<?xml version="1.0" encoding="UTF-8" ?>
<oai_dc:dc schemaLocation="http://www.openarchives.org/OAI/2.0/oai_dc/ http://www.openarchives.org/OAI/2.0/oai_dc.xsd">
<dc:title>'Aggregation-Induced Emission'' of Transition Metal Compounds: Design, Mechanistic Insights, and Applications</dc:title>
<dc:creator>Alam, Parvej</dc:creator>
<dc:creator>Climent Biescas, Claudia</dc:creator>
<dc:creator>Alemany i Cahner, Pere</dc:creator>
<dc:creator>Laskar, Inamur Rahaman</dc:creator>
<dc:subject>Complexos metàl·lics</dc:subject>
<dc:subject>Agregació (Química)</dc:subject>
<dc:subject>Metal complexes</dc:subject>
<dc:subject>Aggregation (Chemistry)</dc:subject>
<dc:description>In the last decades, compounds with 'Aggregation-Induced Emission' (AIE), which are weakly or non- emissive at all in solution but exhibit a strong luminescence in aggregated states, have emerged as an extraordinary breakthrough in the field of luminescent materials, allowing to circumvent 'Aggre- gation Caused Quenching' (ACQ), which in many cases prevents the development of efficient solid-state materials for optoelectronic applications. Since the discovery of AIE, many AIE-active materials have been developed, most of them composed of organic molecules, and thus fluorescent in nature. Although a wide range of applications such as bioimaging, sensing, multi-stimuli responsive materials, and optoelectronic devices have been proposed for this new class of materials, triplet harvesting phosphorescent materials have much longer lifetimes as compared to their singlet harvesting analogues, and for this particular reason, the development of AIE- active phosphorescent materials seems to be a promising strategy from the applications point of view. In this respect, the synthesis of new AIE-active systems including heavy metals that would facilitate the population of low-lying excited triplet states via spin-orbit coupling (SOC), for which the strength increases as the fourth power of atomic number, i.e. Z4 , is highly desirable. This review covers the design and synthetic strategies used to obtain the AIEgens reported in the literature that contain either d-block metals such as Cu(I), Zn(II), Re(I), Ru(II), Pd(II), Ir(III), Pt(II), Au(I), and Os(IV), describing the mechanisms proposed to explain their AIE. New emerging high-tech applications such as OLEDs, chemical sensors or bioimaging probes proposed for these materials are also discussed in a separate section.</dc:description>
<dc:date>2022-04-04T17:31:23Z</dc:date>
<dc:date>2022-04-04T17:31:23Z</dc:date>
<dc:date>2019-09-03</dc:date>
<dc:date>2022-04-04T17:31:23Z</dc:date>
<dc:type>info:eu-repo/semantics/article</dc:type>
<dc:type>info:eu-repo/semantics/acceptedVersion</dc:type>
<dc:identifier>1389-5567</dc:identifier>
<dc:identifier>http://hdl.handle.net/2445/184703</dc:identifier>
<dc:identifier>714084</dc:identifier>
<dc:language>eng</dc:language>
<dc:relation>Versió postprint del document publicat a: https://doi.org/10.1016/j.jphotochemrev.2019.100317</dc:relation>
<dc:relation>Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2019, vol. 41, p. 100317-</dc:relation>
<dc:relation>https://doi.org/10.1016/j.jphotochemrev.2019.100317</dc:relation>
<dc:relation>info:eu-repo/grantAgreement/EC/H2020/714870/EU//MMUSCLES</dc:relation>
<dc:rights>cc-by-nc-nd (c) Japanese Photochemistry Association, 2019</dc:rights>
<dc:rights>https://creativecommons.org/licenses/by-nc-nd/4.0/</dc:rights>
<dc:rights>info:eu-repo/semantics/openAccess</dc:rights>
<dc:format>-100316 p.</dc:format>
<dc:format>application/pdf</dc:format>
<dc:publisher>Elsevier</dc:publisher>
<dc:source>Articles publicats en revistes (Ciència dels Materials i Química Física)</dc:source>
</oai_dc:dc>
<?xml version="1.0" encoding="UTF-8" ?>
<record schemaLocation="http://www.loc.gov/MARC21/slim http://www.loc.gov/standards/marcxml/schema/MARC21slim.xsd">
<leader>00925njm 22002777a 4500</leader>
<datafield ind1=" " ind2=" " tag="042">
<subfield code="a">dc</subfield>
</datafield>
<datafield ind1=" " ind2=" " tag="720">
<subfield code="a">Alam, Parvej</subfield>
<subfield code="e">author</subfield>
</datafield>
<datafield ind1=" " ind2=" " tag="720">
<subfield code="a">Climent Biescas, Claudia</subfield>
<subfield code="e">author</subfield>
</datafield>
<datafield ind1=" " ind2=" " tag="720">
<subfield code="a">Alemany i Cahner, Pere</subfield>
<subfield code="e">author</subfield>
</datafield>
<datafield ind1=" " ind2=" " tag="720">
<subfield code="a">Laskar, Inamur Rahaman</subfield>
<subfield code="e">author</subfield>
</datafield>
<datafield ind1=" " ind2=" " tag="260">
<subfield code="c">2019-09-03</subfield>
</datafield>
<datafield ind1=" " ind2=" " tag="520">
<subfield code="a">In the last decades, compounds with 'Aggregation-Induced Emission' (AIE), which are weakly or non- emissive at all in solution but exhibit a strong luminescence in aggregated states, have emerged as an extraordinary breakthrough in the field of luminescent materials, allowing to circumvent 'Aggre- gation Caused Quenching' (ACQ), which in many cases prevents the development of efficient solid-state materials for optoelectronic applications. Since the discovery of AIE, many AIE-active materials have been developed, most of them composed of organic molecules, and thus fluorescent in nature. Although a wide range of applications such as bioimaging, sensing, multi-stimuli responsive materials, and optoelectronic devices have been proposed for this new class of materials, triplet harvesting phosphorescent materials have much longer lifetimes as compared to their singlet harvesting analogues, and for this particular reason, the development of AIE- active phosphorescent materials seems to be a promising strategy from the applications point of view. In this respect, the synthesis of new AIE-active systems including heavy metals that would facilitate the population of low-lying excited triplet states via spin-orbit coupling (SOC), for which the strength increases as the fourth power of atomic number, i.e. Z4 , is highly desirable. This review covers the design and synthetic strategies used to obtain the AIEgens reported in the literature that contain either d-block metals such as Cu(I), Zn(II), Re(I), Ru(II), Pd(II), Ir(III), Pt(II), Au(I), and Os(IV), describing the mechanisms proposed to explain their AIE. New emerging high-tech applications such as OLEDs, chemical sensors or bioimaging probes proposed for these materials are also discussed in a separate section.</subfield>
</datafield>
<datafield ind1="8" ind2=" " tag="024">
<subfield code="a">1389-5567</subfield>
</datafield>
<datafield ind1="8" ind2=" " tag="024">
<subfield code="a">http://hdl.handle.net/2445/184703</subfield>
</datafield>
<datafield ind1="8" ind2=" " tag="024">
<subfield code="a">714084</subfield>
</datafield>
<datafield ind1="0" ind2="0" tag="245">
<subfield code="a">'Aggregation-Induced Emission'' of Transition Metal Compounds: Design, Mechanistic Insights, and Applications</subfield>
</datafield>
</record>
<?xml version="1.0" encoding="UTF-8" ?>
<mets ID=" DSpace_ITEM_2445-184703" OBJID=" hdl:2445/184703" PROFILE="DSpace METS SIP Profile 1.0" TYPE="DSpace ITEM" schemaLocation="http://www.loc.gov/METS/ http://www.loc.gov/standards/mets/mets.xsd">
<metsHdr CREATEDATE="2024-08-03T05:40:33Z">
<agent ROLE="CUSTODIAN" TYPE="ORGANIZATION">
<name>Dipòsit Digital de la Universitat de Barcelona</name>
</agent>
</metsHdr>
<dmdSec ID="DMD_2445_184703">
<mdWrap MDTYPE="MODS">
<xmlData schemaLocation="http://www.loc.gov/mods/v3 http://www.loc.gov/standards/mods/v3/mods-3-1.xsd">
<mods:mods schemaLocation="http://www.loc.gov/mods/v3 http://www.loc.gov/standards/mods/v3/mods-3-1.xsd">
<mods:name>
<mods:role>
<mods:roleTerm type="text">author</mods:roleTerm>
</mods:role>
<mods:namePart>Alam, Parvej</mods:namePart>
</mods:name>
<mods:name>
<mods:role>
<mods:roleTerm type="text">author</mods:roleTerm>
</mods:role>
<mods:namePart>Climent Biescas, Claudia</mods:namePart>
</mods:name>
<mods:name>
<mods:role>
<mods:roleTerm type="text">author</mods:roleTerm>
</mods:role>
<mods:namePart>Alemany i Cahner, Pere</mods:namePart>
</mods:name>
<mods:name>
<mods:role>
<mods:roleTerm type="text">author</mods:roleTerm>
</mods:role>
<mods:namePart>Laskar, Inamur Rahaman</mods:namePart>
</mods:name>
<mods:extension>
<mods:dateAccessioned encoding="iso8601">2022-04-04T17:31:23Z</mods:dateAccessioned>
</mods:extension>
<mods:extension>
<mods:dateAvailable encoding="iso8601">2022-04-04T17:31:23Z</mods:dateAvailable>
</mods:extension>
<mods:originInfo>
<mods:dateIssued encoding="iso8601">2019-09-03</mods:dateIssued>
</mods:originInfo>
<mods:identifier type="issn">1389-5567</mods:identifier>
<mods:identifier type="uri">http://hdl.handle.net/2445/184703</mods:identifier>
<mods:identifier type="idgrec">714084</mods:identifier>
<mods:abstract>In the last decades, compounds with 'Aggregation-Induced Emission' (AIE), which are weakly or non- emissive at all in solution but exhibit a strong luminescence in aggregated states, have emerged as an extraordinary breakthrough in the field of luminescent materials, allowing to circumvent 'Aggre- gation Caused Quenching' (ACQ), which in many cases prevents the development of efficient solid-state materials for optoelectronic applications. Since the discovery of AIE, many AIE-active materials have been developed, most of them composed of organic molecules, and thus fluorescent in nature. Although a wide range of applications such as bioimaging, sensing, multi-stimuli responsive materials, and optoelectronic devices have been proposed for this new class of materials, triplet harvesting phosphorescent materials have much longer lifetimes as compared to their singlet harvesting analogues, and for this particular reason, the development of AIE- active phosphorescent materials seems to be a promising strategy from the applications point of view. In this respect, the synthesis of new AIE-active systems including heavy metals that would facilitate the population of low-lying excited triplet states via spin-orbit coupling (SOC), for which the strength increases as the fourth power of atomic number, i.e. Z4 , is highly desirable. This review covers the design and synthetic strategies used to obtain the AIEgens reported in the literature that contain either d-block metals such as Cu(I), Zn(II), Re(I), Ru(II), Pd(II), Ir(III), Pt(II), Au(I), and Os(IV), describing the mechanisms proposed to explain their AIE. New emerging high-tech applications such as OLEDs, chemical sensors or bioimaging probes proposed for these materials are also discussed in a separate section.</mods:abstract>
<mods:language>
<mods:languageTerm authority="rfc3066">eng</mods:languageTerm>
</mods:language>
<mods:accessCondition type="useAndReproduction">cc-by-nc-nd (c) Japanese Photochemistry Association, 2019</mods:accessCondition>
<mods:titleInfo>
<mods:title>'Aggregation-Induced Emission'' of Transition Metal Compounds: Design, Mechanistic Insights, and Applications</mods:title>
</mods:titleInfo>
<mods:genre>info:eu-repo/semantics/article</mods:genre>
</mods:mods>
</xmlData>
</mdWrap>
</dmdSec>
<amdSec ID="TMD_2445_184703">
<rightsMD ID="RIG_2445_184703">
<mdWrap MDTYPE="OTHER" MIMETYPE="text/plain" OTHERMDTYPE="DSpaceDepositLicense">
<binData>Tk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=</binData>
</mdWrap>
</rightsMD>
</amdSec>
<amdSec ID="FO_2445_184703_1">
<techMD ID="TECH_O_2445_184703_1">
<mdWrap MDTYPE="PREMIS">
<xmlData schemaLocation="http://www.loc.gov/standards/premis http://www.loc.gov/standards/premis/PREMIS-v1-0.xsd">
<premis:premis>
<premis:object>
<premis:objectIdentifier>
<premis:objectIdentifierType>URL</premis:objectIdentifierType>
<premis:objectIdentifierValue>http://diposit.ub.edu/dspace/bitstream/2445/184703/1/714084.pdf</premis:objectIdentifierValue>
</premis:objectIdentifier>
<premis:objectCategory>File</premis:objectCategory>
<premis:objectCharacteristics>
<premis:fixity>
<premis:messageDigestAlgorithm>MD5</premis:messageDigestAlgorithm>
<premis:messageDigest>404c513c9032e0f33c779044f2c33b05</premis:messageDigest>
</premis:fixity>
<premis:size>2269940</premis:size>
<premis:format>
<premis:formatDesignation>
<premis:formatName>application/pdf</premis:formatName>
</premis:formatDesignation>
</premis:format>
</premis:objectCharacteristics>
<premis:originalName>714084.pdf</premis:originalName>
</premis:object>
</premis:premis>
</xmlData>
</mdWrap>
</techMD>
</amdSec>
<amdSec ID="FT_2445_184703_6">
<techMD ID="TECH_T_2445_184703_6">
<mdWrap MDTYPE="PREMIS">
<xmlData schemaLocation="http://www.loc.gov/standards/premis http://www.loc.gov/standards/premis/PREMIS-v1-0.xsd">
<premis:premis>
<premis:object>
<premis:objectIdentifier>
<premis:objectIdentifierType>URL</premis:objectIdentifierType>
<premis:objectIdentifierValue>http://diposit.ub.edu/dspace/bitstream/2445/184703/6/714084.pdf.txt</premis:objectIdentifierValue>
</premis:objectIdentifier>
<premis:objectCategory>File</premis:objectCategory>
<premis:objectCharacteristics>
<premis:fixity>
<premis:messageDigestAlgorithm>MD5</premis:messageDigestAlgorithm>
<premis:messageDigest>2b691d67111f1dd3a3b6234dcbf51a9b</premis:messageDigest>
</premis:fixity>
<premis:size>197371</premis:size>
<premis:format>
<premis:formatDesignation>
<premis:formatName>text/plain</premis:formatName>
</premis:formatDesignation>
</premis:format>
</premis:objectCharacteristics>
<premis:originalName>714084.pdf.txt</premis:originalName>
</premis:object>
</premis:premis>
</xmlData>
</mdWrap>
</techMD>
</amdSec>
<fileSec>
<fileGrp USE="ORIGINAL">
<file ADMID="FO_2445_184703_1" CHECKSUM="404c513c9032e0f33c779044f2c33b05" CHECKSUMTYPE="MD5" GROUPID="GROUP_BITSTREAM_2445_184703_1" ID="BITSTREAM_ORIGINAL_2445_184703_1" MIMETYPE="application/pdf" SEQ="1" SIZE="2269940">
</file>
</fileGrp>
<fileGrp USE="TEXT">
<file ADMID="FT_2445_184703_6" CHECKSUM="2b691d67111f1dd3a3b6234dcbf51a9b" CHECKSUMTYPE="MD5" GROUPID="GROUP_BITSTREAM_2445_184703_6" ID="BITSTREAM_TEXT_2445_184703_6" MIMETYPE="text/plain" SEQ="6" SIZE="197371">
</file>
</fileGrp>
</fileSec>
<structMap LABEL="DSpace Object" TYPE="LOGICAL">
<div ADMID="DMD_2445_184703" TYPE="DSpace Object Contents">
<div TYPE="DSpace BITSTREAM">
</div>
</div>
</structMap>
</mets>
<?xml version="1.0" encoding="UTF-8" ?>
<mods:mods schemaLocation="http://www.loc.gov/mods/v3 http://www.loc.gov/standards/mods/v3/mods-3-1.xsd">
<mods:name>
<mods:namePart>Alam, Parvej</mods:namePart>
</mods:name>
<mods:name>
<mods:namePart>Climent Biescas, Claudia</mods:namePart>
</mods:name>
<mods:name>
<mods:namePart>Alemany i Cahner, Pere</mods:namePart>
</mods:name>
<mods:name>
<mods:namePart>Laskar, Inamur Rahaman</mods:namePart>
</mods:name>
<mods:extension>
<mods:dateAvailable encoding="iso8601">2022-04-04T17:31:23Z</mods:dateAvailable>
</mods:extension>
<mods:extension>
<mods:dateAccessioned encoding="iso8601">2022-04-04T17:31:23Z</mods:dateAccessioned>
</mods:extension>
<mods:originInfo>
<mods:dateIssued encoding="iso8601">2019-09-03</mods:dateIssued>
</mods:originInfo>
<mods:identifier type="issn">1389-5567</mods:identifier>
<mods:identifier type="uri">http://hdl.handle.net/2445/184703</mods:identifier>
<mods:identifier type="idgrec">714084</mods:identifier>
<mods:abstract>In the last decades, compounds with 'Aggregation-Induced Emission' (AIE), which are weakly or non- emissive at all in solution but exhibit a strong luminescence in aggregated states, have emerged as an extraordinary breakthrough in the field of luminescent materials, allowing to circumvent 'Aggre- gation Caused Quenching' (ACQ), which in many cases prevents the development of efficient solid-state materials for optoelectronic applications. Since the discovery of AIE, many AIE-active materials have been developed, most of them composed of organic molecules, and thus fluorescent in nature. Although a wide range of applications such as bioimaging, sensing, multi-stimuli responsive materials, and optoelectronic devices have been proposed for this new class of materials, triplet harvesting phosphorescent materials have much longer lifetimes as compared to their singlet harvesting analogues, and for this particular reason, the development of AIE- active phosphorescent materials seems to be a promising strategy from the applications point of view. In this respect, the synthesis of new AIE-active systems including heavy metals that would facilitate the population of low-lying excited triplet states via spin-orbit coupling (SOC), for which the strength increases as the fourth power of atomic number, i.e. Z4 , is highly desirable. This review covers the design and synthetic strategies used to obtain the AIEgens reported in the literature that contain either d-block metals such as Cu(I), Zn(II), Re(I), Ru(II), Pd(II), Ir(III), Pt(II), Au(I), and Os(IV), describing the mechanisms proposed to explain their AIE. New emerging high-tech applications such as OLEDs, chemical sensors or bioimaging probes proposed for these materials are also discussed in a separate section.</mods:abstract>
<mods:language>
<mods:languageTerm>eng</mods:languageTerm>
</mods:language>
<mods:accessCondition type="useAndReproduction">https://creativecommons.org/licenses/by-nc-nd/4.0/</mods:accessCondition>
<mods:accessCondition type="useAndReproduction">info:eu-repo/semantics/openAccess</mods:accessCondition>
<mods:accessCondition type="useAndReproduction">cc-by-nc-nd (c) Japanese Photochemistry Association, 2019</mods:accessCondition>
<mods:titleInfo>
<mods:title>'Aggregation-Induced Emission'' of Transition Metal Compounds: Design, Mechanistic Insights, and Applications</mods:title>
</mods:titleInfo>
<mods:genre>info:eu-repo/semantics/article</mods:genre>
<mods:genre>info:eu-repo/semantics/acceptedVersion</mods:genre>
</mods:mods>
<?xml version="1.0" encoding="UTF-8" ?>
<atom:entry schemaLocation="http://www.w3.org/2005/Atom http://www.kbcafe.com/rss/atom.xsd.xml">
<atom:id>http://hdl.handle.net/2445/184703/ore.xml</atom:id>
<atom:published>2022-04-04T17:31:23Z</atom:published>
<atom:updated>2022-04-04T17:31:23Z</atom:updated>
<atom:source>
<atom:generator>Dipòsit Digital de la Universitat de Barcelona</atom:generator>
</atom:source>
<atom:title>'Aggregation-Induced Emission'' of Transition Metal Compounds: Design, Mechanistic Insights, and Applications</atom:title>
<atom:author>
<atom:name>Alam, Parvej</atom:name>
</atom:author>
<atom:author>
<atom:name>Climent Biescas, Claudia</atom:name>
</atom:author>
<atom:author>
<atom:name>Alemany i Cahner, Pere</atom:name>
</atom:author>
<atom:author>
<atom:name>Laskar, Inamur Rahaman</atom:name>
</atom:author>
<oreatom:triples>
<rdf:Description about="http://hdl.handle.net/2445/184703/ore.xml#atom">
<dcterms:modified>2022-04-04T17:31:23Z</dcterms:modified>
</rdf:Description>
<rdf:Description about="http://diposit.ub.edu/dspace/bitstream/2445/184703/1/714084.pdf">
<dcterms:description>ORIGINAL</dcterms:description>
</rdf:Description>
<rdf:Description about="http://diposit.ub.edu/dspace/bitstream/2445/184703/5/license.txt">
<dcterms:description>LICENSE</dcterms:description>
</rdf:Description>
<rdf:Description about="http://diposit.ub.edu/dspace/bitstream/2445/184703/2/license_url">
<dcterms:description>CC-LICENSE</dcterms:description>
</rdf:Description>
<rdf:Description about="http://diposit.ub.edu/dspace/bitstream/2445/184703/3/license_text">
<dcterms:description>CC-LICENSE</dcterms:description>
</rdf:Description>
<rdf:Description about="http://diposit.ub.edu/dspace/bitstream/2445/184703/4/license_rdf">
<dcterms:description>CC-LICENSE</dcterms:description>
</rdf:Description>
<rdf:Description about="http://diposit.ub.edu/dspace/bitstream/2445/184703/6/714084.pdf.txt">
<dcterms:description>TEXT</dcterms:description>
</rdf:Description>
</oreatom:triples>
</atom:entry>
<?xml version="1.0" encoding="UTF-8" ?>
<qdc:qualifieddc schemaLocation="http://purl.org/dc/elements/1.1/ http://dublincore.org/schemas/xmls/qdc/2006/01/06/dc.xsd http://purl.org/dc/terms/ http://dublincore.org/schemas/xmls/qdc/2006/01/06/dcterms.xsd http://dspace.org/qualifieddc/ http://www.ukoln.ac.uk/metadata/dcmi/xmlschema/qualifieddc.xsd">
<dc:title>'Aggregation-Induced Emission'' of Transition Metal Compounds: Design, Mechanistic Insights, and Applications</dc:title>
<dc:creator>Alam, Parvej</dc:creator>
<dc:creator>Climent Biescas, Claudia</dc:creator>
<dc:creator>Alemany i Cahner, Pere</dc:creator>
<dc:creator>Laskar, Inamur Rahaman</dc:creator>
<dc:subject.classification>Complexos metàl·lics</dc:subject.classification>
<dc:subject.classification>Agregació (Química)</dc:subject.classification>
<dc:subject.other>Metal complexes</dc:subject.other>
<dc:subject.other>Aggregation (Chemistry)</dc:subject.other>
<dcterms:abstract>In the last decades, compounds with 'Aggregation-Induced Emission' (AIE), which are weakly or non- emissive at all in solution but exhibit a strong luminescence in aggregated states, have emerged as an extraordinary breakthrough in the field of luminescent materials, allowing to circumvent 'Aggre- gation Caused Quenching' (ACQ), which in many cases prevents the development of efficient solid-state materials for optoelectronic applications. Since the discovery of AIE, many AIE-active materials have been developed, most of them composed of organic molecules, and thus fluorescent in nature. Although a wide range of applications such as bioimaging, sensing, multi-stimuli responsive materials, and optoelectronic devices have been proposed for this new class of materials, triplet harvesting phosphorescent materials have much longer lifetimes as compared to their singlet harvesting analogues, and for this particular reason, the development of AIE- active phosphorescent materials seems to be a promising strategy from the applications point of view. In this respect, the synthesis of new AIE-active systems including heavy metals that would facilitate the population of low-lying excited triplet states via spin-orbit coupling (SOC), for which the strength increases as the fourth power of atomic number, i.e. Z4 , is highly desirable. This review covers the design and synthetic strategies used to obtain the AIEgens reported in the literature that contain either d-block metals such as Cu(I), Zn(II), Re(I), Ru(II), Pd(II), Ir(III), Pt(II), Au(I), and Os(IV), describing the mechanisms proposed to explain their AIE. New emerging high-tech applications such as OLEDs, chemical sensors or bioimaging probes proposed for these materials are also discussed in a separate section.</dcterms:abstract>
<dcterms:dateAccepted>2022-04-04T17:31:23Z</dcterms:dateAccepted>
<dcterms:available>2022-04-04T17:31:23Z</dcterms:available>
<dcterms:created>2022-04-04T17:31:23Z</dcterms:created>
<dcterms:issued>2019-09-03</dcterms:issued>
<dc:type>info:eu-repo/semantics/article</dc:type>
<dc:type>info:eu-repo/semantics/acceptedVersion</dc:type>
<dc:identifier>1389-5567</dc:identifier>
<dc:identifier>http://hdl.handle.net/2445/184703</dc:identifier>
<dc:identifier>714084</dc:identifier>
<dc:identifier.issn>1389-5567</dc:identifier.issn>
<dc:language>eng</dc:language>
<dc:relation>Versió postprint del document publicat a: https://doi.org/10.1016/j.jphotochemrev.2019.100317</dc:relation>
<dc:relation>Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2019, vol. 41, p. 100317-</dc:relation>
<dc:relation>https://doi.org/10.1016/j.jphotochemrev.2019.100317</dc:relation>
<dc:relation>info:eu-repo/grantAgreement/EC/H2020/714870/EU//MMUSCLES</dc:relation>
<dc:rights>https://creativecommons.org/licenses/by-nc-nd/4.0/</dc:rights>
<dc:rights>info:eu-repo/semantics/openAccess</dc:rights>
<dc:rights>cc-by-nc-nd (c) Japanese Photochemistry Association, 2019</dc:rights>
<dc:publisher>Elsevier</dc:publisher>
<dc:source>Articles publicats en revistes (Ciència dels Materials i Química Física)</dc:source>
</qdc:qualifieddc>
<?xml version="1.0" encoding="UTF-8" ?>
<rdf:RDF schemaLocation="http://www.openarchives.org/OAI/2.0/rdf/ http://www.openarchives.org/OAI/2.0/rdf.xsd">
<ow:Publication about="oai:diposit.ub.edu:2445/184703">
<dc:title>'Aggregation-Induced Emission'' of Transition Metal Compounds: Design, Mechanistic Insights, and Applications</dc:title>
<dc:creator>Alam, Parvej</dc:creator>
<dc:creator>Climent Biescas, Claudia</dc:creator>
<dc:creator>Alemany i Cahner, Pere</dc:creator>
<dc:creator>Laskar, Inamur Rahaman</dc:creator>
<dc:description>In the last decades, compounds with 'Aggregation-Induced Emission' (AIE), which are weakly or non- emissive at all in solution but exhibit a strong luminescence in aggregated states, have emerged as an extraordinary breakthrough in the field of luminescent materials, allowing to circumvent 'Aggre- gation Caused Quenching' (ACQ), which in many cases prevents the development of efficient solid-state materials for optoelectronic applications. Since the discovery of AIE, many AIE-active materials have been developed, most of them composed of organic molecules, and thus fluorescent in nature. Although a wide range of applications such as bioimaging, sensing, multi-stimuli responsive materials, and optoelectronic devices have been proposed for this new class of materials, triplet harvesting phosphorescent materials have much longer lifetimes as compared to their singlet harvesting analogues, and for this particular reason, the development of AIE- active phosphorescent materials seems to be a promising strategy from the applications point of view. In this respect, the synthesis of new AIE-active systems including heavy metals that would facilitate the population of low-lying excited triplet states via spin-orbit coupling (SOC), for which the strength increases as the fourth power of atomic number, i.e. Z4 , is highly desirable. This review covers the design and synthetic strategies used to obtain the AIEgens reported in the literature that contain either d-block metals such as Cu(I), Zn(II), Re(I), Ru(II), Pd(II), Ir(III), Pt(II), Au(I), and Os(IV), describing the mechanisms proposed to explain their AIE. New emerging high-tech applications such as OLEDs, chemical sensors or bioimaging probes proposed for these materials are also discussed in a separate section.</dc:description>
<dc:date>2022-04-04T17:31:23Z</dc:date>
<dc:date>2022-04-04T17:31:23Z</dc:date>
<dc:date>2019-09-03</dc:date>
<dc:date>2022-04-04T17:31:23Z</dc:date>
<dc:type>info:eu-repo/semantics/article</dc:type>
<dc:type>info:eu-repo/semantics/acceptedVersion</dc:type>
<dc:identifier>1389-5567</dc:identifier>
<dc:identifier>http://hdl.handle.net/2445/184703</dc:identifier>
<dc:identifier>714084</dc:identifier>
<dc:language>eng</dc:language>
<dc:relation>Versió postprint del document publicat a: https://doi.org/10.1016/j.jphotochemrev.2019.100317</dc:relation>
<dc:relation>Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2019, vol. 41, p. 100317-</dc:relation>
<dc:relation>https://doi.org/10.1016/j.jphotochemrev.2019.100317</dc:relation>
<dc:relation>info:eu-repo/grantAgreement/EC/H2020/714870/EU//MMUSCLES</dc:relation>
<dc:rights>https://creativecommons.org/licenses/by-nc-nd/4.0/</dc:rights>
<dc:rights>info:eu-repo/semantics/openAccess</dc:rights>
<dc:rights>cc-by-nc-nd (c) Japanese Photochemistry Association, 2019</dc:rights>
<dc:publisher>Elsevier</dc:publisher>
<dc:source>Articles publicats en revistes (Ciència dels Materials i Química Física)</dc:source>
</ow:Publication>
</rdf:RDF>