<?xml version="1.0" encoding="UTF-8" ?>
<oai_dc:dc schemaLocation="http://www.openarchives.org/OAI/2.0/oai_dc/ http://www.openarchives.org/OAI/2.0/oai_dc.xsd">
<dc:title>'From the mole to the molecule': ruthenium catalyzed nitroarene reduction studied with 'bench', high-throughput and single molecule fluorescence techniques</dc:title>
<dc:creator>Carrillo, Adela I.</dc:creator>
<dc:creator>Stamplecoskie, Kevin G.</dc:creator>
<dc:creator>Marín García, Mª Luisa</dc:creator>
<dc:creator>Scaiano, Juan C.</dc:creator>
<dc:contributor>Universitat Politècnica de València. Departamento de Química - Departament de Química</dc:contributor>
<dc:contributor>Universitat Politècnica de València. Instituto Universitario Mixto Tecnológico de Informática - Institut Universitari Mixt Tecnològic d'Informàtica</dc:contributor>
<dc:contributor>Universitat Politècnica de València</dc:contributor>
<dc:contributor>Natural Sciences and Engineering Research Council of Canada</dc:contributor>
<dc:contributor>Canada Foundation for Innovation</dc:contributor>
<dc:subject>HETEROGENEOUS CATALYSTS</dc:subject>
<dc:subject>GOLD NANOPARTICLES</dc:subject>
<dc:subject>COUPLING REACTIONS</dc:subject>
<dc:subject>REACTIVITY</dc:subject>
<dc:subject>COMPLEXES</dc:subject>
<dc:subject>ARYLATION</dc:subject>
<dc:subject>DYNAMICS</dc:subject>
<dc:subject>QUIMICA ANALITICA</dc:subject>
<dc:subject>QUIMICA ORGANICA</dc:subject>
<dc:description>Single molecule fluorescence microscopy techniques are used to complement conventional catalysis and high-throughput experiments in order to gain a complete picture of a model reaction. In these experiments a model nitroarene is reduced to an amine where, upon reduction, a red shift in absorption/emission, as well as an increase in emission, is observed. The reaction is studied under bulk reaction conditions by NMR spectroscopy and the fluorescence activation makes it possible to also study this reaction at the single molecule level. Fluorescence correlation spectroscopy is a valuable technique in supporting the proposed reaction mechanism and understanding the nature and duration of molecular 'visits' to catalytic sites, where both the starting material, nitroarene, and the amine product have an affinity for the catalyst.</dc:description>
<dc:description>Thanks are due to the Natural Sciences and Engineering Council of Canada and the Canadian Foundation for Innovation for generous support. M. L. Marin thanks the Universitat Politecnica de Valencia (Programa de Apoyo a la Investigacion y Desarrollo) for financial support. Technical support from Roxanne Clement at uOttawa's Centre for Catalysis Research and Innovation is gratefully acknowledged.</dc:description>
<dc:description>Carrillo, AI.; Stamplecoskie, KG.; Marín García, ML.; Scaiano, JC. (2014). 'From the mole to the molecule': ruthenium catalyzed nitroarene reduction studied with 'bench', high-throughput and single molecule fluorescence techniques. Catalysis Science and Technology. 4(7):1989-1996. doi:10.1039/c4cy00018h</dc:description>
<dc:description>1989</dc:description>
<dc:description>1996</dc:description>
<dc:description>4</dc:description>
<dc:description>7</dc:description>
<dc:description>Stauffer, S. R., & Hartwig, J. F. (2003). Fluorescence Resonance Energy Transfer (FRET) as a High-Throughput Assay for Coupling Reactions. Arylation of Amines as a Case Study. Journal of the American Chemical Society, 125(23), 6977-6985. doi:10.1021/ja034161p</dc:description>
<dc:description>McNally, A., Prier, C. K., & MacMillan, D. W. C. (2011). Discovery of an -Amino C-H Arylation Reaction Using the Strategy of Accelerated Serendipity. Science, 334(6059), 1114-1117. doi:10.1126/science.1213920</dc:description>
<dc:description>Roeffaers, M. â J., Deâ Cremer, G., Libeert, J., Ameloot, R., Dedecker, P., Bons, A.-J., … Hofkens, J. (2009). Super-Resolution Reactivity Mapping of Nanostructured Catalyst Particles. Angewandte Chemie International Edition, 48(49), 9285-9289. doi:10.1002/anie.200904944</dc:description>
<dc:description>Roeffaers, M. B. J., Hofkens, J., De Cremer, G., De Schryver, F. C., Jacobs, P. A., De Vos, D. E., & Sels, B. F. (2007). Fluorescence microscopy: Bridging the phase gap in catalysis. Catalysis Today, 126(1-2), 44-53. doi:10.1016/j.cattod.2007.03.007</dc:description>
<dc:description>Tachikawa, T., & Majima, T. (2012). Single-Molecule, Single-Particle Approaches for Exploring the Structure and Kinetics of Nanocatalysts. Langmuir, 28(24), 8933-8943. doi:10.1021/la300177h</dc:description>
<dc:description>Zhou, X., Xu, W., Liu, G., Panda, D., & Chen, P. (2010). Size-Dependent Catalytic Activity and Dynamics of Gold Nanoparticles at the Single-Molecule Level. Journal of the American Chemical Society, 132(1), 138-146. doi:10.1021/ja904307n</dc:description>
<dc:description>Wee, T.-L. (Erika), Schmidt, L. C., & Scaiano, J. C. (2012). Photooxidation of 9-Anthraldehyde Catalyzed by Gold Nanoparticles: Solution and Single Nanoparticle Studies Using Fluorescence Lifetime Imaging. The Journal of Physical Chemistry C, 116(45), 24373-24379. doi:10.1021/jp308956y</dc:description>
<dc:description>Carrillo, A. I., Schmidt, L. C., Marín, M. L., & Scaiano, J. C. (2014). Mild synthesis of mesoporous silica supported ruthenium nanoparticles as heterogeneous catalysts in oxidative Wittig coupling reactions. Catal. Sci. Technol., 4(2), 435-440. doi:10.1039/c3cy00773a</dc:description>
<dc:description>Del Pozo, C., Corma, A., Iglesias, M., & Sánchez, F. (2011). Recyclable mesoporous silica-supported chiral ruthenium-(NHC)NN-pincer catalysts for asymmetric reactions. Green Chemistry, 13(9), 2471. doi:10.1039/c1gc15412e</dc:description>
<dc:description>HAJEK, J. (2003). Ruthenium-modified MCM-41 mesoporous molecular sieve and Y zeolite catalysts for selective hydrogenation of cinnamaldehyde. Applied Catalysis A: General, 251(2), 385-396. doi:10.1016/s0926-860x(03)00345-4</dc:description>
<dc:description>Prier, C. K., Rankic, D. A., & MacMillan, D. W. C. (2013). Visible Light Photoredox Catalysis with Transition Metal Complexes: Applications in Organic Synthesis. Chemical Reviews, 113(7), 5322-5363. doi:10.1021/cr300503r</dc:description>
<dc:description>Szadkowska, A., Samojłowicz, C., & Grela, K. (2011). Enhancement of ruthenium-catalyzed olefin metathesis reactions: Searching for new catalyst or new reaction conditions? Pure and Applied Chemistry, 83(3), 553-563. doi:10.1351/pac-con-10-09-10</dc:description>
<dc:description>Lara, P., Philippot, K., & Chaudret, B. (2012). Organometallic Ruthenium Nanoparticles: A Comparative Study of the Influence of the Stabilizer on their Characteristics and Reactivity. ChemCatChem, 5(1), 28-45. doi:10.1002/cctc.201200666</dc:description>
<dc:description>R. H. Grubbs , Handbook of Metathesis, Wiley-VCH, Weinheim, 2003</dc:description>
<dc:description>Jansat, S., Picurelli, D., Pelzer, K., Philippot, K., Gómez, M., Muller, G., … Chaudret, B. (2006). Synthesis, characterization and catalytic reactivity of ruthenium nanoparticles stabilized by chiral N-donor ligands. New J. Chem., 30(1), 115-122. doi:10.1039/b509378c</dc:description>
<dc:description>Salas, G., Campbell, P. S., Santini, C. C., Philippot, K., Costa Gomes, M. F., & Pádua, A. A. H. (2012). Ligand effect on the catalytic activity of ruthenium nanoparticles in ionic liquids. Dalton Transactions, 41(45), 13919. doi:10.1039/c2dt31644g</dc:description>
<dc:description>Davies, I. W., Matty, L., Hughes, D. L., & Reider, P. J. (2001). Are Heterogeneous Catalysts Precursors to Homogeneous Catalysts? Journal of the American Chemical Society, 123(41), 10139-10140. doi:10.1021/ja016877v</dc:description>
<dc:description>Montoya, L. A., & Pluth, M. D. (2012). Selective turn-on fluorescent probes for imaging hydrogen sulfide in living cells. Chemical Communications, 48(39), 4767. doi:10.1039/c2cc30730h</dc:description>
<dc:description>Larsen, J. W., Freund, M., Kim, K. Y., Sidovar, M., & Stuart, J. L. (2000). Mechanism of the carbon catalyzed reduction of nitrobenzene by hydrazine. Carbon, 38(5), 655-661. doi:10.1016/s0008-6223(99)00155-4</dc:description>
<dc:description>Al-Soufi, W., Reija, B., Novo, M., Felekyan, S., Kühnemuth, R., & Seidel, C. A. M. (2005). Fluorescence Correlation Spectroscopy, a Tool to Investigate Supramolecular Dynamics: Inclusion Complexes of Pyronines with Cyclodextrin. Journal of the American Chemical Society, 127(24), 8775-8784. doi:10.1021/ja0508976</dc:description>
<dc:description>Witham, C. A., Huang, W., Tsung, C.-K., Kuhn, J. N., Somorjai, G. A., & Toste, F. D. (2009). Converting homogeneous to heterogeneous in electrophilic catalysis using monodisperse metal nanoparticles. Nature Chemistry, 2(1), 36-41. doi:10.1038/nchem.468</dc:description>
<dc:description>Nishina, Y., Miyata, J., Kawai, R., & Gotoh, K. (2012). Recyclable Pd–graphene catalyst: mechanistic insights into heterogeneous and homogeneous catalysis. RSC Advances, 2(25), 9380. doi:10.1039/c2ra21185h</dc:description>
<dc:description>Nørskov, J. K., Bligaard, T., Rossmeisl, J., & Christensen, C. H. (2009). Towards the computational design of solid catalysts. Nature Chemistry, 1(1), 37-46. doi:10.1038/nchem.121</dc:description>
<dc:date>2014</dc:date>
<dc:type>info:eu-repo/semantics/article</dc:type>
<dc:type>info:eu-repo/semantics/publishedVersion</dc:type>
<dc:identifier>urn:issn:2044-4753</dc:identifier>
<dc:identifier>http://hdl.handle.net/10251/61429</dc:identifier>
<dc:identifier>info:doi:10.1039/c4cy00018h</dc:identifier>
<dc:identifier>urn:eissn:2044-4761</dc:identifier>
<dc:language>eng</dc:language>
<dc:relation>Catalysis Science and Technology</dc:relation>
<dc:relation>http://dx.doi.org/10.1039/c4cy00018h</dc:relation>
<dc:relation>10.1021/ja034161p</dc:relation>
<dc:relation>10.1126/science.1213920</dc:relation>
<dc:relation>10.1002/anie.200904944</dc:relation>
<dc:relation>10.1016/j.cattod.2007.03.007</dc:relation>
<dc:relation>10.1021/la300177h</dc:relation>
<dc:relation>10.1021/ja904307n</dc:relation>
<dc:relation>10.1021/jp308956y</dc:relation>
<dc:relation>10.1039/C3CY00773A</dc:relation>
<dc:relation>10.1039/c1gc15412e</dc:relation>
<dc:relation>10.1016/S0926-860X(03)00345-4</dc:relation>
<dc:relation>10.1021/cr300503r</dc:relation>
<dc:relation>10.1351/PAC-CON-10-09-10</dc:relation>
<dc:relation>10.1002/cctc.201200666</dc:relation>
<dc:relation>10.1002/9783527619481</dc:relation>
<dc:relation>10.1039/B509378C</dc:relation>
<dc:relation>10.1039/c2dt31644g</dc:relation>
<dc:relation>10.1021/ja016877v</dc:relation>
<dc:relation>10.1039/c2cc30730h</dc:relation>
<dc:relation>10.1016/S0008-6223(99)00155-4</dc:relation>
<dc:relation>10.1021/ja0508976</dc:relation>
<dc:relation>10.1038/nchem.468</dc:relation>
<dc:relation>10.1039/c2ra21185h</dc:relation>
<dc:relation>10.1038/nchem.121</dc:relation>
<dc:rights>http://rightsstatements.org/vocab/InC/1.0/</dc:rights>
<dc:rights>info:eu-repo/semantics/openAccess</dc:rights>
<dc:publisher>Royal Society of Chemistry</dc:publisher>
</oai_dc:dc>
<?xml version="1.0" encoding="UTF-8" ?>
<rdf:RDF schemaLocation="http://www.w3.org/1999/02/22-rdf-syntax-ns# http://www.europeana.eu/schemas/edm">
<edm:ProvidedCHO about="http://hdl.handle.net/10251/61429">
<dc:title>'From the mole to the molecule': ruthenium catalyzed nitroarene reduction studied with 'bench', high-throughput and single molecule fluorescence techniques</dc:title>
<dc:creator>Carrillo, Adela I.</dc:creator>
<dc:creator>Stamplecoskie, Kevin G.</dc:creator>
<dc:creator>Marín García, Mª Luisa</dc:creator>
<dc:creator>Scaiano, Juan C.</dc:creator>
<dc:contributor>Universitat Politècnica de València. Departamento de Química - Departament de Química</dc:contributor>
<dc:contributor>Universitat Politècnica de València. Instituto Universitario Mixto Tecnológico de Informática - Institut Universitari Mixt Tecnològic d'Informàtica</dc:contributor>
<dc:contributor>Universitat Politècnica de València</dc:contributor>
<dc:contributor>Natural Sciences and Engineering Research Council of Canada</dc:contributor>
<dc:contributor>Canada Foundation for Innovation</dc:contributor>
<dc:subject>HETEROGENEOUS CATALYSTS</dc:subject>
<dc:subject>GOLD NANOPARTICLES</dc:subject>
<dc:subject>COUPLING REACTIONS</dc:subject>
<dc:subject>REACTIVITY</dc:subject>
<dc:subject>COMPLEXES</dc:subject>
<dc:subject>ARYLATION</dc:subject>
<dc:subject>DYNAMICS</dc:subject>
<dc:subject>QUIMICA ANALITICA</dc:subject>
<dc:subject>QUIMICA ORGANICA</dc:subject>
<dc:description>Single molecule fluorescence microscopy techniques are used to complement conventional catalysis and high-throughput experiments in order to gain a complete picture of a model reaction. In these experiments a model nitroarene is reduced to an amine where, upon reduction, a red shift in absorption/emission, as well as an increase in emission, is observed. The reaction is studied under bulk reaction conditions by NMR spectroscopy and the fluorescence activation makes it possible to also study this reaction at the single molecule level. Fluorescence correlation spectroscopy is a valuable technique in supporting the proposed reaction mechanism and understanding the nature and duration of molecular 'visits' to catalytic sites, where both the starting material, nitroarene, and the amine product have an affinity for the catalyst.</dc:description>
<dcterms:issued>2014</dcterms:issued>
<dc:type>info:eu-repo/semantics/article</dc:type>
<dc:identifier>http://hdl.handle.net/10251/61429</dc:identifier>
<dc:identifier>info:doi:10.1039/c4cy00018h</dc:identifier>
<dc:language>eng</dc:language>
<dcterms:isPartOf>Catalysis Science and Technology</dcterms:isPartOf>
<dc:publisher>Royal Society of Chemistry</dc:publisher>
<edm:type>TEXT</edm:type>
</edm:ProvidedCHO>
<ore:Aggregation about="http://hdl.handle.net/10251/61429">
<edm:dataProvider>Riunet (Universitat Politècnica de València)</edm:dataProvider>
<edm:provider>Hispana</edm:provider>
</ore:Aggregation>
<edm:WebResource about="https://riunet.upv.es/bitstream/10251/61429/4/CatSciTec-2014-4.pdf">
</edm:WebResource>
<edm:WebResource about="https://riunet.upv.es/bitstream/10251/61429/2/CatSciTech2014%2c4%2c1989.pdf">
</edm:WebResource>
<edm:WebResource about="https://riunet.upv.es/bitstream/10251/61429/15/CatSciTec-2014-4.pdf.jpg">
</edm:WebResource>
</rdf:RDF>
<?xml version="1.0" encoding="UTF-8" ?>
<europeana:record schemaLocation="http://www.europeana.eu/schemas/ese/ http://www.europeana.eu/schemas/ese/ESE-V3.4.xsd">
<dc:title>'From the mole to the molecule': ruthenium catalyzed nitroarene reduction studied with 'bench', high-throughput and single molecule fluorescence techniques</dc:title>
<dc:creator>Carrillo, Adela I.</dc:creator>
<dc:creator>Stamplecoskie, Kevin G.</dc:creator>
<dc:creator>Marín García, Mª Luisa</dc:creator>
<dc:creator>Scaiano, Juan C.</dc:creator>
<dc:contributor>Universitat Politècnica de València. Departamento de Química - Departament de Química</dc:contributor>
<dc:contributor>Universitat Politècnica de València. Instituto Universitario Mixto Tecnológico de Informática - Institut Universitari Mixt Tecnològic d'Informàtica</dc:contributor>
<dc:contributor>Universitat Politècnica de València</dc:contributor>
<dc:contributor>Natural Sciences and Engineering Research Council of Canada</dc:contributor>
<dc:contributor>Canada Foundation for Innovation</dc:contributor>
<dc:subject>HETEROGENEOUS CATALYSTS</dc:subject>
<dc:subject>GOLD NANOPARTICLES</dc:subject>
<dc:subject>COUPLING REACTIONS</dc:subject>
<dc:subject>REACTIVITY</dc:subject>
<dc:subject>COMPLEXES</dc:subject>
<dc:subject>ARYLATION</dc:subject>
<dc:subject>DYNAMICS</dc:subject>
<dc:subject>QUIMICA ANALITICA</dc:subject>
<dc:subject>QUIMICA ORGANICA</dc:subject>
<dc:description>Single molecule fluorescence microscopy techniques are used to complement conventional catalysis and high-throughput experiments in order to gain a complete picture of a model reaction. In these experiments a model nitroarene is reduced to an amine where, upon reduction, a red shift in absorption/emission, as well as an increase in emission, is observed. The reaction is studied under bulk reaction conditions by NMR spectroscopy and the fluorescence activation makes it possible to also study this reaction at the single molecule level. Fluorescence correlation spectroscopy is a valuable technique in supporting the proposed reaction mechanism and understanding the nature and duration of molecular 'visits' to catalytic sites, where both the starting material, nitroarene, and the amine product have an affinity for the catalyst.</dc:description>
<dcterms:issued>2014</dcterms:issued>
<dc:type>info:eu-repo/semantics/article</dc:type>
<dc:identifier>urn:issn:2044-4753</dc:identifier>
<dc:identifier>http://hdl.handle.net/10251/61429</dc:identifier>
<dc:identifier>info:doi:10.1039/c4cy00018h</dc:identifier>
<dc:identifier>urn:eissn:2044-4761</dc:identifier>
<dc:language>eng</dc:language>
<dc:rights>http://rightsstatements.org/vocab/InC/1.0/</dc:rights>
<dc:rights>info:eu-repo/semantics/openAccess</dc:rights>
<dc:publisher>Royal Society of Chemistry</dc:publisher>
<europeana:object>https://riunet.upv.es/bitstream/10251/61429/15/CatSciTec-2014-4.pdf.jpg</europeana:object>
<europeana:provider>Hispana</europeana:provider>
<europeana:type>TEXT</europeana:type>
<europeana:rights>http://www.europeana.eu/rights/rr-f/</europeana:rights>
<europeana:dataProvider>Universitat Politècnica de València</europeana:dataProvider>
<europeana:isShownBy>https://riunet.upv.es/bitstream/10251/61429/4/CatSciTec-2014-4.pdf</europeana:isShownBy>
<europeana:isShownAt>http://hdl.handle.net/10251/61429</europeana:isShownAt>
</europeana:record>