<?xml version="1.0" encoding="UTF-8" ?>
<oai_dc:dc schemaLocation="http://www.openarchives.org/OAI/2.0/oai_dc/ http://www.openarchives.org/OAI/2.0/oai_dc.xsd">
<dc:title>$p$-adic groups in quantum mechanics</dc:title>
<dc:creator>Blanco Cabanillas, Anna</dc:creator>
<dc:contributor>Travesa i Grau, Artur</dc:contributor>
<dc:subject>Nombres p-àdics</dc:subject>
<dc:subject>Camps p-àdics</dc:subject>
<dc:subject>Anàlisi p-àdica</dc:subject>
<dc:subject>Teoria quàntica</dc:subject>
<dc:subject>Treballs de fi de grau</dc:subject>
<dc:subject>p-adic numbers</dc:subject>
<dc:subject>p-adic fields</dc:subject>
<dc:subject>p-adic analysis</dc:subject>
<dc:subject>Quantum theory</dc:subject>
<dc:subject>Bachelor's theses</dc:subject>
<dc:description>Treballs Finals de Grau de Matemàtiques, Facultat de Matemàtiques, Universitat de Barcelona, Any: 2022, Director: Artur Travesa i Grau</dc:description>
<dc:description>[en] Number theory is being used in physics as a mathematical tool more and more. At the end of the 20th century, $p$-adic numbers made its appearance in quantum gravitational theories like string theory. This was motivated by the non-archimedian nature of space time at Planck scale. In this work we aim to formalize the basis of $p$-adic physics by exploring how to translate complex Quantum Mechanics to $p$-adic Quantum mechanics. This will be done using Weyl's formalism, which defines bounded operators and allows to relate different time-evolution pictures in quantum mechanics. This is done by the means of representation theory. We will be exploring the representation theory of $p$-adic reductive groups, specially induced, supercuspidal and projective representations. With that knowledge we will define the $p$-adic Heisenberg group that encodes the information on the $p$-adic phase space and study the Schrödinger representation. We will explain the importance of the Stone-von Neumann theorem that states uniqueness up to equivalence and we will study the Maslov indices of the group.</dc:description>
<dc:date>2022-06-02T10:06:29Z</dc:date>
<dc:date>2022-06-02T10:06:29Z</dc:date>
<dc:date>2022-01-22</dc:date>
<dc:type>info:eu-repo/semantics/bachelorThesis</dc:type>
<dc:identifier>http://hdl.handle.net/2445/186255</dc:identifier>
<dc:language>eng</dc:language>
<dc:rights>cc-by-nc-nd (c) Anna Blanco Cabanillas, 2022</dc:rights>
<dc:rights>http://creativecommons.org/licenses/by-nc-nd/3.0/es/</dc:rights>
<dc:rights>info:eu-repo/semantics/openAccess</dc:rights>
<dc:format>49 p.</dc:format>
<dc:format>application/pdf</dc:format>
<dc:source>Treballs Finals de Grau (TFG) - Matemàtiques</dc:source>
</oai_dc:dc>
<?xml version="1.0" encoding="UTF-8" ?>
<record schemaLocation="http://www.loc.gov/MARC21/slim http://www.loc.gov/standards/marcxml/schema/MARC21slim.xsd">
<leader>00925njm 22002777a 4500</leader>
<datafield ind1=" " ind2=" " tag="042">
<subfield code="a">dc</subfield>
</datafield>
<datafield ind1=" " ind2=" " tag="720">
<subfield code="a">Blanco Cabanillas, Anna</subfield>
<subfield code="e">author</subfield>
</datafield>
<datafield ind1=" " ind2=" " tag="260">
<subfield code="c">2022-01-22</subfield>
</datafield>
<datafield ind1=" " ind2=" " tag="520">
<subfield code="a">[en] Number theory is being used in physics as a mathematical tool more and more. At the end of the 20th century, $p$-adic numbers made its appearance in quantum gravitational theories like string theory. This was motivated by the non-archimedian nature of space time at Planck scale. In this work we aim to formalize the basis of $p$-adic physics by exploring how to translate complex Quantum Mechanics to $p$-adic Quantum mechanics. This will be done using Weyl's formalism, which defines bounded operators and allows to relate different time-evolution pictures in quantum mechanics. This is done by the means of representation theory. We will be exploring the representation theory of $p$-adic reductive groups, specially induced, supercuspidal and projective representations. With that knowledge we will define the $p$-adic Heisenberg group that encodes the information on the $p$-adic phase space and study the Schrödinger representation. We will explain the importance of the Stone-von Neumann theorem that states uniqueness up to equivalence and we will study the Maslov indices of the group.</subfield>
</datafield>
<datafield ind1="8" ind2=" " tag="024">
<subfield code="a">http://hdl.handle.net/2445/186255</subfield>
</datafield>
<datafield ind1="0" ind2="0" tag="245">
<subfield code="a">$p$-adic groups in quantum mechanics</subfield>
</datafield>
</record>
<?xml version="1.0" encoding="UTF-8" ?>
<mets ID=" DSpace_ITEM_2445-186255" OBJID=" hdl:2445/186255" PROFILE="DSpace METS SIP Profile 1.0" TYPE="DSpace ITEM" schemaLocation="http://www.loc.gov/METS/ http://www.loc.gov/standards/mets/mets.xsd">
<metsHdr CREATEDATE="2024-08-03T03:59:56Z">
<agent ROLE="CUSTODIAN" TYPE="ORGANIZATION">
<name>Dipòsit Digital de la Universitat de Barcelona</name>
</agent>
</metsHdr>
<dmdSec ID="DMD_2445_186255">
<mdWrap MDTYPE="MODS">
<xmlData schemaLocation="http://www.loc.gov/mods/v3 http://www.loc.gov/standards/mods/v3/mods-3-1.xsd">
<mods:mods schemaLocation="http://www.loc.gov/mods/v3 http://www.loc.gov/standards/mods/v3/mods-3-1.xsd">
<mods:name>
<mods:role>
<mods:roleTerm type="text">advisor</mods:roleTerm>
</mods:role>
<mods:namePart>Travesa i Grau, Artur</mods:namePart>
</mods:name>
<mods:name>
<mods:role>
<mods:roleTerm type="text">author</mods:roleTerm>
</mods:role>
<mods:namePart>Blanco Cabanillas, Anna</mods:namePart>
</mods:name>
<mods:extension>
<mods:dateAccessioned encoding="iso8601">2022-06-02T10:06:29Z</mods:dateAccessioned>
</mods:extension>
<mods:extension>
<mods:dateAvailable encoding="iso8601">2022-06-02T10:06:29Z</mods:dateAvailable>
</mods:extension>
<mods:originInfo>
<mods:dateIssued encoding="iso8601">2022-01-22</mods:dateIssued>
</mods:originInfo>
<mods:identifier type="uri">http://hdl.handle.net/2445/186255</mods:identifier>
<mods:abstract>[en] Number theory is being used in physics as a mathematical tool more and more. At the end of the 20th century, $p$-adic numbers made its appearance in quantum gravitational theories like string theory. This was motivated by the non-archimedian nature of space time at Planck scale. In this work we aim to formalize the basis of $p$-adic physics by exploring how to translate complex Quantum Mechanics to $p$-adic Quantum mechanics. This will be done using Weyl's formalism, which defines bounded operators and allows to relate different time-evolution pictures in quantum mechanics. This is done by the means of representation theory. We will be exploring the representation theory of $p$-adic reductive groups, specially induced, supercuspidal and projective representations. With that knowledge we will define the $p$-adic Heisenberg group that encodes the information on the $p$-adic phase space and study the Schrödinger representation. We will explain the importance of the Stone-von Neumann theorem that states uniqueness up to equivalence and we will study the Maslov indices of the group.</mods:abstract>
<mods:language>
<mods:languageTerm authority="rfc3066">eng</mods:languageTerm>
</mods:language>
<mods:accessCondition type="useAndReproduction">cc-by-nc-nd (c) Anna Blanco Cabanillas, 2022</mods:accessCondition>
<mods:titleInfo>
<mods:title>$p$-adic groups in quantum mechanics</mods:title>
</mods:titleInfo>
<mods:genre>info:eu-repo/semantics/bachelorThesis</mods:genre>
</mods:mods>
</xmlData>
</mdWrap>
</dmdSec>
<amdSec ID="TMD_2445_186255">
<rightsMD ID="RIG_2445_186255">
<mdWrap MDTYPE="OTHER" MIMETYPE="text/plain" OTHERMDTYPE="DSpaceDepositLicense">
<binData>RWxzIG1hdGVyaWFscyBsbGl1cmF0cyBhbCBEaXDDsnNpdCBkaWdpdGFsIGRlIGxhIFVCIHF1ZSBlc3RpZ3VpbiBzdWJqZWN0ZXMgYSB1bmEgbGxpY8OobmNpYSBkZSBDcmVhdGl2ZSBDb21tb25zLAplbiBlbCBtb21lbnQgZGUgbGxpdXJhciBlbCBkb2N1bWVudCwgZWwgcHJvcGkgdXN1YXJpIGwnaGEgZCdlc2NvbGxpci4KU2kgdXMgcGxhdSBubyBvYmxpZGV1IGFzc2lnbmFyIHVuYSBsbGljw6huY2lhIGFsIHZvc3RyZSBkb2N1bWVudCEuCg==</binData>
</mdWrap>
</rightsMD>
</amdSec>
<amdSec ID="FO_2445_186255_1">
<techMD ID="TECH_O_2445_186255_1">
<mdWrap MDTYPE="PREMIS">
<xmlData schemaLocation="http://www.loc.gov/standards/premis http://www.loc.gov/standards/premis/PREMIS-v1-0.xsd">
<premis:premis>
<premis:object>
<premis:objectIdentifier>
<premis:objectIdentifierType>URL</premis:objectIdentifierType>
<premis:objectIdentifierValue>http://diposit.ub.edu/dspace/bitstream/2445/186255/1/ces186255.pdf</premis:objectIdentifierValue>
</premis:objectIdentifier>
<premis:objectCategory>File</premis:objectCategory>
<premis:objectCharacteristics>
<premis:fixity>
<premis:messageDigestAlgorithm>MD5</premis:messageDigestAlgorithm>
<premis:messageDigest>b2a25a7f4ad229ba7be48f01f4e71629</premis:messageDigest>
</premis:fixity>
<premis:size>309733</premis:size>
<premis:format>
<premis:formatDesignation>
<premis:formatName>text/plain</premis:formatName>
</premis:formatDesignation>
</premis:format>
</premis:objectCharacteristics>
<premis:originalName>ces186255.pdf</premis:originalName>
</premis:object>
</premis:premis>
</xmlData>
</mdWrap>
</techMD>
</amdSec>
<amdSec ID="FO_2445_186255_2">
<techMD ID="TECH_O_2445_186255_2">
<mdWrap MDTYPE="PREMIS">
<xmlData schemaLocation="http://www.loc.gov/standards/premis http://www.loc.gov/standards/premis/PREMIS-v1-0.xsd">
<premis:premis>
<premis:object>
<premis:objectIdentifier>
<premis:objectIdentifierType>URL</premis:objectIdentifierType>
<premis:objectIdentifierValue>http://diposit.ub.edu/dspace/bitstream/2445/186255/2/tfg_blanco_cabanillas_anna.pdf</premis:objectIdentifierValue>
</premis:objectIdentifier>
<premis:objectCategory>File</premis:objectCategory>
<premis:objectCharacteristics>
<premis:fixity>
<premis:messageDigestAlgorithm>MD5</premis:messageDigestAlgorithm>
<premis:messageDigest>d66115f85308672d824f502eb9c0c1dd</premis:messageDigest>
</premis:fixity>
<premis:size>559245</premis:size>
<premis:format>
<premis:formatDesignation>
<premis:formatName>application/pdf</premis:formatName>
</premis:formatDesignation>
</premis:format>
</premis:objectCharacteristics>
<premis:originalName>tfg_blanco_cabanillas_anna.pdf</premis:originalName>
</premis:object>
</premis:premis>
</xmlData>
</mdWrap>
</techMD>
</amdSec>
<amdSec ID="FT_2445_186255_5">
<techMD ID="TECH_T_2445_186255_5">
<mdWrap MDTYPE="PREMIS">
<xmlData schemaLocation="http://www.loc.gov/standards/premis http://www.loc.gov/standards/premis/PREMIS-v1-0.xsd">
<premis:premis>
<premis:object>
<premis:objectIdentifier>
<premis:objectIdentifierType>URL</premis:objectIdentifierType>
<premis:objectIdentifierValue>http://diposit.ub.edu/dspace/bitstream/2445/186255/5/tfg_blanco_cabanillas_anna.pdf.txt</premis:objectIdentifierValue>
</premis:objectIdentifier>
<premis:objectCategory>File</premis:objectCategory>
<premis:objectCharacteristics>
<premis:fixity>
<premis:messageDigestAlgorithm>MD5</premis:messageDigestAlgorithm>
<premis:messageDigest>6cc46f17bf7ad65cbe11755fd2850745</premis:messageDigest>
</premis:fixity>
<premis:size>104436</premis:size>
<premis:format>
<premis:formatDesignation>
<premis:formatName>text/plain</premis:formatName>
</premis:formatDesignation>
</premis:format>
</premis:objectCharacteristics>
<premis:originalName>tfg_blanco_cabanillas_anna.pdf.txt</premis:originalName>
</premis:object>
</premis:premis>
</xmlData>
</mdWrap>
</techMD>
</amdSec>
<fileSec>
<fileGrp USE="ORIGINAL">
<file ADMID="FO_2445_186255_1" CHECKSUM="b2a25a7f4ad229ba7be48f01f4e71629" CHECKSUMTYPE="MD5" GROUPID="GROUP_BITSTREAM_2445_186255_1" ID="BITSTREAM_ORIGINAL_2445_186255_1" MIMETYPE="text/plain" SEQ="1" SIZE="309733">
</file>
<file ADMID="FO_2445_186255_2" CHECKSUM="d66115f85308672d824f502eb9c0c1dd" CHECKSUMTYPE="MD5" GROUPID="GROUP_BITSTREAM_2445_186255_2" ID="BITSTREAM_ORIGINAL_2445_186255_2" MIMETYPE="application/pdf" SEQ="2" SIZE="559245">
</file>
</fileGrp>
<fileGrp USE="TEXT">
<file ADMID="FT_2445_186255_5" CHECKSUM="6cc46f17bf7ad65cbe11755fd2850745" CHECKSUMTYPE="MD5" GROUPID="GROUP_BITSTREAM_2445_186255_5" ID="BITSTREAM_TEXT_2445_186255_5" MIMETYPE="text/plain" SEQ="5" SIZE="104436">
</file>
</fileGrp>
</fileSec>
<structMap LABEL="DSpace Object" TYPE="LOGICAL">
<div ADMID="DMD_2445_186255" TYPE="DSpace Object Contents">
<div TYPE="DSpace BITSTREAM">
</div>
<div TYPE="DSpace BITSTREAM">
</div>
</div>
</structMap>
</mets>
<?xml version="1.0" encoding="UTF-8" ?>
<mods:mods schemaLocation="http://www.loc.gov/mods/v3 http://www.loc.gov/standards/mods/v3/mods-3-1.xsd">
<mods:name>
<mods:namePart>Blanco Cabanillas, Anna</mods:namePart>
</mods:name>
<mods:extension>
<mods:dateAvailable encoding="iso8601">2022-06-02T10:06:29Z</mods:dateAvailable>
</mods:extension>
<mods:extension>
<mods:dateAccessioned encoding="iso8601">2022-06-02T10:06:29Z</mods:dateAccessioned>
</mods:extension>
<mods:originInfo>
<mods:dateIssued encoding="iso8601">2022-01-22</mods:dateIssued>
</mods:originInfo>
<mods:identifier type="uri">http://hdl.handle.net/2445/186255</mods:identifier>
<mods:abstract>[en] Number theory is being used in physics as a mathematical tool more and more. At the end of the 20th century, $p$-adic numbers made its appearance in quantum gravitational theories like string theory. This was motivated by the non-archimedian nature of space time at Planck scale. In this work we aim to formalize the basis of $p$-adic physics by exploring how to translate complex Quantum Mechanics to $p$-adic Quantum mechanics. This will be done using Weyl's formalism, which defines bounded operators and allows to relate different time-evolution pictures in quantum mechanics. This is done by the means of representation theory. We will be exploring the representation theory of $p$-adic reductive groups, specially induced, supercuspidal and projective representations. With that knowledge we will define the $p$-adic Heisenberg group that encodes the information on the $p$-adic phase space and study the Schrödinger representation. We will explain the importance of the Stone-von Neumann theorem that states uniqueness up to equivalence and we will study the Maslov indices of the group.</mods:abstract>
<mods:language>
<mods:languageTerm>eng</mods:languageTerm>
</mods:language>
<mods:accessCondition type="useAndReproduction">http://creativecommons.org/licenses/by-nc-nd/3.0/es/</mods:accessCondition>
<mods:accessCondition type="useAndReproduction">info:eu-repo/semantics/openAccess</mods:accessCondition>
<mods:accessCondition type="useAndReproduction">cc-by-nc-nd (c) Anna Blanco Cabanillas, 2022</mods:accessCondition>
<mods:titleInfo>
<mods:title>$p$-adic groups in quantum mechanics</mods:title>
</mods:titleInfo>
<mods:genre>info:eu-repo/semantics/bachelorThesis</mods:genre>
</mods:mods>
<?xml version="1.0" encoding="UTF-8" ?>
<atom:entry schemaLocation="http://www.w3.org/2005/Atom http://www.kbcafe.com/rss/atom.xsd.xml">
<atom:id>http://hdl.handle.net/2445/186255/ore.xml</atom:id>
<atom:published>2022-06-02T10:06:29Z</atom:published>
<atom:updated>2022-06-02T10:06:29Z</atom:updated>
<atom:source>
<atom:generator>Dipòsit Digital de la Universitat de Barcelona</atom:generator>
</atom:source>
<atom:title>$p$-adic groups in quantum mechanics</atom:title>
<atom:author>
<atom:name>Blanco Cabanillas, Anna</atom:name>
</atom:author>
<oreatom:triples>
<rdf:Description about="http://hdl.handle.net/2445/186255/ore.xml#atom">
<dcterms:modified>2022-06-02T10:06:29Z</dcterms:modified>
</rdf:Description>
<rdf:Description about="http://diposit.ub.edu/dspace/bitstream/2445/186255/1/ces186255.pdf">
<dcterms:description>ORIGINAL</dcterms:description>
</rdf:Description>
<rdf:Description about="http://diposit.ub.edu/dspace/bitstream/2445/186255/2/tfg_blanco_cabanillas_anna.pdf">
<dcterms:description>ORIGINAL</dcterms:description>
</rdf:Description>
<rdf:Description about="http://diposit.ub.edu/dspace/bitstream/2445/186255/4/license.txt">
<dcterms:description>LICENSE</dcterms:description>
</rdf:Description>
<rdf:Description about="http://diposit.ub.edu/dspace/bitstream/2445/186255/3/license_rdf">
<dcterms:description>CC-LICENSE</dcterms:description>
</rdf:Description>
<rdf:Description about="http://diposit.ub.edu/dspace/bitstream/2445/186255/5/tfg_blanco_cabanillas_anna.pdf.txt">
<dcterms:description>TEXT</dcterms:description>
</rdf:Description>
</oreatom:triples>
</atom:entry>
<?xml version="1.0" encoding="UTF-8" ?>
<qdc:qualifieddc schemaLocation="http://purl.org/dc/elements/1.1/ http://dublincore.org/schemas/xmls/qdc/2006/01/06/dc.xsd http://purl.org/dc/terms/ http://dublincore.org/schemas/xmls/qdc/2006/01/06/dcterms.xsd http://dspace.org/qualifieddc/ http://www.ukoln.ac.uk/metadata/dcmi/xmlschema/qualifieddc.xsd">
<dc:title>$p$-adic groups in quantum mechanics</dc:title>
<dc:contributor.advisor>Travesa i Grau, Artur</dc:contributor.advisor>
<dc:creator>Blanco Cabanillas, Anna</dc:creator>
<dc:subject.classification>Nombres p-àdics</dc:subject.classification>
<dc:subject.classification>Camps p-àdics</dc:subject.classification>
<dc:subject.classification>Anàlisi p-àdica</dc:subject.classification>
<dc:subject.classification>Teoria quàntica</dc:subject.classification>
<dc:subject.classification>Treballs de fi de grau</dc:subject.classification>
<dc:subject.other>p-adic numbers</dc:subject.other>
<dc:subject.other>p-adic fields</dc:subject.other>
<dc:subject.other>p-adic analysis</dc:subject.other>
<dc:subject.other>Quantum theory</dc:subject.other>
<dc:subject.other>Bachelor's theses</dc:subject.other>
<dcterms:abstract>[en] Number theory is being used in physics as a mathematical tool more and more. At the end of the 20th century, $p$-adic numbers made its appearance in quantum gravitational theories like string theory. This was motivated by the non-archimedian nature of space time at Planck scale. In this work we aim to formalize the basis of $p$-adic physics by exploring how to translate complex Quantum Mechanics to $p$-adic Quantum mechanics. This will be done using Weyl's formalism, which defines bounded operators and allows to relate different time-evolution pictures in quantum mechanics. This is done by the means of representation theory. We will be exploring the representation theory of $p$-adic reductive groups, specially induced, supercuspidal and projective representations. With that knowledge we will define the $p$-adic Heisenberg group that encodes the information on the $p$-adic phase space and study the Schrödinger representation. We will explain the importance of the Stone-von Neumann theorem that states uniqueness up to equivalence and we will study the Maslov indices of the group.</dcterms:abstract>
<dcterms:dateAccepted>2022-06-02T10:06:29Z</dcterms:dateAccepted>
<dcterms:available>2022-06-02T10:06:29Z</dcterms:available>
<dcterms:created>2022-06-02T10:06:29Z</dcterms:created>
<dcterms:issued>2022-01-22</dcterms:issued>
<dc:type>info:eu-repo/semantics/bachelorThesis</dc:type>
<dc:identifier>http://hdl.handle.net/2445/186255</dc:identifier>
<dc:language>eng</dc:language>
<dc:rights>http://creativecommons.org/licenses/by-nc-nd/3.0/es/</dc:rights>
<dc:rights>info:eu-repo/semantics/openAccess</dc:rights>
<dc:rights>cc-by-nc-nd (c) Anna Blanco Cabanillas, 2022</dc:rights>
<dc:source>Treballs Finals de Grau (TFG) - Matemàtiques</dc:source>
</qdc:qualifieddc>
<?xml version="1.0" encoding="UTF-8" ?>
<rdf:RDF schemaLocation="http://www.openarchives.org/OAI/2.0/rdf/ http://www.openarchives.org/OAI/2.0/rdf.xsd">
<ow:Publication about="oai:diposit.ub.edu:2445/186255">
<dc:title>$p$-adic groups in quantum mechanics</dc:title>
<dc:creator>Blanco Cabanillas, Anna</dc:creator>
<dc:contributor>Travesa i Grau, Artur</dc:contributor>
<dc:description>Treballs Finals de Grau de Matemàtiques, Facultat de Matemàtiques, Universitat de Barcelona, Any: 2022, Director: Artur Travesa i Grau</dc:description>
<dc:description>[en] Number theory is being used in physics as a mathematical tool more and more. At the end of the 20th century, $p$-adic numbers made its appearance in quantum gravitational theories like string theory. This was motivated by the non-archimedian nature of space time at Planck scale. In this work we aim to formalize the basis of $p$-adic physics by exploring how to translate complex Quantum Mechanics to $p$-adic Quantum mechanics. This will be done using Weyl's formalism, which defines bounded operators and allows to relate different time-evolution pictures in quantum mechanics. This is done by the means of representation theory. We will be exploring the representation theory of $p$-adic reductive groups, specially induced, supercuspidal and projective representations. With that knowledge we will define the $p$-adic Heisenberg group that encodes the information on the $p$-adic phase space and study the Schrödinger representation. We will explain the importance of the Stone-von Neumann theorem that states uniqueness up to equivalence and we will study the Maslov indices of the group.</dc:description>
<dc:date>2022-06-02T10:06:29Z</dc:date>
<dc:date>2022-06-02T10:06:29Z</dc:date>
<dc:date>2022-01-22</dc:date>
<dc:type>info:eu-repo/semantics/bachelorThesis</dc:type>
<dc:identifier>http://hdl.handle.net/2445/186255</dc:identifier>
<dc:language>eng</dc:language>
<dc:rights>http://creativecommons.org/licenses/by-nc-nd/3.0/es/</dc:rights>
<dc:rights>info:eu-repo/semantics/openAccess</dc:rights>
<dc:rights>cc-by-nc-nd (c) Anna Blanco Cabanillas, 2022</dc:rights>
<dc:source>Treballs Finals de Grau (TFG) - Matemàtiques</dc:source>
</ow:Publication>
</rdf:RDF>