http://www.lyncode.com/xsd/xoai.xsd">
<element name="dc">
<element name="creator">
<element name="es_ES">
<field name="value">Waldl, Helmut</field>
<field name="authority">2660063f-3f19-4e60-9508-f928ffe5f8f8</field>
<field name="value">Müller, Werner G.</field>
<field name="authority">dab43d92-751b-4f38-a32f-25add5345ffc</field>
<field name="value">Trandafir, Paula Camelia</field>
<field name="authority">810219--0000-0002-6939-391X</field>
<field name="confidence">600</field>
</element>
</element>
<element name="date">
<element name="issued">
<element name="none">
<field name="value">2024</field>
</element>
</element>
</element>
<element name="identifier">
<element name="citation">
<element name="en">
<field name="value">Waldl, H., Müller, W. G., Trandafir, P. C. (2024) A criterion and incremental design construction for simultaneous kriging predictions. Spatial Statistics, 59, 1-16. https://doi.org/10.1016/j.spasta.2023.100798.</field>
</element>
</element>
<element name="issn">
<element name="none">
<field name="value">2211-6753</field>
</element>
</element>
<element name="uri">
<element name="none">
<field name="value">https://hdl.handle.net/2454/47799</field>
</element>
</element>
<element name="doi">
<element name="none">
<field name="value">10.1016/j.spasta.2023.100798</field>
</element>
</element>
</element>
<element name="description">
<element name="abstract">
<element name="en">
<field name="value">In this paper, we further investigate the problem of selecting a set of design points for universal kriging, which is a widely used technique for spatial data analysis. Our goal is to select the design points in order to make simultaneous predictions of the random variable of interest at a finite number of unsampled locations with maximum precision. Specifically, we consider as response a correlated random field given by a linear model with an unknown parameter vector and a spatial error correlation structure. We propose a new design criterion that aims at simultaneously minimizing the variation of the prediction errors at various points. We also present various efficient techniques for incrementally building designs for that criterion scaling well for high dimensions. Thus the method is particularly suitable for big data applications in areas of spatial data analysis such as mining, hydrogeology, natural resource monitoring, and environmental sciences or equivalently for any computer simulation experiments. We have demonstrated the effectiveness of the proposed designs through two illustrative examples: one by simulation and another based on real data from Upper Austria.</field>
</element>
</element>
<element name="provenance">
<element name="en">
<field name="value">Submitted by Entrada dspace (entrada.dspace@unavarra.es) on 2024-03-27T14:41:53Z No. of bitstreams: 2 Waldl_CriterionIncremental.pdf: 1638271 bytes, checksum: b8a3b68fc782694da7f04c24dcf89efd (MD5) dublinCore_20240327154148681.zip: 1302224 bytes, checksum: 505b882d4cba0d3d9e6253a72c884274 (MD5)</field>
<field name="value">Approved for entry into archive by Mª TERESA ITURGAIZ SAINZ (teresa.iturgaiz@unavarra.es) on 2024-03-27T14:53:43Z (GMT) No. of bitstreams: 2 Waldl_CriterionIncremental.pdf: 1638271 bytes, checksum: b8a3b68fc782694da7f04c24dcf89efd (MD5) dublinCore_20240327154148681.zip: 1302224 bytes, checksum: 505b882d4cba0d3d9e6253a72c884274 (MD5)</field>
<field name="value">Made available in DSpace on 2024-03-27T14:53:44Z (GMT). No. of bitstreams: 2 Waldl_CriterionIncremental.pdf: 1638271 bytes, checksum: b8a3b68fc782694da7f04c24dcf89efd (MD5) dublinCore_20240327154148681.zip: 1302224 bytes, checksum: 505b882d4cba0d3d9e6253a72c884274 (MD5) Previous issue date: 2024</field>
</element>
</element>
<element name="sponsorship">
<element name="en">
<field name="value">This work was partly supported by project INDEX(INcremental Design of EXperiments), Austria I3903-N32 of the Austrian Science Fund(FWF). The third author received support for this research from a fellowship provided by the Spanish Ministry of Universities, Spain ( PRX22/00578 ).</field>
</element>
</element>
</element>
<element name="format">
<element name="mimetype">
<element name="en">
<field name="value">application/pdf</field>
</element>
</element>
</element>
<element name="language">
<element name="iso">
<element name="en">
<field name="value">eng</field>
</element>
</element>
</element>
<element name="publisher">
<element name="en">
<field name="value">Elsevier</field>
</element>
</element>
<element name="relation">
<element name="ispartof">
<element name="en">
<field name="value">Spatial Statistics 59, (2024), 100798</field>
</element>
</element>
<element name="publisherversion">
<element name="none">
<field name="value">https://doi.org/10.1016/j.spasta.2023.100798</field>
</element>
</element>
</element>
<element name="rights">
<element name="en">
<field name="value">©2023 The Authors. This is an open access article under the CC BY license.</field>
</element>
<element name="uri">
<element name="none">
<field name="value">http://creativecommons.org/licenses/by/4.0/</field>
</element>
</element>
<element name="accessRights">
<element name="es">
<field name="value">Acceso abierto / Sarbide irekia</field>
</element>
<element name="en">
<field name="value">info:eu-repo/semantics/openAccess</field>
</element>
</element>
</element>
<element name="subject">
<element name="en">
<field name="value">Active learning</field>
<field name="value">Gaussian process</field>
<field name="value">Optimal experimental design</field>
</element>
</element>
<element name="title">
<element name="en">
<field name="value">A criterion and incremental design construction for simultaneous kriging predictions</field>
</element>
</element>
<element name="type">
<element name="es">
<field name="value">Artículo / Artikulua</field>
</element>
<element name="en">
<field name="value">info:eu-repo/semantics/article</field>
</element>
<element name="version">
<element name="es">
<field name="value">Versión publicada / Argitaratu den bertsioa</field>
</element>
<element name="en">
<field name="value">info:eu-repo/semantics/publishedVersion</field>
</element>
</element>
</element>
<element name="contributor">
<element name="department">
<element name="es_ES">
<field name="value">Universidad Pública de Navarra. Departamento de Estadística, Informática y Matemáticas</field>
</element>
<element name="eu">
<field name="value">Nafarroako Unibertsitate Publikoa. Estatistika, Informatika eta Matematika Saila</field>
</element>
</element>
</element>
</element>
<element name="bundles">
<element name="bundle">
<field name="name">ORIGINAL</field>
<element name="bitstreams">
<element name="bitstream">
<field name="name">Waldl_CriterionIncremental.pdf</field>
<field name="format">application/pdf</field>
<field name="size">1638271</field>
<field name="url">https://academica-e.unavarra.es/xmlui/bitstream/2454/47799/1/Waldl_CriterionIncremental.pdf</field>
<field name="checksum">b8a3b68fc782694da7f04c24dcf89efd</field>
<field name="checksumAlgorithm">MD5</field>
<field name="sid">1</field>
</element>
</element>
</element>
<element name="bundle">
<field name="name">LICENSE</field>
<element name="bitstreams">
<element name="bitstream">
<field name="name">license.txt</field>
<field name="originalName">license.txt</field>
<field name="format">text/plain; charset=utf-8</field>
<field name="size">1822</field>
<field name="url">https://academica-e.unavarra.es/xmlui/bitstream/2454/47799/2/license.txt</field>
<field name="checksum">f1b158a779256515758998ebbe33410f</field>
<field name="checksumAlgorithm">MD5</field>
<field name="sid">2</field>
</element>
</element>
</element>
<element name="bundle">
<field name="name">SWORD</field>
<element name="bitstreams">
<element name="bitstream">
<field name="name">dublinCore_20240327154148681.zip</field>
<field name="description">Orignal SWORD deposit file</field>
<field name="format">application/octet-stream</field>
<field name="size">1302224</field>
<field name="url">https://academica-e.unavarra.es/xmlui/bitstream/2454/47799/3/dublinCore_20240327154148681.zip</field>
<field name="checksum">505b882d4cba0d3d9e6253a72c884274</field>
<field name="checksumAlgorithm">MD5</field>
<field name="sid">3</field>
</element>
</element>
</element>
<element name="bundle">
<field name="name">TEXT</field>
<element name="bitstreams">
<element name="bitstream">
<field name="name">Waldl_CriterionIncremental.pdf.txt</field>
<field name="originalName">Waldl_CriterionIncremental.pdf.txt</field>
<field name="description">Extracted text</field>
<field name="format">text/plain</field>
<field name="size">70893</field>
<field name="url">https://academica-e.unavarra.es/xmlui/bitstream/2454/47799/4/Waldl_CriterionIncremental.pdf.txt</field>
<field name="checksum">c2e36e074532dccd585d47e02e751f71</field>
<field name="checksumAlgorithm">MD5</field>
<field name="sid">4</field>
</element>
</element>
</element>
<element name="bundle">
<field name="name">THUMBNAIL</field>
<element name="bitstreams">
<element name="bitstream">
<field name="name">Waldl_CriterionIncremental.pdf.jpg</field>
<field name="originalName">Waldl_CriterionIncremental.pdf.jpg</field>
<field name="description">IM Thumbnail</field>
<field name="format">image/jpeg</field>
<field name="size">6060</field>
<field name="url">https://academica-e.unavarra.es/xmlui/bitstream/2454/47799/5/Waldl_CriterionIncremental.pdf.jpg</field>
<field name="checksum">c4725e2b878f6ad56fcb5bc0e1a71422</field>
<field name="checksumAlgorithm">MD5</field>
<field name="sid">5</field>
</element>
</element>
</element>
</element>
<element name="others">
<field name="handle">2454/47799</field>
<field name="identifier">oai:academica-e.unavarra.es:2454/47799</field>
<field name="lastModifyDate">2024-03-31 10:00:25.223</field>
</element>
<element name="repository">
<field name="name">Academica-e</field>
<field name="mail">academica-e@unavarra.es</field>
</element>
<element name="license">
<field name="bin">TElDRU5DSUEgREUgRElTVFJJQlVDScOTTiBOTyBFWENMVVNJVkEKCkFsIGZpcm1hciB5IHJlbWl0aXIgZXN0YSBsaWNlbmNpYSwgdXN0ZWQgKGVsIGF1dG9yL2VzIG8gZWwgcHJvcGlldGFyaW8gZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yKSBjb25jZWRlIGEgbGEgVW5pdmVyc2lkYWQgUMO6YmxpY2EgZGUgTmF2YXJyYSBlbCBkZXJlY2hvIG5vIGV4Y2x1c2l2byBhIHJldXRpbGl6YXIsIHRyYXNmb3JtYXIgKGVuIGxvcyB0w6lybWlub3MgZGVmaW5pZG9zIG3DoXMgYWRlbGFudGUpIHkvbyBhIGRpc3RyaWJ1aXIgZWwgZG9jdW1lbnRvIHF1ZSBsYSBhY29tcGHDsWEgKGluY2x1eWVuZG8gZWwgcmVzdW1lbikgZW4gZm9ybWF0byBpbXByZXNvIG8gZWxlY3Ryw7NuaWNvIHkgZW4gY3VhbHF1aWVyIG90cm8sIGNvbW8gcG9yIGVqZW1wbG8sIGF1ZGlvIG8gdsOtZGVvLgoKQWNlcHRhIHF1ZSBsYSBVbml2ZXJzaWRhZCBQw7pibGljYSBkZSBOYXZhcnJhIHB1ZWRhLCBzaW4gbW9kaWZpY2FyIGVsIGNvbnRlbmlkbyBkZWwgZG9jdW1lbnRvLCB0cmFuc2Zvcm1hcmxvIGEgY3VhbHF1aWVyIHNvcG9ydGUgbyBmb3JtYXRvIGNvbiBmaW5lcyBkZSBwcmVzZXJ2YWNpw7NuLgoKVGFtYmnDqW4gYWNlcHRhIHF1ZSBsYSBVbml2ZXJzaWRhZCBQw7pibGljYSBkZSBOYXZhcnJhIHB1ZWRhIGd1YXJkYXIgbcOhcyBkZSB1bmEgY29waWEgZGUgw6lsIGNvbiBmaW5lcyBkZSBzZWd1cmlkYWQgeSBwcmVzZXJ2YWNpw7NuLiAKCk1hbmlmaWVzdGEgcXVlIGVzdGUgZG9jdW1lbnRvIGVzIG9icmEgb3JpZ2luYWwgc3V5YSB5IHF1ZSB0aWVuZSBkZXJlY2hvIGEgY2VkZXIgbG9zIGRlcmVjaG9zIHF1ZSBzZSBleHByZXNhbiBlbiBlc3RhIGxpY2VuY2lhLiBUYW1iacOpbiBtYW5pZmllc3RhIHF1ZSwgaGFzdGEgZG9uZGUgc2FiZSwgbm8gaW5mcmluZ2UgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGRlIG90cm9zLiAKClNpIGVzdGUgZG9jdW1lbnRvIGNvbnRpZW5lIG1hdGVyaWFsIHNvYnJlIGVsIHF1ZSB1c3RlZCBubyB0aWVuZSBkZXJlY2hvcyBkZSBhdXRvciwgbWFuaWZpZXN0YSBxdWUgaGEgb2J0ZW5pZG8gZWwgcGVybWlzbyBzaW4gcmVzdHJpY2Npb25lcyBkZWwgcHJvcGlldGFyaW8gZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHBhcmEgY2VkZXIgYSBsYSBVbml2ZXJzaWRhZCBQw7pibGljYSBkZSBOYXZhcnJhIGxvcyBkZXJlY2hvcyBleGlnaWRvcyBwb3IgZXN0YSBsaWNlbmNpYSB5IHF1ZSBlbCBtYXRlcmlhbCBwZXJ0ZW5lY2llbnRlIGEgdGVyY2Vyb3MgZXN0w6EgY2xhcmFtZW50ZSBpZGVudGlmaWNhZG8geSByZWNvbm9jaWRvIGRlbnRybyBkZWwgdGV4dG8gbyBlbCBjb250ZW5pZG8gZGUgZXN0ZSBkb2N1bWVudG8uIAoKU2kgZXN0ZSBkb2N1bWVudG8gZXN0w6EgYmFzYWRvIGVuIHVuYSBvYnJhIHF1ZSBoYSBzaWRvIHBhdHJvY2luYWRhIG8gcHJvbW92aWRhIHBvciB1biBvcmdhbmlzbW8gZGlzdGludG8gZGUgbGEgVW5pdmVyc2lkYWQgUMO6YmxpY2EgZGUgTmF2YXJyYSwgdXN0ZWQgYWNlcHRhIHF1ZSBoYSBzYXRpc2ZlY2hvIGN1YWxxdWllciBkZXJlY2hvIGRlIHJldmlzacOzbiB5IGRlbcOhcyBvYmxpZ2FjaW9uZXMgZXhpZ2lkYXMgcG9yIGRpY2hvIGNvbnRyYXRvIG8gYWN1ZXJkby4KCkxhIFVuaXZlcnNpZGFkIFDDumJsaWNhIGRlIE5hdmFycmEgaWRlbnRpZmljYXLDoSBjbGFyYW1lbnRlIHN1KHMpIG5vbWJyZShzKSBjb21vIGF1dG9yKGVzKSBvIHByb3BpZXRhcmlvKHMpIGRlIGVzdGUgZG9jdW1lbnRvIHkgbm8gaGFyw6EgY2FtYmlvcyBxdWUgbm8gc2VhbiBsb3MgcGVybWl0aWRvcyBwb3IgZXN0YSBsaWNlbmNpYS4KCg==</field>
</element>
</metadata>