Logotipo de HISPANA
Logotipo del Ministerio de Cultura
  • QUE É HISPANA?
  • Busca
  • Directorio de coleccións
  • Contacto
  • gl
    • Español
    • Euskara
    • English
    • Galego
    • Català
    • Valencià
Está en:  › Datos do registro
Linked Open Data
3D Biomimetic Porous Titanium (Ti6Al4V ELI) Scaffolds for Large Bone Critical Defect Reconstruction: An Experimental Study in Sheep
Identificadores del recurso
Crovace AM, Lacitignola L, Forleo DM, Staffieri F, Francioso E, Di Meo A, et al. 3D Biomimetic Porous Titanium (Ti6Al4V ELI) Scaffolds for Large Bone Critical Defect Reconstruction: An Experimental Study in Sheep. Animals. 2020 Aug 11;10(8):1389
http://hdl.handle.net/10668/4539
32796533
10.3390/ani10081389
2076-2615
PMC7459697
Procedencia
(RISalud-ANDALUCÍA)

Ficha

Título:
3D Biomimetic Porous Titanium (Ti6Al4V ELI) Scaffolds for Large Bone Critical Defect Reconstruction: An Experimental Study in Sheep
Tema:
Bone
Bone fracture
Bone repair
Metal endo-implant
Titanium alloy
Additive manufacturing
EBM (electron beam melting)
Biomechanics
Critical-size bone defect
Sheep
Animal model
Osseointegration
Huesos
Fracturas óseas
Titanio
Biomecánica
Ovinos
Modelos animales
Oseointegración
Prótesis e implantes
Medical Subject Headings::Organisms::Eukaryota::Animals::Chordata::Vertebrates::Mammals::Artiodactyla::Ruminants::Sheep
Medical Subject Headings::Organisms::Eukaryota::Animals
Medical Subject Headings::Chemicals and Drugs::Inorganic Chemicals::Metals::Alloys
Medical Subject Headings::Phenomena and Processes::Musculoskeletal and Neural Physiological Phenomena::Musculoskeletal Physiological Phenomena::Musculoskeletal Physiological Processes::Bone Remodeling::Bone Regeneration::Osseointegration
Medical Subject Headings::Phenomena and Processes::Physical Phenomena::Mechanical Phenomena::Porosity
Medical Subject Headings::Anatomy::Musculoskeletal System::Skeleton::Bone and Bones::Diaphyses
Medical Subject Headings::Anatomy::Musculoskeletal System::Skeleton::Bone and Bones::Bones of Lower Extremity::Leg Bones::Tibia
Medical Subject Headings::Chemicals and Drugs::Inorganic Chemicals::Acids::Acids, Noncarboxylic::Phosphorus Acids::Phosphoric Acids::Phosphates::Calcium Phosphates::Apatites::Hydroxyapatites::Durapatite
Medical Subject Headings::Disciplines and Occupations::Natural Science Disciplines::Biological Science Disciplines::Biotechnology::Biomimetics
Medical Subject Headings::Phenomena and Processes::Physical Phenomena::Magnetic Phenomena::Electromagnetic Phenomena::Electromagnetic Radiation::X-Rays
Medical Subject Headings::Phenomena and Processes::Physical Phenomena::Elementary Particles::Electrons
Medical Subject Headings::Psychiatry and Psychology::Behavior and Behavior Mechanisms::Motivation::Goals
Medical Subject Headings::Diseases::Pathological Conditions, Signs and Symptoms::Signs and Symptoms::Body Weight
Medical Subject Headings::Diseases::Wounds and Injuries::Fractures, Bone
Medical Subject Headings::Analytical, Diagnostic and Therapeutic Techniques and Equipment::Equipment and Supplies::Prostheses and Implants
Descrición:
The main goal in the treatment of large bone defects is to guarantee a rapid loading of the affected limb. In this paper, the authors proposed a new reconstructive technique that proved to be suitable to reach this purpose through the use of a custom-made biomimetic porous titanium scaffold. An in vivo study was undertaken where a complete critical defect was experimentally created in the diaphysis of the right tibia of twelve sheep and replaced with a five-centimeter porous scaffold of electron beam melting (EBM)-sintered titanium alloy (EBM group n = 6) or a porous hydroxyapatite scaffold (CONTROL group, n = 6). After surgery, the sheep were allowed to move freely in the barns. The outcome was monitored for up to 12 months by periodical X-ray and clinical examination. All animals in the CONTROL group were euthanized for humane reasons within the first month after surgery due to the onset of plate bending due to mechanical overload. Nine months after surgery, X-ray imaging showed the complete integration of the titanium implant in the tibia diaphysis and remodeling of the periosteal callus, with a well-defined cortical bone. At 12 months, sheep were euthanized, and the tibia were harvested and subjected to histological analysis. This showed bone tissue formations with bone trabeculae bridging titanium trabeculae, evidencing an optimal tissue-metal interaction. Our results show that EBM-sintered titanium devices, if used to repair critical bone defects in a large animal model, can guarantee immediate body weight-bearing, a rapid functional recovery, and a good osseointegration. The porous hydroxyapatite scaffolds proved to be not suitable in this model of large bone defect due to their known poor mechanical properties.
Yes
Idioma:
Relación:
https://www.mdpi.com/2076-2615/10/8/1389
Autor/Productor:
Crovace, Alberto Maria
Lacitignola, Luca
Forleo, Donato Monopoli
Staffieri, Francesco
Francioso, Edda
Di Meo, Antonio
Becerra, José
Crovace, Antonio
Santos-Ruiz, Leonor
Editor:
MDPI
Otros colaboradores/productores:
[Crovace,AM; Di Meo,A] Dottorato di Ricerca in Sanità e Scienze Sperimentali Veterinarie—DMV, University of Perugia, Perugia, Italy. [Lacitignola,L; Staffieri,F; Francioso,E; Crovace,A] Department of Emergencies and Organ Transplantation (DEOT), Valenzano (BA), Italy. [Forleo,DM] Departamento de Ingeniería Mecánica, Instituto Tecnológico de Canarias (ITC), Arinaga (Agüimes), Las Palmas de Gran Canaria, Spain. [Becerra,J; Santos-Ruiz,L] Departamento de Biología Celular, Genética y Fisiología, Facultad de Ciencias, Campus de Teatinos, Málaga, Spain. [Becerra,J; Santos-Ruiz,L] Centro Andaluz de Nanomedicina y Biotecnología (BIONAND), Parque Tecnológico de Andalucía, Campanillas-Málaga, Spain. [Becerra,J; Santos-Ruiz,L] Centro de Investigación Biomédica en Red—Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, Madrid, Spain. [Becerra,J; Santos-Ruiz,L] Instituto de Investigación Biomédica de Málaga—IBIMA, Málaga, Spain.
This study was co-supported by the Spanish Network on Cell Therapy (Red TerCel), MINECO-Spain (BIO2015-66266-R), and Junta de Andalucía-Spain (PI-0555-2013). CIBER-BBN is an initiative funded by the VI National R&D&I Plan 2008–2011, Iniciativa Ingenio 2010, Consolider Program and CIBER Actions and is financed by the Instituto de Salud Carlos III, Spain, with assistance from the European Regional Development Fund.
Dereitos:
Atribución 4.0 Internacional
http://creativecommons.org/licenses/by/4.0/
Acceso abierto
Data:
2022-12-23T07:50:55Z
2020-08-11
Tipo de recurso:
research article
VoR
Formato:
application/pdf

oai_dc

Descargar XML

    <?xml version="1.0" encoding="UTF-8" ?>

  1. <oai_dc:dc schemaLocation="http://www.openarchives.org/OAI/2.0/oai_dc/ http://www.openarchives.org/OAI/2.0/oai_dc.xsd">

    1. <dc:title>3D Biomimetic Porous Titanium (Ti6Al4V ELI) Scaffolds for Large Bone Critical Defect Reconstruction: An Experimental Study in Sheep</dc:title>

    2. <dc:creator>Crovace, Alberto Maria</dc:creator>

    3. <dc:creator>Lacitignola, Luca</dc:creator>

    4. <dc:creator>Forleo, Donato Monopoli</dc:creator>

    5. <dc:creator>Staffieri, Francesco</dc:creator>

    6. <dc:creator>Francioso, Edda</dc:creator>

    7. <dc:creator>Di Meo, Antonio</dc:creator>

    8. <dc:creator>Becerra, José</dc:creator>

    9. <dc:creator>Crovace, Antonio</dc:creator>

    10. <dc:creator>Santos-Ruiz, Leonor</dc:creator>

    11. <dc:contributor>[Crovace,AM; Di Meo,A] Dottorato di Ricerca in Sanità e Scienze Sperimentali Veterinarie—DMV, University of Perugia, Perugia, Italy. [Lacitignola,L; Staffieri,F; Francioso,E; Crovace,A] Department of Emergencies and Organ Transplantation (DEOT), Valenzano (BA), Italy. [Forleo,DM] Departamento de Ingeniería Mecánica, Instituto Tecnológico de Canarias (ITC), Arinaga (Agüimes), Las Palmas de Gran Canaria, Spain. [Becerra,J; Santos-Ruiz,L] Departamento de Biología Celular, Genética y Fisiología, Facultad de Ciencias, Campus de Teatinos, Málaga, Spain. [Becerra,J; Santos-Ruiz,L] Centro Andaluz de Nanomedicina y Biotecnología (BIONAND), Parque Tecnológico de Andalucía, Campanillas-Málaga, Spain. [Becerra,J; Santos-Ruiz,L] Centro de Investigación Biomédica en Red—Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, Madrid, Spain. [Becerra,J; Santos-Ruiz,L] Instituto de Investigación Biomédica de Málaga—IBIMA, Málaga, Spain.</dc:contributor>

    12. <dc:contributor>This study was co-supported by the Spanish Network on Cell Therapy (Red TerCel), MINECO-Spain (BIO2015-66266-R), and Junta de Andalucía-Spain (PI-0555-2013). CIBER-BBN is an initiative funded by the VI National R&D&I Plan 2008–2011, Iniciativa Ingenio 2010, Consolider Program and CIBER Actions and is financed by the Instituto de Salud Carlos III, Spain, with assistance from the European Regional Development Fund.</dc:contributor>

    13. <dc:subject>Bone</dc:subject>

    14. <dc:subject>Bone fracture</dc:subject>

    15. <dc:subject>Bone repair</dc:subject>

    16. <dc:subject>Metal endo-implant</dc:subject>

    17. <dc:subject>Titanium alloy</dc:subject>

    18. <dc:subject>Additive manufacturing</dc:subject>

    19. <dc:subject>EBM (electron beam melting)</dc:subject>

    20. <dc:subject>Biomechanics</dc:subject>

    21. <dc:subject>Critical-size bone defect</dc:subject>

    22. <dc:subject>Sheep</dc:subject>

    23. <dc:subject>Animal model</dc:subject>

    24. <dc:subject>Osseointegration</dc:subject>

    25. <dc:subject>Huesos</dc:subject>

    26. <dc:subject>Fracturas óseas</dc:subject>

    27. <dc:subject>Titanio</dc:subject>

    28. <dc:subject>Biomecánica</dc:subject>

    29. <dc:subject>Ovinos</dc:subject>

    30. <dc:subject>Modelos animales</dc:subject>

    31. <dc:subject>Oseointegración</dc:subject>

    32. <dc:subject>Prótesis e implantes</dc:subject>

    33. <dc:subject>Medical Subject Headings::Organisms::Eukaryota::Animals::Chordata::Vertebrates::Mammals::Artiodactyla::Ruminants::Sheep</dc:subject>

    34. <dc:subject>Medical Subject Headings::Organisms::Eukaryota::Animals</dc:subject>

    35. <dc:subject>Medical Subject Headings::Chemicals and Drugs::Inorganic Chemicals::Metals::Alloys</dc:subject>

    36. <dc:subject>Medical Subject Headings::Phenomena and Processes::Musculoskeletal and Neural Physiological Phenomena::Musculoskeletal Physiological Phenomena::Musculoskeletal Physiological Processes::Bone Remodeling::Bone Regeneration::Osseointegration</dc:subject>

    37. <dc:subject>Medical Subject Headings::Phenomena and Processes::Physical Phenomena::Mechanical Phenomena::Porosity</dc:subject>

    38. <dc:subject>Medical Subject Headings::Anatomy::Musculoskeletal System::Skeleton::Bone and Bones::Diaphyses</dc:subject>

    39. <dc:subject>Medical Subject Headings::Anatomy::Musculoskeletal System::Skeleton::Bone and Bones::Bones of Lower Extremity::Leg Bones::Tibia</dc:subject>

    40. <dc:subject>Medical Subject Headings::Chemicals and Drugs::Inorganic Chemicals::Acids::Acids, Noncarboxylic::Phosphorus Acids::Phosphoric Acids::Phosphates::Calcium Phosphates::Apatites::Hydroxyapatites::Durapatite</dc:subject>

    41. <dc:subject>Medical Subject Headings::Disciplines and Occupations::Natural Science Disciplines::Biological Science Disciplines::Biotechnology::Biomimetics</dc:subject>

    42. <dc:subject>Medical Subject Headings::Phenomena and Processes::Physical Phenomena::Magnetic Phenomena::Electromagnetic Phenomena::Electromagnetic Radiation::X-Rays</dc:subject>

    43. <dc:subject>Medical Subject Headings::Phenomena and Processes::Physical Phenomena::Elementary Particles::Electrons</dc:subject>

    44. <dc:subject>Medical Subject Headings::Psychiatry and Psychology::Behavior and Behavior Mechanisms::Motivation::Goals</dc:subject>

    45. <dc:subject>Medical Subject Headings::Diseases::Pathological Conditions, Signs and Symptoms::Signs and Symptoms::Body Weight</dc:subject>

    46. <dc:subject>Medical Subject Headings::Diseases::Wounds and Injuries::Fractures, Bone</dc:subject>

    47. <dc:subject>Medical Subject Headings::Analytical, Diagnostic and Therapeutic Techniques and Equipment::Equipment and Supplies::Prostheses and Implants</dc:subject>

    48. <dc:description>The main goal in the treatment of large bone defects is to guarantee a rapid loading of the affected limb. In this paper, the authors proposed a new reconstructive technique that proved to be suitable to reach this purpose through the use of a custom-made biomimetic porous titanium scaffold. An in vivo study was undertaken where a complete critical defect was experimentally created in the diaphysis of the right tibia of twelve sheep and replaced with a five-centimeter porous scaffold of electron beam melting (EBM)-sintered titanium alloy (EBM group n = 6) or a porous hydroxyapatite scaffold (CONTROL group, n = 6). After surgery, the sheep were allowed to move freely in the barns. The outcome was monitored for up to 12 months by periodical X-ray and clinical examination. All animals in the CONTROL group were euthanized for humane reasons within the first month after surgery due to the onset of plate bending due to mechanical overload. Nine months after surgery, X-ray imaging showed the complete integration of the titanium implant in the tibia diaphysis and remodeling of the periosteal callus, with a well-defined cortical bone. At 12 months, sheep were euthanized, and the tibia were harvested and subjected to histological analysis. This showed bone tissue formations with bone trabeculae bridging titanium trabeculae, evidencing an optimal tissue-metal interaction. Our results show that EBM-sintered titanium devices, if used to repair critical bone defects in a large animal model, can guarantee immediate body weight-bearing, a rapid functional recovery, and a good osseointegration. The porous hydroxyapatite scaffolds proved to be not suitable in this model of large bone defect due to their known poor mechanical properties.</dc:description>

    49. <dc:description>Yes</dc:description>

    50. <dc:date>2022-12-23T07:50:55Z</dc:date>

    51. <dc:date>2022-12-23T07:50:55Z</dc:date>

    52. <dc:date>2020-08-11</dc:date>

    53. <dc:type>research article</dc:type>

    54. <dc:type>VoR</dc:type>

    55. <dc:identifier>Crovace AM, Lacitignola L, Forleo DM, Staffieri F, Francioso E, Di Meo A, et al. 3D Biomimetic Porous Titanium (Ti6Al4V ELI) Scaffolds for Large Bone Critical Defect Reconstruction: An Experimental Study in Sheep. Animals. 2020 Aug 11;10(8):1389</dc:identifier>

    56. <dc:identifier>http://hdl.handle.net/10668/4539</dc:identifier>

    57. <dc:identifier>32796533</dc:identifier>

    58. <dc:identifier>10.3390/ani10081389</dc:identifier>

    59. <dc:identifier>2076-2615</dc:identifier>

    60. <dc:identifier>PMC7459697</dc:identifier>

    61. <dc:language>en</dc:language>

    62. <dc:relation>https://www.mdpi.com/2076-2615/10/8/1389</dc:relation>

    63. <dc:rights>Atribución 4.0 Internacional</dc:rights>

    64. <dc:rights>http://creativecommons.org/licenses/by/4.0/</dc:rights>

    65. <dc:rights>Acceso abierto</dc:rights>

    66. <dc:format>application/pdf</dc:format>

    67. <dc:publisher>MDPI</dc:publisher>

    </oai_dc:dc>

Hispana

Portal de acceso ao patrimonio dixital e ao agregador nacional de contidos de Europeana.

Contacto

Accede ao noso formulario e contestarémosche con moita brevidade.

Contacto

X

Tweets by Hispana_roai

Facebook

HISPANA
© Ministerio de Cultura
  • Aviso Legal