<?xml version="1.0" encoding="UTF-8" ?>
<oai_dc:dc schemaLocation="http://www.openarchives.org/OAI/2.0/oai_dc/ http://www.openarchives.org/OAI/2.0/oai_dc.xsd">
<dc:title>3D numerical simulation of an anisotropic bead type thermistor and multiplicity of solutions</dc:title>
<dc:creator>Lahrache, Manar</dc:creator>
<dc:creator>Ortegón Gallego, Francisco</dc:creator>
<dc:creator>Rhoudaf, Mohamed</dc:creator>
<dc:contributor>Matemáticas</dc:contributor>
<dc:subject>Thermistor problem</dc:subject>
<dc:subject>Anisotropic Sobolev space</dc:subject>
<dc:subject>Non-uniformly elliptic system</dc:subject>
<dc:subject>Finite element method</dc:subject>
<dc:subject>Numerical solution</dc:subject>
<dc:description>We perform some 3D numerical experiments for the approximation of the solutions to a bead type thermistor problem. We consider the case of a diagonal anisotropic diffusion matrix whose �th entry is of the form|��∕���|��−2��∕���,� being the temperature inside the thermistor and the exponents ��,1 ≤ � ≤ 3, lie in the interval (1,+∞). We first show some existence results for different notions of solutions, prove a maximum principle for each type of solution, and study certain symmetry properties for these solutions in a bead type thermistor. These properties lead us to the introduction of a symmetric solution and we show the existence of such a solution. We have developed a numerical algorithm for the computation of the numerical solutions in a bead type thermistor. This algorithm combines a fixed-point technique with a standard finite element method (FEM). Some numerical tests have shown the existence of non-symmetric solutions and this leads to multiple many solutions (at least three). We discuss the numerical results obtained for different values of the exponents �� and the applied voltage on different meshes.</dc:description>
<dc:date>2024-06-25T08:26:12Z</dc:date>
<dc:date>2024-06-25T08:26:12Z</dc:date>
<dc:date>2024-02-22</dc:date>
<dc:type>journal article</dc:type>
<dc:type>VoR</dc:type>
<dc:identifier>0378-4754</dc:identifier>
<dc:identifier>http://hdl.handle.net/10498/32742</dc:identifier>
<dc:identifier>https://doi.org/10.1016/j.matcom.2024.02.018</dc:identifier>
<dc:language>eng</dc:language>
<dc:rights>Attribution-NonCommercial-NoDerivatives 4.0 Internacional</dc:rights>
<dc:rights>http://creativecommons.org/licenses/by-nc-nd/4.0/</dc:rights>
<dc:rights>open access</dc:rights>
<dc:format>application/pdf</dc:format>
<dc:publisher>Elservier</dc:publisher>
<dc:source>Mathematics and Computers in Simulation, Vol. 220, 2024, pp. 640-672</dc:source>
</oai_dc:dc>
<?xml version="1.0" encoding="UTF-8" ?>
<rdf:RDF schemaLocation="http://www.w3.org/1999/02/22-rdf-syntax-ns# http://www.europeana.eu/schemas/edm/EDM.xsd">
<edm:ProvidedCHO about="http://hdl.handle.net/10498/32742">
<dc:contributor>Matemáticas</dc:contributor>
<dc:creator>Lahrache, Manar</dc:creator>
<dc:creator>Ortegón Gallego, Francisco</dc:creator>
<dc:creator>Rhoudaf, Mohamed</dc:creator>
<dc:date>2024-02-22</dc:date>
<dc:description>We perform some 3D numerical experiments for the approximation of the solutions to a bead type thermistor problem. We consider the case of a diagonal anisotropic diffusion matrix whose �th entry is of the form|��∕���|��−2��∕���,� being the temperature inside the thermistor and the exponents ��,1 ≤ � ≤ 3, lie in the interval (1,+∞). We first show some existence results for different notions of solutions, prove a maximum principle for each type of solution, and study certain symmetry properties for these solutions in a bead type thermistor. These properties lead us to the introduction of a symmetric solution and we show the existence of such a solution. We have developed a numerical algorithm for the computation of the numerical solutions in a bead type thermistor. This algorithm combines a fixed-point technique with a standard finite element method (FEM). Some numerical tests have shown the existence of non-symmetric solutions and this leads to multiple many solutions (at least three). We discuss the numerical results obtained for different values of the exponents �� and the applied voltage on different meshes.</dc:description>
<dc:identifier>http://hdl.handle.net/10498/32742</dc:identifier>
<dc:language>eng</dc:language>
<dc:publisher>Elservier</dc:publisher>
<dc:source>Mathematics and Computers in Simulation, Vol. 220, 2024, pp. 640-672</dc:source>
<dc:title>3D numerical simulation of an anisotropic bead type thermistor and multiplicity of solutions</dc:title>
<dc:type>journal article</dc:type>
<edm:type>TEXT</edm:type>
</edm:ProvidedCHO>
<ore:Aggregation about="http://hdl.handle.net/10498/32742#aggregation">
<edm:dataProvider>RODIN. Repositorio de Objetos de Docencia e Investigación de la Universidad de Cádiz</edm:dataProvider>
<edm:provider>Hispana</edm:provider>
</ore:Aggregation>
<edm:WebResource about="https://rodin.uca.es/bitstream/10498/32742/1/OA_2024_0398.pdf">
</edm:WebResource>
</rdf:RDF>