Logotipo de HISPANA
Logotipo del Ministerio de Cultura
  • QUE É HISPANA?
  • Busca
  • Directorio de coleccións
  • Contacto
  • gl
    • Español
    • Euskara
    • English
    • Galego
    • Català
    • Valencià
Está en:  › Datos do registro
Linked Open Data
A frequency-tunable nanomembrane mechanical oscillator with embedded quantum dots
Identificadores del recurso
Xueyong Yuan, Michael Schwendtner, Rinaldo Trotta, Yongheng Huo, Javier Martín-Sánchez, Giovanni Piredda, Huiying Huang, Johannes Edlinger, Christian Diskus, Oliver G. Schmidt, Bernhard Jakoby, Hubert J. Krenner, Armando Rastelli, Appl. Phys. Lett. 2019; 115 181902
https://ria.asturias.es/RIA/handle/123456789/12627
Procedencia
(Repositorio Institucional de Asturias: RIA)

Ficha

Título:
A frequency-tunable nanomembrane mechanical oscillator with embedded quantum dots
Tema:
Física
óptica cuántica
Publicado
Descrición:
Hybrid systems consisting of a quantum emitter coupled to a mechanical oscillator are receiving increasing attention for fundamental science and potential applications in quantum technologies. In contrast to most of the presented works, in which the oscillator eigenfrequencies are irreversibly determined by the fabrication process, we present here a simple approach to obtain frequency-tunable mechanical resonators based on suspended nanomembranes. The method relies on a micromachined piezoelectric actuator, which we use both to drive resonant oscillations of a suspended Ga(Al)As membrane with embedded quantum dots and to fine tune their mechanical eigenfrequencies. Specifically, we excite oscillations with frequencies of at least 60 MHz by applying an AC voltage to the actuator and tune the eigenfrequencies by at least 25 times their linewidth by continuously varying the elastic stress state in the membranes through a DC voltage. The light emitted by optically excited quantum dots is used as sensitive local strain gauge to monitor the oscillation frequency and amplitude. We expect that our method has the potential to be applicable to other optomechanical systems based on dielectric and semiconductor membranes possibly operating in the quantum regime.
Fonte:
181902;
Idioma:
English
Relación:
A frequency-tunable nanomembrane mechanical oscillator with embedded quantum dots
115
18
No, esta versión no ha sido citada
Autor/Productor:
Yuan, Xueyong
Schwendtner, Michael
Trotta, Rinaldo
Huo, Yongheng
Martín-Sánchez, Javier
Piredda, Giovanni
Huang, Huiying
Edlinger, Johannes
Diskus, Christian
Schmidt, Oliver G.
Jakoby, Bernhard
Krenner, Hubert J.
Rastelli, Armando
Editor:
AIP (American Institute of Physics)
Dereitos:
http://creativecommons.org/licenses/by-nc-sa/3.0/deed.es
Data:
2020-02-05T12:37:15Z
2019-10-28
Tipo de recurso:
article
Formato:
application/pdf

oai_dc

Descargar XML

    <?xml version="1.0" encoding="UTF-8" ?>

  1. <oai_dc:dc schemaLocation="http://www.openarchives.org/OAI/2.0/oai_dc/ http://www.openarchives.org/OAI/2.0/oai_dc.xsd">

    1. <dc:title>A frequency-tunable nanomembrane mechanical oscillator with embedded quantum dots</dc:title>

    2. <dc:creator>Yuan, Xueyong</dc:creator>

    3. <dc:creator>Schwendtner, Michael</dc:creator>

    4. <dc:creator>Trotta, Rinaldo</dc:creator>

    5. <dc:creator>Huo, Yongheng</dc:creator>

    6. <dc:creator>Martín-Sánchez, Javier</dc:creator>

    7. <dc:creator>Piredda, Giovanni</dc:creator>

    8. <dc:creator>Huang, Huiying</dc:creator>

    9. <dc:creator>Edlinger, Johannes</dc:creator>

    10. <dc:creator>Diskus, Christian</dc:creator>

    11. <dc:creator>Schmidt, Oliver G.</dc:creator>

    12. <dc:creator>Jakoby, Bernhard</dc:creator>

    13. <dc:creator>Krenner, Hubert J.</dc:creator>

    14. <dc:creator>Rastelli, Armando</dc:creator>

    15. <dc:subject>Física</dc:subject>

    16. <dc:subject>óptica cuántica</dc:subject>

    17. <dc:subject>Publicado</dc:subject>

    18. <dc:description>Hybrid systems consisting of a quantum emitter coupled to a mechanical oscillator are receiving increasing attention for fundamental science and potential applications in quantum technologies. In contrast to most of the presented works, in which the oscillator eigenfrequencies are irreversibly determined by the fabrication process, we present here a simple approach to obtain frequency-tunable mechanical resonators based on suspended nanomembranes. The method relies on a micromachined piezoelectric actuator, which we use both to drive resonant oscillations of a suspended Ga(Al)As membrane with embedded quantum dots and to fine tune their mechanical eigenfrequencies. Specifically, we excite oscillations with frequencies of at least 60 MHz by applying an AC voltage to the actuator and tune the eigenfrequencies by at least 25 times their linewidth by continuously varying the elastic stress state in the membranes through a DC voltage. The light emitted by optically excited quantum dots is used as sensitive local strain gauge to monitor the oscillation frequency and amplitude. We expect that our method has the potential to be applicable to other optomechanical systems based on dielectric and semiconductor membranes possibly operating in the quantum regime.</dc:description>

    19. <dc:date>2020-02-05T12:37:15Z</dc:date>

    20. <dc:date>2020-02-05T12:37:15Z</dc:date>

    21. <dc:date>2019-10-28</dc:date>

    22. <dc:type>article</dc:type>

    23. <dc:identifier>Xueyong Yuan, Michael Schwendtner, Rinaldo Trotta, Yongheng Huo, Javier Martín-Sánchez, Giovanni Piredda, Huiying Huang, Johannes Edlinger, Christian Diskus, Oliver G. Schmidt, Bernhard Jakoby, Hubert J. Krenner, Armando Rastelli, Appl. Phys. Lett. 2019; 115 181902</dc:identifier>

    24. <dc:identifier>https://ria.asturias.es/RIA/handle/123456789/12627</dc:identifier>

    25. <dc:language>eng</dc:language>

    26. <dc:relation>A frequency-tunable nanomembrane mechanical oscillator with embedded quantum dots</dc:relation>

    27. <dc:relation>115</dc:relation>

    28. <dc:relation>18</dc:relation>

    29. <dc:relation>No, esta versión no ha sido citada</dc:relation>

    30. <dc:rights>http://creativecommons.org/licenses/by-nc-sa/3.0/deed.es</dc:rights>

    31. <dc:format>application/pdf</dc:format>

    32. <dc:publisher>AIP (American Institute of Physics)</dc:publisher>

    33. <dc:source>181902;</dc:source>

    </oai_dc:dc>

didl

Descargar XML

    <?xml version="1.0" encoding="UTF-8" ?>

  1. <d:DIDL schemaLocation="urn:mpeg:mpeg21:2002:02-DIDL-NS http://standards.iso.org/ittf/PubliclyAvailableStandards/MPEG-21_schema_files/did/didl.xsd">

    1. <d:DIDLInfo>

      1. <dcterms:created schemaLocation="http://purl.org/dc/terms/ http://dublincore.org/schemas/xmls/qdc/dcterms.xsd">2020-02-05T12:37:15Z</dcterms:created>

      </d:DIDLInfo>

    2. <d:Item id="hdl_123456789_12627">

      1. <d:Descriptor>

        1. <d:Statement mimeType="application/xml; charset=utf-8">

          1. <dii:Identifier schemaLocation="urn:mpeg:mpeg21:2002:01-DII-NS http://standards.iso.org/ittf/PubliclyAvailableStandards/MPEG-21_schema_files/dii/dii.xsd">urn:hdl:123456789/12627</dii:Identifier>

          </d:Statement>

        </d:Descriptor>

      2. <d:Descriptor>

        1. <d:Statement mimeType="application/xml; charset=utf-8">

          1. <oai_dc:dc schemaLocation="http://www.openarchives.org/OAI/2.0/oai_dc/ http://www.openarchives.org/OAI/2.0/oai_dc.xsd">

            1. <dc:title>A frequency-tunable nanomembrane mechanical oscillator with embedded quantum dots</dc:title>

            2. <dc:creator>Yuan, Xueyong</dc:creator>

            3. <dc:creator>Schwendtner, Michael</dc:creator>

            4. <dc:creator>Trotta, Rinaldo</dc:creator>

            5. <dc:creator>Huo, Yongheng</dc:creator>

            6. <dc:creator>Martín-Sánchez, Javier</dc:creator>

            7. <dc:creator>Piredda, Giovanni</dc:creator>

            8. <dc:creator>Huang, Huiying</dc:creator>

            9. <dc:creator>Edlinger, Johannes</dc:creator>

            10. <dc:creator>Diskus, Christian</dc:creator>

            11. <dc:creator>Schmidt, Oliver G.</dc:creator>

            12. <dc:creator>Jakoby, Bernhard</dc:creator>

            13. <dc:creator>Krenner, Hubert J.</dc:creator>

            14. <dc:creator>Rastelli, Armando</dc:creator>

            15. <dc:subject>Física</dc:subject>

            16. <dc:subject>óptica cuántica</dc:subject>

            17. <dc:description>Hybrid systems consisting of a quantum emitter coupled to a mechanical oscillator are receiving increasing attention for fundamental science and potential applications in quantum technologies. In contrast to most of the presented works, in which the oscillator eigenfrequencies are irreversibly determined by the fabrication process, we present here a simple approach to obtain frequency-tunable mechanical resonators based on suspended nanomembranes. The method relies on a micromachined piezoelectric actuator, which we use both to drive resonant oscillations of a suspended Ga(Al)As membrane with embedded quantum dots and to fine tune their mechanical eigenfrequencies. Specifically, we excite oscillations with frequencies of at least 60 MHz by applying an AC voltage to the actuator and tune the eigenfrequencies by at least 25 times their linewidth by continuously varying the elastic stress state in the membranes through a DC voltage. The light emitted by optically excited quantum dots is used as sensitive local strain gauge to monitor the oscillation frequency and amplitude. We expect that our method has the potential to be applicable to other optomechanical systems based on dielectric and semiconductor membranes possibly operating in the quantum regime.</dc:description>

            18. <dc:date>2020-02-05T12:37:15Z</dc:date>

            19. <dc:date>2020-02-05T12:37:15Z</dc:date>

            20. <dc:date>2019-10-28</dc:date>

            21. <dc:type>article</dc:type>

            22. <dc:identifier>Xueyong Yuan, Michael Schwendtner, Rinaldo Trotta, Yongheng Huo, Javier Martín-Sánchez, Giovanni Piredda, Huiying Huang, Johannes Edlinger, Christian Diskus, Oliver G. Schmidt, Bernhard Jakoby, Hubert J. Krenner, Armando Rastelli, Appl. Phys. Lett. 2019; 115 181902</dc:identifier>

            23. <dc:identifier>https://ria.asturias.es/RIA/handle/123456789/12627</dc:identifier>

            24. <dc:language>eng</dc:language>

            25. <dc:relation>A frequency-tunable nanomembrane mechanical oscillator with embedded quantum dots</dc:relation>

            26. <dc:relation>115</dc:relation>

            27. <dc:relation>18</dc:relation>

            28. <dc:relation>No, esta versión no ha sido citada</dc:relation>

            29. <dc:rights>http://creativecommons.org/licenses/by-nc-sa/3.0/deed.es</dc:rights>

            30. <dc:publisher>AIP (American Institute of Physics)</dc:publisher>

            31. <dc:source>181902;</dc:source>

            </oai_dc:dc>

          </d:Statement>

        </d:Descriptor>

      3. <d:Component id="123456789_12627_2">

        1. <d:Resource mimeType="application/pdf" ref="http://172.28.36.237:8080/jspui/bitstream/123456789/12627/2/Archivo.pdf" />

        </d:Component>

      </d:Item>

    </d:DIDL>

dim

Descargar XML

    <?xml version="1.0" encoding="UTF-8" ?>

  1. <dim:dim schemaLocation="http://www.dspace.org/xmlns/dspace/dim http://www.dspace.org/schema/dim.xsd">

    1. <dim:field element="contributor" mdschema="dc" qualifier="author">Yuan, Xueyong</dim:field>

    2. <dim:field element="contributor" mdschema="dc" qualifier="author">Schwendtner, Michael</dim:field>

    3. <dim:field element="contributor" mdschema="dc" qualifier="author">Trotta, Rinaldo</dim:field>

    4. <dim:field element="contributor" mdschema="dc" qualifier="author">Huo, Yongheng</dim:field>

    5. <dim:field element="contributor" mdschema="dc" qualifier="author">Martín-Sánchez, Javier</dim:field>

    6. <dim:field element="contributor" mdschema="dc" qualifier="author">Piredda, Giovanni</dim:field>

    7. <dim:field element="contributor" mdschema="dc" qualifier="author">Huang, Huiying</dim:field>

    8. <dim:field element="contributor" mdschema="dc" qualifier="author">Edlinger, Johannes</dim:field>

    9. <dim:field element="contributor" mdschema="dc" qualifier="author">Diskus, Christian</dim:field>

    10. <dim:field element="contributor" mdschema="dc" qualifier="author">Schmidt, Oliver G.</dim:field>

    11. <dim:field element="contributor" mdschema="dc" qualifier="author">Jakoby, Bernhard</dim:field>

    12. <dim:field element="contributor" mdschema="dc" qualifier="author">Krenner, Hubert J.</dim:field>

    13. <dim:field element="contributor" mdschema="dc" qualifier="author">Rastelli, Armando</dim:field>

    14. <dim:field element="date" mdschema="dc" qualifier="accessioned">2020-02-05T12:37:15Z</dim:field>

    15. <dim:field element="date" mdschema="dc" qualifier="available">2020-02-05T12:37:15Z</dim:field>

    16. <dim:field element="date" mdschema="dc" qualifier="issued">2019-10-28</dim:field>

    17. <dim:field element="identifier" lang="eng" mdschema="dc" qualifier="citation">Xueyong Yuan, Michael Schwendtner, Rinaldo Trotta, Yongheng Huo, Javier Martín-Sánchez, Giovanni Piredda, Huiying Huang, Johannes Edlinger, Christian Diskus, Oliver G. Schmidt, Bernhard Jakoby, Hubert J. Krenner, Armando Rastelli, Appl. Phys. Lett. 2019; 115 181902</dim:field>

    18. <dim:field element="identifier" mdschema="dc" qualifier="uri">https://ria.asturias.es/RIA/handle/123456789/12627</dim:field>

    19. <dim:field element="description" lang="eng" mdschema="dc" qualifier="abstract">Hybrid systems consisting of a quantum emitter coupled to a mechanical oscillator are receiving increasing attention for fundamental science and potential applications in quantum technologies. In contrast to most of the presented works, in which the oscillator eigenfrequencies are irreversibly determined by the fabrication process, we present here a simple approach to obtain frequency-tunable mechanical resonators based on suspended nanomembranes. The method relies on a micromachined piezoelectric actuator, which we use both to drive resonant oscillations of a suspended Ga(Al)As membrane with embedded quantum dots and to fine tune their mechanical eigenfrequencies. Specifically, we excite oscillations with frequencies of at least 60 MHz by applying an AC voltage to the actuator and tune the eigenfrequencies by at least 25 times their linewidth by continuously varying the elastic stress state in the membranes through a DC voltage. The light emitted by optically excited quantum dots is used as sensitive local strain gauge to monitor the oscillation frequency and amplitude. We expect that our method has the potential to be applicable to other optomechanical systems based on dielectric and semiconductor membranes possibly operating in the quantum regime.</dim:field>

    20. <dim:field element="language" lang="eng" mdschema="dc" qualifier="iso">eng</dim:field>

    21. <dim:field element="publisher" lang="eng" mdschema="dc">AIP (American Institute of Physics)</dim:field>

    22. <dim:field element="relation" lang="eng" mdschema="dc" qualifier="ispartof">A frequency-tunable nanomembrane mechanical oscillator with embedded quantum dots</dim:field>

    23. <dim:field element="relation" lang="eng" mdschema="dc" qualifier="haspart">115</dim:field>

    24. <dim:field element="relation" lang="eng" mdschema="dc" qualifier="hasversion">18</dim:field>

    25. <dim:field element="relation" lang="eng" mdschema="dc" qualifier="isreferencedby">No, esta versión no ha sido citada</dim:field>

    26. <dim:field element="rights" lang="eng" mdschema="dc">http://creativecommons.org/licenses/by-nc-sa/3.0/deed.es</dim:field>

    27. <dim:field element="source" mdschema="dc">181902;</dim:field>

    28. <dim:field element="subject" lang="eng" mdschema="dc">Física</dim:field>

    29. <dim:field element="subject" lang="eng" mdschema="dc">óptica cuántica</dim:field>

    30. <dim:field element="subject" lang="eng" mdschema="dc" qualifier="classification">Publicado</dim:field>

    31. <dim:field element="title" lang="eng" mdschema="dc">A frequency-tunable nanomembrane mechanical oscillator with embedded quantum dots</dim:field>

    32. <dim:field element="type" lang="eng" mdschema="dc">article</dim:field>

    </dim:dim>

etdms

Descargar XML

    <?xml version="1.0" encoding="UTF-8" ?>

  1. <thesis schemaLocation="http://www.ndltd.org/standards/metadata/etdms/1.0/ http://www.ndltd.org/standards/metadata/etdms/1.0/etdms.xsd">

    1. <title>A frequency-tunable nanomembrane mechanical oscillator with embedded quantum dots</title>

    2. <creator>Yuan, Xueyong</creator>

    3. <creator>Schwendtner, Michael</creator>

    4. <creator>Trotta, Rinaldo</creator>

    5. <creator>Huo, Yongheng</creator>

    6. <creator>Martín-Sánchez, Javier</creator>

    7. <creator>Piredda, Giovanni</creator>

    8. <creator>Huang, Huiying</creator>

    9. <creator>Edlinger, Johannes</creator>

    10. <creator>Diskus, Christian</creator>

    11. <creator>Schmidt, Oliver G.</creator>

    12. <creator>Jakoby, Bernhard</creator>

    13. <creator>Krenner, Hubert J.</creator>

    14. <creator>Rastelli, Armando</creator>

    15. <subject>Física</subject>

    16. <subject>óptica cuántica</subject>

    17. <description>Hybrid systems consisting of a quantum emitter coupled to a mechanical oscillator are receiving increasing attention for fundamental science and potential applications in quantum technologies. In contrast to most of the presented works, in which the oscillator eigenfrequencies are irreversibly determined by the fabrication process, we present here a simple approach to obtain frequency-tunable mechanical resonators based on suspended nanomembranes. The method relies on a micromachined piezoelectric actuator, which we use both to drive resonant oscillations of a suspended Ga(Al)As membrane with embedded quantum dots and to fine tune their mechanical eigenfrequencies. Specifically, we excite oscillations with frequencies of at least 60 MHz by applying an AC voltage to the actuator and tune the eigenfrequencies by at least 25 times their linewidth by continuously varying the elastic stress state in the membranes through a DC voltage. The light emitted by optically excited quantum dots is used as sensitive local strain gauge to monitor the oscillation frequency and amplitude. We expect that our method has the potential to be applicable to other optomechanical systems based on dielectric and semiconductor membranes possibly operating in the quantum regime.</description>

    18. <date>2020-02-05</date>

    19. <date>2020-02-05</date>

    20. <date>2019-10-28</date>

    21. <type>article</type>

    22. <identifier>Xueyong Yuan, Michael Schwendtner, Rinaldo Trotta, Yongheng Huo, Javier Martín-Sánchez, Giovanni Piredda, Huiying Huang, Johannes Edlinger, Christian Diskus, Oliver G. Schmidt, Bernhard Jakoby, Hubert J. Krenner, Armando Rastelli, Appl. Phys. Lett. 2019; 115 181902</identifier>

    23. <identifier>https://ria.asturias.es/RIA/handle/123456789/12627</identifier>

    24. <language>eng</language>

    25. <relation>A frequency-tunable nanomembrane mechanical oscillator with embedded quantum dots</relation>

    26. <relation>115</relation>

    27. <relation>18</relation>

    28. <relation>No, esta versión no ha sido citada</relation>

    29. <rights>http://creativecommons.org/licenses/by-nc-sa/3.0/deed.es</rights>

    30. <publisher>AIP (American Institute of Physics)</publisher>

    31. <source>181902;</source>

    </thesis>

marc

Descargar XML

    <?xml version="1.0" encoding="UTF-8" ?>

  1. <record schemaLocation="http://www.loc.gov/MARC21/slim http://www.loc.gov/standards/marcxml/schema/MARC21slim.xsd">

    1. <leader>00925njm 22002777a 4500</leader>

    2. <datafield ind1=" " ind2=" " tag="042">

      1. <subfield code="a">dc</subfield>

      </datafield>

    3. <datafield ind1=" " ind2=" " tag="720">

      1. <subfield code="a">Yuan, Xueyong</subfield>

      2. <subfield code="e">author</subfield>

      </datafield>

    4. <datafield ind1=" " ind2=" " tag="720">

      1. <subfield code="a">Schwendtner, Michael</subfield>

      2. <subfield code="e">author</subfield>

      </datafield>

    5. <datafield ind1=" " ind2=" " tag="720">

      1. <subfield code="a">Trotta, Rinaldo</subfield>

      2. <subfield code="e">author</subfield>

      </datafield>

    6. <datafield ind1=" " ind2=" " tag="720">

      1. <subfield code="a">Huo, Yongheng</subfield>

      2. <subfield code="e">author</subfield>

      </datafield>

    7. <datafield ind1=" " ind2=" " tag="720">

      1. <subfield code="a">Martín-Sánchez, Javier</subfield>

      2. <subfield code="e">author</subfield>

      </datafield>

    8. <datafield ind1=" " ind2=" " tag="720">

      1. <subfield code="a">Piredda, Giovanni</subfield>

      2. <subfield code="e">author</subfield>

      </datafield>

    9. <datafield ind1=" " ind2=" " tag="720">

      1. <subfield code="a">Huang, Huiying</subfield>

      2. <subfield code="e">author</subfield>

      </datafield>

    10. <datafield ind1=" " ind2=" " tag="720">

      1. <subfield code="a">Edlinger, Johannes</subfield>

      2. <subfield code="e">author</subfield>

      </datafield>

    11. <datafield ind1=" " ind2=" " tag="720">

      1. <subfield code="a">Diskus, Christian</subfield>

      2. <subfield code="e">author</subfield>

      </datafield>

    12. <datafield ind1=" " ind2=" " tag="720">

      1. <subfield code="a">Schmidt, Oliver G.</subfield>

      2. <subfield code="e">author</subfield>

      </datafield>

    13. <datafield ind1=" " ind2=" " tag="720">

      1. <subfield code="a">Jakoby, Bernhard</subfield>

      2. <subfield code="e">author</subfield>

      </datafield>

    14. <datafield ind1=" " ind2=" " tag="720">

      1. <subfield code="a">Krenner, Hubert J.</subfield>

      2. <subfield code="e">author</subfield>

      </datafield>

    15. <datafield ind1=" " ind2=" " tag="720">

      1. <subfield code="a">Rastelli, Armando</subfield>

      2. <subfield code="e">author</subfield>

      </datafield>

    16. <datafield ind1=" " ind2=" " tag="260">

      1. <subfield code="c">2019-10-28</subfield>

      </datafield>

    17. <datafield ind1=" " ind2=" " tag="520">

      1. <subfield code="a">Hybrid systems consisting of a quantum emitter coupled to a mechanical oscillator are receiving increasing attention for fundamental science and potential applications in quantum technologies. In contrast to most of the presented works, in which the oscillator eigenfrequencies are irreversibly determined by the fabrication process, we present here a simple approach to obtain frequency-tunable mechanical resonators based on suspended nanomembranes. The method relies on a micromachined piezoelectric actuator, which we use both to drive resonant oscillations of a suspended Ga(Al)As membrane with embedded quantum dots and to fine tune their mechanical eigenfrequencies. Specifically, we excite oscillations with frequencies of at least 60 MHz by applying an AC voltage to the actuator and tune the eigenfrequencies by at least 25 times their linewidth by continuously varying the elastic stress state in the membranes through a DC voltage. The light emitted by optically excited quantum dots is used as sensitive local strain gauge to monitor the oscillation frequency and amplitude. We expect that our method has the potential to be applicable to other optomechanical systems based on dielectric and semiconductor membranes possibly operating in the quantum regime.</subfield>

      </datafield>

    18. <datafield ind1="8" ind2=" " tag="024">

      1. <subfield code="a">Xueyong Yuan, Michael Schwendtner, Rinaldo Trotta, Yongheng Huo, Javier Martín-Sánchez, Giovanni Piredda, Huiying Huang, Johannes Edlinger, Christian Diskus, Oliver G. Schmidt, Bernhard Jakoby, Hubert J. Krenner, Armando Rastelli, Appl. Phys. Lett. 2019; 115 181902</subfield>

      </datafield>

    19. <datafield ind1="8" ind2=" " tag="024">

      1. <subfield code="a">https://ria.asturias.es/RIA/handle/123456789/12627</subfield>

      </datafield>

    20. <datafield ind1=" " ind2=" " tag="653">

      1. <subfield code="a">Física</subfield>

      </datafield>

    21. <datafield ind1=" " ind2=" " tag="653">

      1. <subfield code="a">óptica cuántica</subfield>

      </datafield>

    22. <datafield ind1="0" ind2="0" tag="245">

      1. <subfield code="a">A frequency-tunable nanomembrane mechanical oscillator with embedded quantum dots</subfield>

      </datafield>

    </record>

mets

Descargar XML

    <?xml version="1.0" encoding="UTF-8" ?>

  1. <mets ID=" DSpace_ITEM_123456789-12627" OBJID=" hdl:123456789/12627" PROFILE="DSpace METS SIP Profile 1.0" TYPE="DSpace ITEM" schemaLocation="http://www.loc.gov/METS/ http://www.loc.gov/standards/mets/mets.xsd">

    1. <metsHdr CREATEDATE="2023-01-14T18:34:47Z">

      1. <agent ROLE="CUSTODIAN" TYPE="ORGANIZATION">

        1. <name>RIA</name>

        </agent>

      </metsHdr>

    2. <dmdSec ID="DMD_123456789_12627">

      1. <mdWrap MDTYPE="MODS">

        1. <xmlData schemaLocation="http://www.loc.gov/mods/v3 http://www.loc.gov/standards/mods/v3/mods-3-1.xsd">

          1. <mods:mods schemaLocation="http://www.loc.gov/mods/v3 http://www.loc.gov/standards/mods/v3/mods-3-1.xsd">

            1. <mods:name>

              1. <mods:role>

                1. <mods:roleTerm type="text">author</mods:roleTerm>

                </mods:role>

              2. <mods:namePart>Yuan, Xueyong</mods:namePart>

              </mods:name>

            2. <mods:name>

              1. <mods:role>

                1. <mods:roleTerm type="text">author</mods:roleTerm>

                </mods:role>

              2. <mods:namePart>Schwendtner, Michael</mods:namePart>

              </mods:name>

            3. <mods:name>

              1. <mods:role>

                1. <mods:roleTerm type="text">author</mods:roleTerm>

                </mods:role>

              2. <mods:namePart>Trotta, Rinaldo</mods:namePart>

              </mods:name>

            4. <mods:name>

              1. <mods:role>

                1. <mods:roleTerm type="text">author</mods:roleTerm>

                </mods:role>

              2. <mods:namePart>Huo, Yongheng</mods:namePart>

              </mods:name>

            5. <mods:name>

              1. <mods:role>

                1. <mods:roleTerm type="text">author</mods:roleTerm>

                </mods:role>

              2. <mods:namePart>Martín-Sánchez, Javier</mods:namePart>

              </mods:name>

            6. <mods:name>

              1. <mods:role>

                1. <mods:roleTerm type="text">author</mods:roleTerm>

                </mods:role>

              2. <mods:namePart>Piredda, Giovanni</mods:namePart>

              </mods:name>

            7. <mods:name>

              1. <mods:role>

                1. <mods:roleTerm type="text">author</mods:roleTerm>

                </mods:role>

              2. <mods:namePart>Huang, Huiying</mods:namePart>

              </mods:name>

            8. <mods:name>

              1. <mods:role>

                1. <mods:roleTerm type="text">author</mods:roleTerm>

                </mods:role>

              2. <mods:namePart>Edlinger, Johannes</mods:namePart>

              </mods:name>

            9. <mods:name>

              1. <mods:role>

                1. <mods:roleTerm type="text">author</mods:roleTerm>

                </mods:role>

              2. <mods:namePart>Diskus, Christian</mods:namePart>

              </mods:name>

            10. <mods:name>

              1. <mods:role>

                1. <mods:roleTerm type="text">author</mods:roleTerm>

                </mods:role>

              2. <mods:namePart>Schmidt, Oliver G.</mods:namePart>

              </mods:name>

            11. <mods:name>

              1. <mods:role>

                1. <mods:roleTerm type="text">author</mods:roleTerm>

                </mods:role>

              2. <mods:namePart>Jakoby, Bernhard</mods:namePart>

              </mods:name>

            12. <mods:name>

              1. <mods:role>

                1. <mods:roleTerm type="text">author</mods:roleTerm>

                </mods:role>

              2. <mods:namePart>Krenner, Hubert J.</mods:namePart>

              </mods:name>

            13. <mods:name>

              1. <mods:role>

                1. <mods:roleTerm type="text">author</mods:roleTerm>

                </mods:role>

              2. <mods:namePart>Rastelli, Armando</mods:namePart>

              </mods:name>

            14. <mods:extension>

              1. <mods:dateAccessioned encoding="iso8601">2020-02-05T12:37:15Z</mods:dateAccessioned>

              </mods:extension>

            15. <mods:extension>

              1. <mods:dateAvailable encoding="iso8601">2020-02-05T12:37:15Z</mods:dateAvailable>

              </mods:extension>

            16. <mods:originInfo>

              1. <mods:dateIssued encoding="iso8601">2019-10-28</mods:dateIssued>

              </mods:originInfo>

            17. <mods:identifier type="citation">Xueyong Yuan, Michael Schwendtner, Rinaldo Trotta, Yongheng Huo, Javier Martín-Sánchez, Giovanni Piredda, Huiying Huang, Johannes Edlinger, Christian Diskus, Oliver G. Schmidt, Bernhard Jakoby, Hubert J. Krenner, Armando Rastelli, Appl. Phys. Lett. 2019; 115 181902</mods:identifier>

            18. <mods:identifier type="uri">https://ria.asturias.es/RIA/handle/123456789/12627</mods:identifier>

            19. <mods:abstract>Hybrid systems consisting of a quantum emitter coupled to a mechanical oscillator are receiving increasing attention for fundamental science and potential applications in quantum technologies. In contrast to most of the presented works, in which the oscillator eigenfrequencies are irreversibly determined by the fabrication process, we present here a simple approach to obtain frequency-tunable mechanical resonators based on suspended nanomembranes. The method relies on a micromachined piezoelectric actuator, which we use both to drive resonant oscillations of a suspended Ga(Al)As membrane with embedded quantum dots and to fine tune their mechanical eigenfrequencies. Specifically, we excite oscillations with frequencies of at least 60 MHz by applying an AC voltage to the actuator and tune the eigenfrequencies by at least 25 times their linewidth by continuously varying the elastic stress state in the membranes through a DC voltage. The light emitted by optically excited quantum dots is used as sensitive local strain gauge to monitor the oscillation frequency and amplitude. We expect that our method has the potential to be applicable to other optomechanical systems based on dielectric and semiconductor membranes possibly operating in the quantum regime.</mods:abstract>

            20. <mods:language>

              1. <mods:languageTerm authority="rfc3066">eng</mods:languageTerm>

              </mods:language>

            21. <mods:accessCondition type="useAndReproduction">http://creativecommons.org/licenses/by-nc-sa/3.0/deed.es</mods:accessCondition>

            22. <mods:subject>

              1. <mods:topic>Física</mods:topic>

              </mods:subject>

            23. <mods:subject>

              1. <mods:topic>óptica cuántica</mods:topic>

              </mods:subject>

            24. <mods:titleInfo>

              1. <mods:title>A frequency-tunable nanomembrane mechanical oscillator with embedded quantum dots</mods:title>

              </mods:titleInfo>

            25. <mods:genre>article</mods:genre>

            </mods:mods>

          </xmlData>

        </mdWrap>

      </dmdSec>

    3. <amdSec ID="FO_123456789_12627_2">

      1. <techMD ID="TECH_O_123456789_12627_2">

        1. <mdWrap MDTYPE="PREMIS">

          1. <xmlData schemaLocation="http://www.loc.gov/standards/premis http://www.loc.gov/standards/premis/PREMIS-v1-0.xsd">

            1. <premis:premis>

              1. <premis:object>

                1. <premis:objectIdentifier>

                  1. <premis:objectIdentifierType>URL</premis:objectIdentifierType>

                  2. <premis:objectIdentifierValue>http://172.28.36.237:8080/jspui/bitstream/123456789/12627/2/Archivo.pdf</premis:objectIdentifierValue>

                  </premis:objectIdentifier>

                2. <premis:objectCategory>File</premis:objectCategory>

                3. <premis:objectCharacteristics>

                  1. <premis:fixity>

                    1. <premis:messageDigestAlgorithm>MD5</premis:messageDigestAlgorithm>

                    2. <premis:messageDigest>de11413e00414db4d72e1dd2902d2ee4</premis:messageDigest>

                    </premis:fixity>

                  2. <premis:size>882870</premis:size>

                  3. <premis:format>

                    1. <premis:formatDesignation>

                      1. <premis:formatName>application/pdf</premis:formatName>

                      </premis:formatDesignation>

                    </premis:format>

                  </premis:objectCharacteristics>

                4. <premis:originalName>Archivo.pdf</premis:originalName>

                </premis:object>

              </premis:premis>

            </xmlData>

          </mdWrap>

        </techMD>

      </amdSec>

    4. <fileSec>

      1. <fileGrp USE="ORIGINAL">

        1. <file ADMID="FO_123456789_12627_2" CHECKSUM="de11413e00414db4d72e1dd2902d2ee4" CHECKSUMTYPE="MD5" GROUPID="GROUP_BITSTREAM_123456789_12627_2" ID="BITSTREAM_ORIGINAL_123456789_12627_2" MIMETYPE="application/pdf" SEQ="2" SIZE="882870">

          1. <FLocat LOCTYPE="URL" href="http://172.28.36.237:8080/jspui/bitstream/123456789/12627/2/Archivo.pdf" type="simple" />

          </file>

        </fileGrp>

      </fileSec>

    5. <structMap LABEL="DSpace Object" TYPE="LOGICAL">

      1. <div ADMID="DMD_123456789_12627" TYPE="DSpace Object Contents">

        1. <div TYPE="DSpace BITSTREAM">

          1. <fptr FILEID="BITSTREAM_ORIGINAL_123456789_12627_2" />

          </div>

        </div>

      </structMap>

    </mets>

mods

Descargar XML

    <?xml version="1.0" encoding="UTF-8" ?>

  1. <mods:mods schemaLocation="http://www.loc.gov/mods/v3 http://www.loc.gov/standards/mods/v3/mods-3-1.xsd">

    1. <mods:name>

      1. <mods:namePart>Yuan, Xueyong</mods:namePart>

      </mods:name>

    2. <mods:name>

      1. <mods:namePart>Schwendtner, Michael</mods:namePart>

      </mods:name>

    3. <mods:name>

      1. <mods:namePart>Trotta, Rinaldo</mods:namePart>

      </mods:name>

    4. <mods:name>

      1. <mods:namePart>Huo, Yongheng</mods:namePart>

      </mods:name>

    5. <mods:name>

      1. <mods:namePart>Martín-Sánchez, Javier</mods:namePart>

      </mods:name>

    6. <mods:name>

      1. <mods:namePart>Piredda, Giovanni</mods:namePart>

      </mods:name>

    7. <mods:name>

      1. <mods:namePart>Huang, Huiying</mods:namePart>

      </mods:name>

    8. <mods:name>

      1. <mods:namePart>Edlinger, Johannes</mods:namePart>

      </mods:name>

    9. <mods:name>

      1. <mods:namePart>Diskus, Christian</mods:namePart>

      </mods:name>

    10. <mods:name>

      1. <mods:namePart>Schmidt, Oliver G.</mods:namePart>

      </mods:name>

    11. <mods:name>

      1. <mods:namePart>Jakoby, Bernhard</mods:namePart>

      </mods:name>

    12. <mods:name>

      1. <mods:namePart>Krenner, Hubert J.</mods:namePart>

      </mods:name>

    13. <mods:name>

      1. <mods:namePart>Rastelli, Armando</mods:namePart>

      </mods:name>

    14. <mods:extension>

      1. <mods:dateAvailable encoding="iso8601">2020-02-05T12:37:15Z</mods:dateAvailable>

      </mods:extension>

    15. <mods:extension>

      1. <mods:dateAccessioned encoding="iso8601">2020-02-05T12:37:15Z</mods:dateAccessioned>

      </mods:extension>

    16. <mods:originInfo>

      1. <mods:dateIssued encoding="iso8601">2019-10-28</mods:dateIssued>

      </mods:originInfo>

    17. <mods:identifier type="citation">Xueyong Yuan, Michael Schwendtner, Rinaldo Trotta, Yongheng Huo, Javier Martín-Sánchez, Giovanni Piredda, Huiying Huang, Johannes Edlinger, Christian Diskus, Oliver G. Schmidt, Bernhard Jakoby, Hubert J. Krenner, Armando Rastelli, Appl. Phys. Lett. 2019; 115 181902</mods:identifier>

    18. <mods:identifier type="uri">https://ria.asturias.es/RIA/handle/123456789/12627</mods:identifier>

    19. <mods:abstract>Hybrid systems consisting of a quantum emitter coupled to a mechanical oscillator are receiving increasing attention for fundamental science and potential applications in quantum technologies. In contrast to most of the presented works, in which the oscillator eigenfrequencies are irreversibly determined by the fabrication process, we present here a simple approach to obtain frequency-tunable mechanical resonators based on suspended nanomembranes. The method relies on a micromachined piezoelectric actuator, which we use both to drive resonant oscillations of a suspended Ga(Al)As membrane with embedded quantum dots and to fine tune their mechanical eigenfrequencies. Specifically, we excite oscillations with frequencies of at least 60 MHz by applying an AC voltage to the actuator and tune the eigenfrequencies by at least 25 times their linewidth by continuously varying the elastic stress state in the membranes through a DC voltage. The light emitted by optically excited quantum dots is used as sensitive local strain gauge to monitor the oscillation frequency and amplitude. We expect that our method has the potential to be applicable to other optomechanical systems based on dielectric and semiconductor membranes possibly operating in the quantum regime.</mods:abstract>

    20. <mods:language>

      1. <mods:languageTerm>eng</mods:languageTerm>

      </mods:language>

    21. <mods:accessCondition type="useAndReproduction">http://creativecommons.org/licenses/by-nc-sa/3.0/deed.es</mods:accessCondition>

    22. <mods:subject>

      1. <mods:topic>Física</mods:topic>

      </mods:subject>

    23. <mods:subject>

      1. <mods:topic>óptica cuántica</mods:topic>

      </mods:subject>

    24. <mods:titleInfo>

      1. <mods:title>A frequency-tunable nanomembrane mechanical oscillator with embedded quantum dots</mods:title>

      </mods:titleInfo>

    25. <mods:genre>article</mods:genre>

    </mods:mods>

ore

Descargar XML

    <?xml version="1.0" encoding="UTF-8" ?>

  1. <atom:entry schemaLocation="http://www.w3.org/2005/Atom http://www.kbcafe.com/rss/atom.xsd.xml">

    1. <atom:id>https://ria.asturias.es/RIA/handle/123456789/12627/ore.xml</atom:id>

    2. <atom:link href="https://ria.asturias.es/RIA/handle/123456789/12627" rel="alternate" />
    3. <atom:link href="https://ria.asturias.es/RIA/handle/123456789/12627/ore.xml" rel="http://www.openarchives.org/ore/terms/describes" />
    4. <atom:link href="https://ria.asturias.es/RIA/handle/123456789/12627/ore.xml#atom" rel="self" type="application/atom+xml" />
    5. <atom:published>2020-02-05T12:37:15Z</atom:published>

    6. <atom:updated>2020-02-05T12:37:15Z</atom:updated>

    7. <atom:source>

      1. <atom:generator>RIA</atom:generator>

      </atom:source>

    8. <atom:title>A frequency-tunable nanomembrane mechanical oscillator with embedded quantum dots</atom:title>

    9. <atom:author>

      1. <atom:name>Yuan, Xueyong</atom:name>

      </atom:author>

    10. <atom:author>

      1. <atom:name>Schwendtner, Michael</atom:name>

      </atom:author>

    11. <atom:author>

      1. <atom:name>Trotta, Rinaldo</atom:name>

      </atom:author>

    12. <atom:author>

      1. <atom:name>Huo, Yongheng</atom:name>

      </atom:author>

    13. <atom:author>

      1. <atom:name>Martín-Sánchez, Javier</atom:name>

      </atom:author>

    14. <atom:author>

      1. <atom:name>Piredda, Giovanni</atom:name>

      </atom:author>

    15. <atom:author>

      1. <atom:name>Huang, Huiying</atom:name>

      </atom:author>

    16. <atom:author>

      1. <atom:name>Edlinger, Johannes</atom:name>

      </atom:author>

    17. <atom:author>

      1. <atom:name>Diskus, Christian</atom:name>

      </atom:author>

    18. <atom:author>

      1. <atom:name>Schmidt, Oliver G.</atom:name>

      </atom:author>

    19. <atom:author>

      1. <atom:name>Jakoby, Bernhard</atom:name>

      </atom:author>

    20. <atom:author>

      1. <atom:name>Krenner, Hubert J.</atom:name>

      </atom:author>

    21. <atom:author>

      1. <atom:name>Rastelli, Armando</atom:name>

      </atom:author>

    22. <atom:category label="Aggregation" scheme="http://www.openarchives.org/ore/terms/" term="http://www.openarchives.org/ore/terms/Aggregation" />
    23. <atom:category scheme="http://www.openarchives.org/ore/atom/modified" term="2020-02-05T12:37:15Z" />
    24. <atom:category label="DSpace Item" scheme="http://www.dspace.org/objectModel/" term="DSpaceItem" />
    25. <atom:link href="http://172.28.36.237:8080/jspui/bitstream/123456789/12627/2/Archivo.pdf" length="882870" rel="http://www.openarchives.org/ore/terms/aggregates" title="Archivo.pdf" type="application/pdf" />
    26. <oreatom:triples>

      1. <rdf:Description about="https://ria.asturias.es/RIA/handle/123456789/12627/ore.xml#atom">

        1. <rdf:type resource="http://www.dspace.org/objectModel/DSpaceItem" />
        2. <dcterms:modified>2020-02-05T12:37:15Z</dcterms:modified>

        </rdf:Description>

      2. <rdf:Description about="http://172.28.36.237:8080/jspui/bitstream/123456789/12627/2/Archivo.pdf">

        1. <rdf:type resource="http://www.dspace.org/objectModel/DSpaceBitstream" />
        2. <dcterms:description>ORIGINAL</dcterms:description>

        </rdf:Description>

      </oreatom:triples>

    </atom:entry>

qdc

Descargar XML

    <?xml version="1.0" encoding="UTF-8" ?>

  1. <qdc:qualifieddc schemaLocation="http://purl.org/dc/elements/1.1/ http://dublincore.org/schemas/xmls/qdc/2006/01/06/dc.xsd http://purl.org/dc/terms/ http://dublincore.org/schemas/xmls/qdc/2006/01/06/dcterms.xsd http://dspace.org/qualifieddc/ http://www.ukoln.ac.uk/metadata/dcmi/xmlschema/qualifieddc.xsd">

    1. <dc:title>A frequency-tunable nanomembrane mechanical oscillator with embedded quantum dots</dc:title>

    2. <dc:creator>Yuan, Xueyong</dc:creator>

    3. <dc:creator>Schwendtner, Michael</dc:creator>

    4. <dc:creator>Trotta, Rinaldo</dc:creator>

    5. <dc:creator>Huo, Yongheng</dc:creator>

    6. <dc:creator>Martín-Sánchez, Javier</dc:creator>

    7. <dc:creator>Piredda, Giovanni</dc:creator>

    8. <dc:creator>Huang, Huiying</dc:creator>

    9. <dc:creator>Edlinger, Johannes</dc:creator>

    10. <dc:creator>Diskus, Christian</dc:creator>

    11. <dc:creator>Schmidt, Oliver G.</dc:creator>

    12. <dc:creator>Jakoby, Bernhard</dc:creator>

    13. <dc:creator>Krenner, Hubert J.</dc:creator>

    14. <dc:creator>Rastelli, Armando</dc:creator>

    15. <dc:subject>Física</dc:subject>

    16. <dc:subject>óptica cuántica</dc:subject>

    17. <dcterms:abstract>Hybrid systems consisting of a quantum emitter coupled to a mechanical oscillator are receiving increasing attention for fundamental science and potential applications in quantum technologies. In contrast to most of the presented works, in which the oscillator eigenfrequencies are irreversibly determined by the fabrication process, we present here a simple approach to obtain frequency-tunable mechanical resonators based on suspended nanomembranes. The method relies on a micromachined piezoelectric actuator, which we use both to drive resonant oscillations of a suspended Ga(Al)As membrane with embedded quantum dots and to fine tune their mechanical eigenfrequencies. Specifically, we excite oscillations with frequencies of at least 60 MHz by applying an AC voltage to the actuator and tune the eigenfrequencies by at least 25 times their linewidth by continuously varying the elastic stress state in the membranes through a DC voltage. The light emitted by optically excited quantum dots is used as sensitive local strain gauge to monitor the oscillation frequency and amplitude. We expect that our method has the potential to be applicable to other optomechanical systems based on dielectric and semiconductor membranes possibly operating in the quantum regime.</dcterms:abstract>

    18. <dcterms:dateAccepted>2020-02-05T12:37:15Z</dcterms:dateAccepted>

    19. <dcterms:available>2020-02-05T12:37:15Z</dcterms:available>

    20. <dcterms:created>2020-02-05T12:37:15Z</dcterms:created>

    21. <dcterms:issued>2019-10-28</dcterms:issued>

    22. <dc:type>article</dc:type>

    23. <dc:identifier>Xueyong Yuan, Michael Schwendtner, Rinaldo Trotta, Yongheng Huo, Javier Martín-Sánchez, Giovanni Piredda, Huiying Huang, Johannes Edlinger, Christian Diskus, Oliver G. Schmidt, Bernhard Jakoby, Hubert J. Krenner, Armando Rastelli, Appl. Phys. Lett. 2019; 115 181902</dc:identifier>

    24. <dc:identifier>https://ria.asturias.es/RIA/handle/123456789/12627</dc:identifier>

    25. <dc:language>eng</dc:language>

    26. <dc:relation>A frequency-tunable nanomembrane mechanical oscillator with embedded quantum dots</dc:relation>

    27. <dc:relation>115</dc:relation>

    28. <dc:relation>18</dc:relation>

    29. <dc:relation>No, esta versión no ha sido citada</dc:relation>

    30. <dc:rights>http://creativecommons.org/licenses/by-nc-sa/3.0/deed.es</dc:rights>

    31. <dc:publisher>AIP (American Institute of Physics)</dc:publisher>

    32. <dc:source>181902;</dc:source>

    </qdc:qualifieddc>

rdf

Descargar XML

    <?xml version="1.0" encoding="UTF-8" ?>

  1. <rdf:RDF schemaLocation="http://www.openarchives.org/OAI/2.0/rdf/ http://www.openarchives.org/OAI/2.0/rdf.xsd">

    1. <ow:Publication about="oai:http://172.28.36.237/:123456789/12627">

      1. <dc:title>A frequency-tunable nanomembrane mechanical oscillator with embedded quantum dots</dc:title>

      2. <dc:creator>Yuan, Xueyong</dc:creator>

      3. <dc:creator>Schwendtner, Michael</dc:creator>

      4. <dc:creator>Trotta, Rinaldo</dc:creator>

      5. <dc:creator>Huo, Yongheng</dc:creator>

      6. <dc:creator>Martín-Sánchez, Javier</dc:creator>

      7. <dc:creator>Piredda, Giovanni</dc:creator>

      8. <dc:creator>Huang, Huiying</dc:creator>

      9. <dc:creator>Edlinger, Johannes</dc:creator>

      10. <dc:creator>Diskus, Christian</dc:creator>

      11. <dc:creator>Schmidt, Oliver G.</dc:creator>

      12. <dc:creator>Jakoby, Bernhard</dc:creator>

      13. <dc:creator>Krenner, Hubert J.</dc:creator>

      14. <dc:creator>Rastelli, Armando</dc:creator>

      15. <dc:subject>Física</dc:subject>

      16. <dc:subject>óptica cuántica</dc:subject>

      17. <dc:description>Hybrid systems consisting of a quantum emitter coupled to a mechanical oscillator are receiving increasing attention for fundamental science and potential applications in quantum technologies. In contrast to most of the presented works, in which the oscillator eigenfrequencies are irreversibly determined by the fabrication process, we present here a simple approach to obtain frequency-tunable mechanical resonators based on suspended nanomembranes. The method relies on a micromachined piezoelectric actuator, which we use both to drive resonant oscillations of a suspended Ga(Al)As membrane with embedded quantum dots and to fine tune their mechanical eigenfrequencies. Specifically, we excite oscillations with frequencies of at least 60 MHz by applying an AC voltage to the actuator and tune the eigenfrequencies by at least 25 times their linewidth by continuously varying the elastic stress state in the membranes through a DC voltage. The light emitted by optically excited quantum dots is used as sensitive local strain gauge to monitor the oscillation frequency and amplitude. We expect that our method has the potential to be applicable to other optomechanical systems based on dielectric and semiconductor membranes possibly operating in the quantum regime.</dc:description>

      18. <dc:date>2020-02-05T12:37:15Z</dc:date>

      19. <dc:date>2020-02-05T12:37:15Z</dc:date>

      20. <dc:date>2019-10-28</dc:date>

      21. <dc:type>article</dc:type>

      22. <dc:identifier>Xueyong Yuan, Michael Schwendtner, Rinaldo Trotta, Yongheng Huo, Javier Martín-Sánchez, Giovanni Piredda, Huiying Huang, Johannes Edlinger, Christian Diskus, Oliver G. Schmidt, Bernhard Jakoby, Hubert J. Krenner, Armando Rastelli, Appl. Phys. Lett. 2019; 115 181902</dc:identifier>

      23. <dc:identifier>https://ria.asturias.es/RIA/handle/123456789/12627</dc:identifier>

      24. <dc:language>eng</dc:language>

      25. <dc:relation>A frequency-tunable nanomembrane mechanical oscillator with embedded quantum dots</dc:relation>

      26. <dc:relation>115</dc:relation>

      27. <dc:relation>18</dc:relation>

      28. <dc:relation>No, esta versión no ha sido citada</dc:relation>

      29. <dc:rights>http://creativecommons.org/licenses/by-nc-sa/3.0/deed.es</dc:rights>

      30. <dc:publisher>AIP (American Institute of Physics)</dc:publisher>

      31. <dc:source>181902;</dc:source>

      </ow:Publication>

    </rdf:RDF>

xoai

Descargar XML

    <?xml version="1.0" encoding="UTF-8" ?>

  1. <metadata schemaLocation="http://www.lyncode.com/xoai http://www.lyncode.com/xsd/xoai.xsd">

    1. <element name="dc">

      1. <element name="contributor">

        1. <element name="author">

          1. <element name="none">

            1. <field name="value">Yuan, Xueyong</field>

            2. <field name="value">Schwendtner, Michael</field>

            3. <field name="value">Trotta, Rinaldo</field>

            4. <field name="value">Huo, Yongheng</field>

            5. <field name="value">Martín-Sánchez, Javier</field>

            6. <field name="value">Piredda, Giovanni</field>

            7. <field name="value">Huang, Huiying</field>

            8. <field name="value">Edlinger, Johannes</field>

            9. <field name="value">Diskus, Christian</field>

            10. <field name="value">Schmidt, Oliver G.</field>

            11. <field name="value">Jakoby, Bernhard</field>

            12. <field name="value">Krenner, Hubert J.</field>

            13. <field name="value">Rastelli, Armando</field>

            </element>

          </element>

        </element>

      2. <element name="date">

        1. <element name="accessioned">

          1. <element name="none">

            1. <field name="value">2020-02-05T12:37:15Z</field>

            </element>

          </element>

        2. <element name="available">

          1. <element name="none">

            1. <field name="value">2020-02-05T12:37:15Z</field>

            </element>

          </element>

        3. <element name="issued">

          1. <element name="none">

            1. <field name="value">2019-10-28</field>

            </element>

          </element>

        </element>

      3. <element name="identifier">

        1. <element name="citation">

          1. <element name="eng">

            1. <field name="value">Xueyong Yuan, Michael Schwendtner, Rinaldo Trotta, Yongheng Huo, Javier Martín-Sánchez, Giovanni Piredda, Huiying Huang, Johannes Edlinger, Christian Diskus, Oliver G. Schmidt, Bernhard Jakoby, Hubert J. Krenner, Armando Rastelli, Appl. Phys. Lett. 2019; 115 181902</field>

            </element>

          </element>

        2. <element name="uri">

          1. <element name="none">

            1. <field name="value">https://ria.asturias.es/RIA/handle/123456789/12627</field>

            </element>

          </element>

        </element>

      4. <element name="description">

        1. <element name="abstract">

          1. <element name="eng">

            1. <field name="value">Hybrid systems consisting of a quantum emitter coupled to a mechanical oscillator are receiving increasing attention for fundamental science and potential applications in quantum technologies. In contrast to most of the presented works, in which the oscillator eigenfrequencies are irreversibly determined by the fabrication process, we present here a simple approach to obtain frequency-tunable mechanical resonators based on suspended nanomembranes. The method relies on a micromachined piezoelectric actuator, which we use both to drive resonant oscillations of a suspended Ga(Al)As membrane with embedded quantum dots and to fine tune their mechanical eigenfrequencies. Specifically, we excite oscillations with frequencies of at least 60 MHz by applying an AC voltage to the actuator and tune the eigenfrequencies by at least 25 times their linewidth by continuously varying the elastic stress state in the membranes through a DC voltage. The light emitted by optically excited quantum dots is used as sensitive local strain gauge to monitor the oscillation frequency and amplitude. We expect that our method has the potential to be applicable to other optomechanical systems based on dielectric and semiconductor membranes possibly operating in the quantum regime.</field>

            </element>

          </element>

        </element>

      5. <element name="language">

        1. <element name="iso">

          1. <element name="eng">

            1. <field name="value">eng</field>

            </element>

          </element>

        </element>

      6. <element name="publisher">

        1. <element name="eng">

          1. <field name="value">AIP (American Institute of Physics)</field>

          </element>

        </element>

      7. <element name="relation">

        1. <element name="ispartof">

          1. <element name="eng">

            1. <field name="value">A frequency-tunable nanomembrane mechanical oscillator with embedded quantum dots</field>

            </element>

          </element>

        2. <element name="haspart">

          1. <element name="eng">

            1. <field name="value">115</field>

            </element>

          </element>

        3. <element name="hasversion">

          1. <element name="eng">

            1. <field name="value">18</field>

            </element>

          </element>

        4. <element name="isreferencedby">

          1. <element name="eng">

            1. <field name="value">No, esta versión no ha sido citada</field>

            </element>

          </element>

        </element>

      8. <element name="rights">

        1. <element name="eng">

          1. <field name="value">http://creativecommons.org/licenses/by-nc-sa/3.0/deed.es</field>

          </element>

        </element>

      9. <element name="source">

        1. <element name="none">

          1. <field name="value">181902;</field>

          </element>

        </element>

      10. <element name="subject">

        1. <element name="eng">

          1. <field name="value">Física</field>

          2. <field name="value">óptica cuántica</field>

          </element>

        2. <element name="classification">

          1. <element name="eng">

            1. <field name="value">Publicado</field>

            </element>

          </element>

        </element>

      11. <element name="title">

        1. <element name="eng">

          1. <field name="value">A frequency-tunable nanomembrane mechanical oscillator with embedded quantum dots</field>

          </element>

        </element>

      12. <element name="type">

        1. <element name="eng">

          1. <field name="value">article</field>

          </element>

        </element>

      </element>

    2. <element name="bundles">

      1. <element name="bundle">

        1. <field name="name">ORIGINAL</field>

        2. <element name="bitstreams">

          1. <element name="bitstream">

            1. <field name="name">Archivo.pdf</field>

            2. <field name="originalName">Archivo.pdf</field>

            3. <field name="format">application/pdf</field>

            4. <field name="size">882870</field>

            5. <field name="url">http://172.28.36.237:8080/jspui/bitstream/123456789/12627/2/Archivo.pdf</field>

            6. <field name="checksum">de11413e00414db4d72e1dd2902d2ee4</field>

            7. <field name="checksumAlgorithm">MD5</field>

            8. <field name="sid">2</field>

            </element>

          </element>

        </element>

      </element>

    3. <element name="others">

      1. <field name="handle">123456789/12627</field>

      2. <field name="identifier">oai:http://172.28.36.237/:123456789/12627</field>

      3. <field name="lastModifyDate">2020-04-16 16:26:13.236</field>

      </element>

    4. <element name="repository">

      1. <field name="name">RIA</field>

      2. <field name="mail">gemma.gonzalez@ricoh.es</field>

      </element>

    </metadata>

Hispana

Portal de acceso ao patrimonio dixital e ao agregador nacional de contidos de Europeana.

Contacto

Accede ao noso formulario e contestarémosche con moita brevidade.

Contacto

X

Tweets by Hispana_roai

Facebook

HISPANA
© Ministerio de Cultura
  • Aviso Legal