<?xml version="1.0" encoding="UTF-8" ?>
<oai_dc:dc schemaLocation="http://www.openarchives.org/OAI/2.0/oai_dc/ http://www.openarchives.org/OAI/2.0/oai_dc.xsd">
<dc:title>A probabilistic integrated object recognition and tracking framework for video sequences</dc:title>
<dc:creator>Amezquita Gómez, Nicolás</dc:creator>
<dc:contributor>Serratosa i Casanelles, Francesc</dc:contributor>
<dc:contributor>Alquézar Mancho, René</dc:contributor>
<dc:contributor>Universitat Rovira i Virgili. Departament d'Enginyeria Informàtica i Matemàtiques</dc:contributor>
<dc:subject>Object recognition</dc:subject>
<dc:subject>004</dc:subject>
<dc:description>Recognition and tracking of multiple objects in video sequences is one of the main challenges in computer vision that currently deserves a lot of attention from researchers. Almost all the reported approaches are very application-dependent and there is a lack of a general methodology for dynamic object recognition and tracking that can be instantiated in particular cases. In this thesis, the work is oriented towards the definition and development of such a methodology which integrates object recognition and tracking from a general perspective using a probabilistic framework called PIORT (probabilistic integrated object recognition and tracking framework). It include some modules for which a variety of techniques and methods can be applied. Some of them are well-known but other methods have been designed, implemented and tested during the development of this thesis.<br/><br/>The first step in the proposed framework is a static recognition module that provides class probabilities for each pixel of the image from a set of local features. These probabilities are updated dynamically and supplied to a tracking decision module capable of handling full and partial occlusions. The two specific methods presented use RGB colour features and differ in the classifier implemented: one is a Bayesian method based on maximum likelihood and the other one is based on a neural network. The experimental results obtained have shown that, on one hand, the neural net based approach performs similarly and sometimes better than the Bayesian approach when they are integrated within the tracking framework. And on the other hand, our PIORT methods have achieved better results when compared to other published tracking methods. All these methods have been tested experimentally in several test video sequences taken with still and moving cameras and including full and partial occlusions of the tracked object in indoor and outdoor scenarios in a variety of cases with different levels of task complexity. This allowed the evaluation of the general methodology and the alternative methods that compose these modules.<br/>A Probabilistic Integrated Object Recognition and Tracking Framework for Video Sequences</dc:description>
<dc:description>El reconocimiento y seguimiento de múltiples objetos en secuencias de vídeo es uno de los principales desafíos en visión por ordenador que actualmente merece mucha atención de los investigadores. Casi todos los enfoques reportados son muy dependientes de la aplicación y hay carencia de una metodología general para el reconocimiento y seguimiento dinámico de objetos, que pueda ser instanciada en casos particulares. En esta tesis, el trabajo esta orientado hacia la definición y desarrollo de tal metodología, la cual integra reconocimiento y seguimiento de objetos desde una perspectiva general usando un marco probabilístico de trabajo llamado PIORT (Probabilistic Integrated Object Recognition and Tracking). Este incluye algunos módulos para los que se puede aplicar una variedad de técnicas y métodos. Algunos de ellos son bien conocidos, pero otros métodos han sido diseñados, implementados y probados durante el desarrollo de esta tesis.<br/><br/>El primer paso en el marco de trabajo propuesto es un módulo estático de reconocimiento que provee probabilidades de clase para cada píxel de la imagen desde un conjunto de características locales. Estas probabilidades son actualizadas dinámicamente y suministradas a un modulo decisión de seguimiento capaz de manejar oclusiones parciales o totales. Se presenta dos métodos específicos usando características de color RGB pero diferentes en la implementación del clasificador: uno es un método Bayesiano basado en la máxima verosimilitud y el otro método está basado en una red neuronal. Los resultados experimentales obtenidos han mostrado que, por una parte, el enfoque basado en la red neuronal funciona similarmente y algunas veces mejor que el enfoque bayesiano cuando son integrados dentro del marco probabilístico de seguimiento. Por otra parte, nuestro método PIORT ha alcanzado mejores resultados comparando con otros métodos de seguimiento publicados. Todos estos métodos han sido probados experimentalmente en varias secuencias de vídeo tomadas con cámaras fijas y móviles incluyendo oclusiones parciales y totales del objeto a seguir, en ambientes interiores y exteriores, en diferentes tareas y niveles de complejidad. Esto ha permitido evaluar tanto la metodología general como los métodos alternativos que componen sus módulos.</dc:description>
<dc:date>2009-12-04</dc:date>
<dc:type>info:eu-repo/semantics/doctoralThesis</dc:type>
<dc:type>info:eu-repo/semantics/publishedVersion</dc:type>
<dc:identifier>T.1001-2010</dc:identifier>
<dc:identifier>9788469333877</dc:identifier>
<dc:identifier>http://www.tdx.cat/TDX-0615110-140439</dc:identifier>
<dc:identifier>http://hdl.handle.net/10803/8485</dc:identifier>
<dc:language>eng</dc:language>
<dc:rights>ADVERTIMENT. L'accés als continguts d'aquesta tesi doctoral i la seva utilització ha de respectar els drets de la persona autora. Pot ser utilitzada per a consulta o estudi personal, així com en activitats o materials d'investigació i docència en els termes establerts a l'art. 32 del Text Refós de la Llei de Propietat Intel·lectual (RDL 1/1996). Per altres utilitzacions es requereix l'autorització prèvia i expressa de la persona autora. En qualsevol cas, en la utilització dels seus continguts caldrà indicar de forma clara el nom i cognoms de la persona autora i el títol de la tesi doctoral. No s'autoritza la seva reproducció o altres formes d'explotació efectuades amb finalitats de lucre ni la seva comunicació pública des d'un lloc aliè al servei TDX. Tampoc s'autoritza la presentació del seu contingut en una finestra o marc aliè a TDX (framing). Aquesta reserva de drets afecta tant als continguts de la tesi com als seus resums i índexs.</dc:rights>
<dc:rights>info:eu-repo/semantics/openAccess</dc:rights>
<dc:format>application/pdf</dc:format>
<dc:publisher>Universitat Rovira i Virgili</dc:publisher>
<dc:source>TDX (Tesis Doctorals en Xarxa)</dc:source>
</oai_dc:dc>
<?xml version="1.0" encoding="UTF-8" ?>
<dim:dim schemaLocation="http://www.dspace.org/xmlns/dspace/dim http://www.dspace.org/schema/dim.xsd">
<dim:field element="contributor" mdschema="dc">Universitat Rovira i Virgili. Departament d'Enginyeria Informàtica i Matemàtiques</dim:field>
<dim:field element="contributor" mdschema="dc" qualifier="author">Amezquita Gómez, Nicolás</dim:field>
<dim:field element="contributor" mdschema="dc" qualifier="authoremail">nicolas.amezquita@gmail.com</dim:field>
<dim:field element="contributor" mdschema="dc" qualifier="authoremailshow">true</dim:field>
<dim:field element="contributor" mdschema="dc" qualifier="director">Serratosa i Casanelles, Francesc</dim:field>
<dim:field element="contributor" mdschema="dc" qualifier="codirector">Alquézar Mancho, René</dim:field>
<dim:field element="date" mdschema="dc" qualifier="accessioned">2011-04-12T18:00:10Z</dim:field>
<dim:field element="date" mdschema="dc" qualifier="available">2010-06-15</dim:field>
<dim:field element="date" mdschema="dc" qualifier="issued">2009-12-04</dim:field>
<dim:field element="date" mdschema="dc" qualifier="submitted">2010-06-15</dim:field>
<dim:field element="identifier" mdschema="dc">T.1001-2010</dim:field>
<dim:field element="identifier" mdschema="dc" qualifier="isbn">9788469333877</dim:field>
<dim:field element="identifier" mdschema="dc" qualifier="uri">http://www.tdx.cat/TDX-0615110-140439</dim:field>
<dim:field element="identifier" mdschema="dc" qualifier="uri">http://hdl.handle.net/10803/8485</dim:field>
<dim:field element="description" lang="eng" mdschema="dc" qualifier="abstract">Recognition and tracking of multiple objects in video sequences is one of the main challenges in computer vision that currently deserves a lot of attention from researchers. Almost all the reported approaches are very application-dependent and there is a lack of a general methodology for dynamic object recognition and tracking that can be instantiated in particular cases. In this thesis, the work is oriented towards the definition and development of such a methodology which integrates object recognition and tracking from a general perspective using a probabilistic framework called PIORT (probabilistic integrated object recognition and tracking framework). It include some modules for which a variety of techniques and methods can be applied. Some of them are well-known but other methods have been designed, implemented and tested during the development of this thesis.<br/><br/>The first step in the proposed framework is a static recognition module that provides class probabilities for each pixel of the image from a set of local features. These probabilities are updated dynamically and supplied to a tracking decision module capable of handling full and partial occlusions. The two specific methods presented use RGB colour features and differ in the classifier implemented: one is a Bayesian method based on maximum likelihood and the other one is based on a neural network. The experimental results obtained have shown that, on one hand, the neural net based approach performs similarly and sometimes better than the Bayesian approach when they are integrated within the tracking framework. And on the other hand, our PIORT methods have achieved better results when compared to other published tracking methods. All these methods have been tested experimentally in several test video sequences taken with still and moving cameras and including full and partial occlusions of the tracked object in indoor and outdoor scenarios in a variety of cases with different levels of task complexity. This allowed the evaluation of the general methodology and the alternative methods that compose these modules.<br/>A Probabilistic Integrated Object Recognition and Tracking Framework for Video Sequences</dim:field>
<dim:field element="description" lang="spa" mdschema="dc" qualifier="abstract">El reconocimiento y seguimiento de múltiples objetos en secuencias de vídeo es uno de los principales desafíos en visión por ordenador que actualmente merece mucha atención de los investigadores. Casi todos los enfoques reportados son muy dependientes de la aplicación y hay carencia de una metodología general para el reconocimiento y seguimiento dinámico de objetos, que pueda ser instanciada en casos particulares. En esta tesis, el trabajo esta orientado hacia la definición y desarrollo de tal metodología, la cual integra reconocimiento y seguimiento de objetos desde una perspectiva general usando un marco probabilístico de trabajo llamado PIORT (Probabilistic Integrated Object Recognition and Tracking). Este incluye algunos módulos para los que se puede aplicar una variedad de técnicas y métodos. Algunos de ellos son bien conocidos, pero otros métodos han sido diseñados, implementados y probados durante el desarrollo de esta tesis.<br/><br/>El primer paso en el marco de trabajo propuesto es un módulo estático de reconocimiento que provee probabilidades de clase para cada píxel de la imagen desde un conjunto de características locales. Estas probabilidades son actualizadas dinámicamente y suministradas a un modulo decisión de seguimiento capaz de manejar oclusiones parciales o totales. Se presenta dos métodos específicos usando características de color RGB pero diferentes en la implementación del clasificador: uno es un método Bayesiano basado en la máxima verosimilitud y el otro método está basado en una red neuronal. Los resultados experimentales obtenidos han mostrado que, por una parte, el enfoque basado en la red neuronal funciona similarmente y algunas veces mejor que el enfoque bayesiano cuando son integrados dentro del marco probabilístico de seguimiento. Por otra parte, nuestro método PIORT ha alcanzado mejores resultados comparando con otros métodos de seguimiento publicados. Todos estos métodos han sido probados experimentalmente en varias secuencias de vídeo tomadas con cámaras fijas y móviles incluyendo oclusiones parciales y totales del objeto a seguir, en ambientes interiores y exteriores, en diferentes tareas y niveles de complejidad. Esto ha permitido evaluar tanto la metodología general como los métodos alternativos que componen sus módulos.</dim:field>
<dim:field element="format" mdschema="dc" qualifier="mimetype">application/pdf</dim:field>
<dim:field element="language" mdschema="dc" qualifier="iso">eng</dim:field>
<dim:field element="publisher" mdschema="dc">Universitat Rovira i Virgili</dim:field>
<dim:field element="rights" mdschema="dc" qualifier="license">ADVERTIMENT. L'accés als continguts d'aquesta tesi doctoral i la seva utilització ha de respectar els drets de la persona autora. Pot ser utilitzada per a consulta o estudi personal, així com en activitats o materials d'investigació i docència en els termes establerts a l'art. 32 del Text Refós de la Llei de Propietat Intel·lectual (RDL 1/1996). Per altres utilitzacions es requereix l'autorització prèvia i expressa de la persona autora. En qualsevol cas, en la utilització dels seus continguts caldrà indicar de forma clara el nom i cognoms de la persona autora i el títol de la tesi doctoral. No s'autoritza la seva reproducció o altres formes d'explotació efectuades amb finalitats de lucre ni la seva comunicació pública des d'un lloc aliè al servei TDX. Tampoc s'autoritza la presentació del seu contingut en una finestra o marc aliè a TDX (framing). Aquesta reserva de drets afecta tant als continguts de la tesi com als seus resums i índexs.</dim:field>
<dim:field element="rights" lang="cat" mdschema="dc" qualifier="accessLevel">info:eu-repo/semantics/openAccess</dim:field>
<dim:field element="source" mdschema="dc">TDX (Tesis Doctorals en Xarxa)</dim:field>
<dim:field element="subject" mdschema="dc">Object recognition</dim:field>
<dim:field element="subject" lang="cat" mdschema="dc" qualifier="udc">004</dim:field>
<dim:field element="title" mdschema="dc">A probabilistic integrated object recognition and tracking framework for video sequences</dim:field>
<dim:field element="type" mdschema="dc">info:eu-repo/semantics/doctoralThesis</dim:field>
<dim:field element="type" mdschema="dc">info:eu-repo/semantics/publishedVersion</dim:field>
</dim:dim>
<?xml version="1.0" encoding="UTF-8" ?>
<thesis schemaLocation="http://www.ndltd.org/standards/metadata/etdms/1.0/ http://www.ndltd.org/standards/metadata/etdms/1.0/etdms.xsd">
<title>A probabilistic integrated object recognition and tracking framework for video sequences</title>
<creator>Amezquita Gómez, Nicolás</creator>
<contributor>nicolas.amezquita@gmail.com</contributor>
<contributor>true</contributor>
<contributor>Serratosa i Casanelles, Francesc</contributor>
<contributor>Alquézar Mancho, René</contributor>
<subject>Object recognition</subject>
<description>Recognition and tracking of multiple objects in video sequences is one of the main challenges in computer vision that currently deserves a lot of attention from researchers. Almost all the reported approaches are very application-dependent and there is a lack of a general methodology for dynamic object recognition and tracking that can be instantiated in particular cases. In this thesis, the work is oriented towards the definition and development of such a methodology which integrates object recognition and tracking from a general perspective using a probabilistic framework called PIORT (probabilistic integrated object recognition and tracking framework). It include some modules for which a variety of techniques and methods can be applied. Some of them are well-known but other methods have been designed, implemented and tested during the development of this thesis.<br/><br/>The first step in the proposed framework is a static recognition module that provides class probabilities for each pixel of the image from a set of local features. These probabilities are updated dynamically and supplied to a tracking decision module capable of handling full and partial occlusions. The two specific methods presented use RGB colour features and differ in the classifier implemented: one is a Bayesian method based on maximum likelihood and the other one is based on a neural network. The experimental results obtained have shown that, on one hand, the neural net based approach performs similarly and sometimes better than the Bayesian approach when they are integrated within the tracking framework. And on the other hand, our PIORT methods have achieved better results when compared to other published tracking methods. All these methods have been tested experimentally in several test video sequences taken with still and moving cameras and including full and partial occlusions of the tracked object in indoor and outdoor scenarios in a variety of cases with different levels of task complexity. This allowed the evaluation of the general methodology and the alternative methods that compose these modules.<br/>A Probabilistic Integrated Object Recognition and Tracking Framework for Video Sequences</description>
<description>El reconocimiento y seguimiento de múltiples objetos en secuencias de vídeo es uno de los principales desafíos en visión por ordenador que actualmente merece mucha atención de los investigadores. Casi todos los enfoques reportados son muy dependientes de la aplicación y hay carencia de una metodología general para el reconocimiento y seguimiento dinámico de objetos, que pueda ser instanciada en casos particulares. En esta tesis, el trabajo esta orientado hacia la definición y desarrollo de tal metodología, la cual integra reconocimiento y seguimiento de objetos desde una perspectiva general usando un marco probabilístico de trabajo llamado PIORT (Probabilistic Integrated Object Recognition and Tracking). Este incluye algunos módulos para los que se puede aplicar una variedad de técnicas y métodos. Algunos de ellos son bien conocidos, pero otros métodos han sido diseñados, implementados y probados durante el desarrollo de esta tesis.<br/><br/>El primer paso en el marco de trabajo propuesto es un módulo estático de reconocimiento que provee probabilidades de clase para cada píxel de la imagen desde un conjunto de características locales. Estas probabilidades son actualizadas dinámicamente y suministradas a un modulo decisión de seguimiento capaz de manejar oclusiones parciales o totales. Se presenta dos métodos específicos usando características de color RGB pero diferentes en la implementación del clasificador: uno es un método Bayesiano basado en la máxima verosimilitud y el otro método está basado en una red neuronal. Los resultados experimentales obtenidos han mostrado que, por una parte, el enfoque basado en la red neuronal funciona similarmente y algunas veces mejor que el enfoque bayesiano cuando son integrados dentro del marco probabilístico de seguimiento. Por otra parte, nuestro método PIORT ha alcanzado mejores resultados comparando con otros métodos de seguimiento publicados. Todos estos métodos han sido probados experimentalmente en varias secuencias de vídeo tomadas con cámaras fijas y móviles incluyendo oclusiones parciales y totales del objeto a seguir, en ambientes interiores y exteriores, en diferentes tareas y niveles de complejidad. Esto ha permitido evaluar tanto la metodología general como los métodos alternativos que componen sus módulos.</description>
<date>2011-04-12</date>
<date>2010-06-15</date>
<date>2009-12-04</date>
<date>2010-06-15</date>
<type>info:eu-repo/semantics/doctoralThesis</type>
<type>info:eu-repo/semantics/publishedVersion</type>
<identifier>9788469333877</identifier>
<identifier>http://www.tdx.cat/TDX-0615110-140439</identifier>
<identifier>http://hdl.handle.net/10803/8485</identifier>
<language>eng</language>
<rights>ADVERTIMENT. L'accés als continguts d'aquesta tesi doctoral i la seva utilització ha de respectar els drets de la persona autora. Pot ser utilitzada per a consulta o estudi personal, així com en activitats o materials d'investigació i docència en els termes establerts a l'art. 32 del Text Refós de la Llei de Propietat Intel·lectual (RDL 1/1996). Per altres utilitzacions es requereix l'autorització prèvia i expressa de la persona autora. En qualsevol cas, en la utilització dels seus continguts caldrà indicar de forma clara el nom i cognoms de la persona autora i el títol de la tesi doctoral. No s'autoritza la seva reproducció o altres formes d'explotació efectuades amb finalitats de lucre ni la seva comunicació pública des d'un lloc aliè al servei TDX. Tampoc s'autoritza la presentació del seu contingut en una finestra o marc aliè a TDX (framing). Aquesta reserva de drets afecta tant als continguts de la tesi com als seus resums i índexs.</rights>
<rights>info:eu-repo/semantics/openAccess</rights>
<publisher>Universitat Rovira i Virgili</publisher>
<source>TDX (Tesis Doctorals en Xarxa)</source>
</thesis>
<?xml version="1.0" encoding="UTF-8" ?>
<record schemaLocation="http://www.loc.gov/MARC21/slim http://www.loc.gov/standards/marcxml/schema/MARC21slim.xsd">
<leader>00925njm 22002777a 4500</leader>
<datafield ind1=" " ind2=" " tag="042">
<subfield code="a">dc</subfield>
</datafield>
<datafield ind1=" " ind2=" " tag="720">
<subfield code="a">Amezquita Gómez, Nicolás</subfield>
<subfield code="e">author</subfield>
</datafield>
<datafield ind1=" " ind2=" " tag="260">
<subfield code="c">2009-12-04</subfield>
</datafield>
<datafield ind1=" " ind2=" " tag="520">
<subfield code="a">Recognition and tracking of multiple objects in video sequences is one of the main challenges in computer vision that currently deserves a lot of attention from researchers. Almost all the reported approaches are very application-dependent and there is a lack of a general methodology for dynamic object recognition and tracking that can be instantiated in particular cases. In this thesis, the work is oriented towards the definition and development of such a methodology which integrates object recognition and tracking from a general perspective using a probabilistic framework called PIORT (probabilistic integrated object recognition and tracking framework). It include some modules for which a variety of techniques and methods can be applied. Some of them are well-known but other methods have been designed, implemented and tested during the development of this thesis.<br/><br/>The first step in the proposed framework is a static recognition module that provides class probabilities for each pixel of the image from a set of local features. These probabilities are updated dynamically and supplied to a tracking decision module capable of handling full and partial occlusions. The two specific methods presented use RGB colour features and differ in the classifier implemented: one is a Bayesian method based on maximum likelihood and the other one is based on a neural network. The experimental results obtained have shown that, on one hand, the neural net based approach performs similarly and sometimes better than the Bayesian approach when they are integrated within the tracking framework. And on the other hand, our PIORT methods have achieved better results when compared to other published tracking methods. All these methods have been tested experimentally in several test video sequences taken with still and moving cameras and including full and partial occlusions of the tracked object in indoor and outdoor scenarios in a variety of cases with different levels of task complexity. This allowed the evaluation of the general methodology and the alternative methods that compose these modules.<br/>A Probabilistic Integrated Object Recognition and Tracking Framework for Video Sequences</subfield>
</datafield>
<datafield ind1=" " ind2=" " tag="520">
<subfield code="a">El reconocimiento y seguimiento de múltiples objetos en secuencias de vídeo es uno de los principales desafíos en visión por ordenador que actualmente merece mucha atención de los investigadores. Casi todos los enfoques reportados son muy dependientes de la aplicación y hay carencia de una metodología general para el reconocimiento y seguimiento dinámico de objetos, que pueda ser instanciada en casos particulares. En esta tesis, el trabajo esta orientado hacia la definición y desarrollo de tal metodología, la cual integra reconocimiento y seguimiento de objetos desde una perspectiva general usando un marco probabilístico de trabajo llamado PIORT (Probabilistic Integrated Object Recognition and Tracking). Este incluye algunos módulos para los que se puede aplicar una variedad de técnicas y métodos. Algunos de ellos son bien conocidos, pero otros métodos han sido diseñados, implementados y probados durante el desarrollo de esta tesis.<br/><br/>El primer paso en el marco de trabajo propuesto es un módulo estático de reconocimiento que provee probabilidades de clase para cada píxel de la imagen desde un conjunto de características locales. Estas probabilidades son actualizadas dinámicamente y suministradas a un modulo decisión de seguimiento capaz de manejar oclusiones parciales o totales. Se presenta dos métodos específicos usando características de color RGB pero diferentes en la implementación del clasificador: uno es un método Bayesiano basado en la máxima verosimilitud y el otro método está basado en una red neuronal. Los resultados experimentales obtenidos han mostrado que, por una parte, el enfoque basado en la red neuronal funciona similarmente y algunas veces mejor que el enfoque bayesiano cuando son integrados dentro del marco probabilístico de seguimiento. Por otra parte, nuestro método PIORT ha alcanzado mejores resultados comparando con otros métodos de seguimiento publicados. Todos estos métodos han sido probados experimentalmente en varias secuencias de vídeo tomadas con cámaras fijas y móviles incluyendo oclusiones parciales y totales del objeto a seguir, en ambientes interiores y exteriores, en diferentes tareas y niveles de complejidad. Esto ha permitido evaluar tanto la metodología general como los métodos alternativos que componen sus módulos.</subfield>
</datafield>
<datafield ind1="8" ind2=" " tag="024">
<subfield code="a">9788469333877</subfield>
</datafield>
<datafield ind1="8" ind2=" " tag="024">
<subfield code="a">http://www.tdx.cat/TDX-0615110-140439</subfield>
</datafield>
<datafield ind1="8" ind2=" " tag="024">
<subfield code="a">http://hdl.handle.net/10803/8485</subfield>
</datafield>
<datafield ind1=" " ind2=" " tag="653">
<subfield code="a">Object recognition</subfield>
</datafield>
<datafield ind1="0" ind2="0" tag="245">
<subfield code="a">A probabilistic integrated object recognition and tracking framework for video sequences</subfield>
</datafield>
</record>
<?xml version="1.0" encoding="UTF-8" ?>
<record schemaLocation="http://www.loc.gov/MARC21/slim http://www.loc.gov/standards/marcxml/schema/MARC21slim.xsd">
<leader>nam a 5i 4500</leader>
<datafield ind1=" " ind2=" " tag="653">
<subfield code="a">Object recognition</subfield>
</datafield>
<datafield ind1="1" ind2="0" tag="245">
<subfield code="a">A probabilistic integrated object recognition and tracking framework for video sequences</subfield>
</datafield>
<datafield ind1=" " ind2="1" tag="264">
<subfield code="a">[Tarragona] :</subfield>
<subfield code="b">Universitat Rovira i Virgili,</subfield>
<subfield code="c">[2010]</subfield>
</datafield>
<datafield ind1="4" ind2="0" tag="856">
<subfield code="z">Accés lliure</subfield>
<subfield code="u">http://hdl.handle.net/10803/8485</subfield>
</datafield>
<controlfield tag="007">cr |||||||||||</controlfield>
<controlfield tag="008">AAMMDDs2010 sp ||||fsm||||0|| 0 eng|c</controlfield>
<datafield ind1=" " ind2=" " tag="020">
<subfield code="a">9788469333877</subfield>
</datafield>
<datafield ind1="1" ind2=" " tag="100">
<subfield code="a">Amezquita Gómez, Nicolás,</subfield>
<subfield code="e">autor</subfield>
</datafield>
<datafield ind1=" " ind2=" " tag="502">
<subfield code="g">Tesi</subfield>
<subfield code="b">Doctorat</subfield>
<subfield code="c">Universitat Rovira i Virgili. Departament d'Enginyeria Informàtica i Matemàtiques</subfield>
<subfield code="d">2009</subfield>
</datafield>
<datafield ind1="2" ind2=" " tag="710">
<subfield code="a">Universitat Rovira i Virgili. Departament d'Enginyeria Informàtica i Matemàtiques</subfield>
</datafield>
<datafield ind1=" " ind2="4" tag="655">
<subfield code="a">Tesis i dissertacions electròniques</subfield>
</datafield>
<datafield ind1="1" ind2=" " tag="700">
<subfield code="a">Serratosa i Casanelles, Francesc,</subfield>
<subfield code="e">supervisor acadèmic</subfield>
</datafield>
<datafield ind1="1" ind2=" " tag="700">
<subfield code="a">Alquézar Mancho, René,</subfield>
<subfield code="e">supervisor acadèmic</subfield>
</datafield>
<datafield ind1="0" ind2=" " tag="730">
<subfield code="a">TDX</subfield>
</datafield>
<datafield ind1=" " ind2=" " tag="017">
<subfield code="a">DL T.1001-2010</subfield>
<subfield code="b">Biblioteca de Catalunya</subfield>
</datafield>
<datafield ind1=" " ind2=" " tag="520">
<subfield code="a">Recognition and tracking of multiple objects in video sequences is one of the main challenges in computer vision that currently deserves a lot of attention from researchers. Almost all the reported approaches are very application-dependent and there is a lack of a general methodology for dynamic object recognition and tracking that can be instantiated in particular cases. In this thesis, the work is oriented towards the definition and development of such a methodology which integrates object recognition and tracking from a general perspective using a probabilistic framework called PIORT (probabilistic integrated object recognition and tracking framework). It include some modules for which a variety of techniques and methods can be applied. Some of them are well-known but other methods have been designed, implemented and tested during the development of this thesis.<br/><br/>The first step in the proposed framework is a static recognition module that provides class probabilities for each pixel of the image from a set of local features. These probabilities are updated dynamically and supplied to a tracking decision module capable of handling full and partial occlusions. The two specific methods presented use RGB colour features and differ in the classifier implemented: one is a Bayesian method based on maximum likelihood and the other one is based on a neural network. The experimental results obtained have shown that, on one hand, the neural net based approach performs similarly and sometimes better than the Bayesian approach when they are integrated within the tracking framework. And on the other hand, our PIORT methods have achieved better results when compared to other published tracking methods. All these methods have been tested experimentally in several test video sequences taken with still and moving cameras and including full and partial occlusions of the tracked object in indoor and outdoor scenarios in a variety of cases with different levels of task complexity. This allowed the evaluation of the general methodology and the alternative methods that compose these modules.<br/>A Probabilistic Integrated Object Recognition and Tracking Framework for Video Sequences</subfield>
</datafield>
<datafield ind1=" " ind2=" " tag="998">
<subfield code="a">r</subfield>
</datafield>
<datafield ind1=" " ind2=" " tag="040">
<subfield code="a">ES-BaCBU</subfield>
<subfield code="b">cat</subfield>
<subfield code="e">rda</subfield>
<subfield code="c">ES-BaCBU</subfield>
</datafield>
<datafield ind1=" " ind2=" " tag="336">
<subfield code="a">text</subfield>
<subfield code="b">txt</subfield>
<subfield code="2">rdacontent</subfield>
</datafield>
<datafield ind1=" " ind2=" " tag="337">
<subfield code="a">informàtic</subfield>
<subfield code="b">c</subfield>
<subfield code="2">rdamedia</subfield>
</datafield>
<datafield ind1=" " ind2=" " tag="338">
<subfield code="a">recurs en línia</subfield>
<subfield code="b">cr</subfield>
<subfield code="2">rdacarrier</subfield>
</datafield>
</record>
<?xml version="1.0" encoding="UTF-8" ?>
<mets ID=" DSpace_ITEM_10803-8485" OBJID=" hdl:10803/8485" PROFILE="DSpace METS SIP Profile 1.0" TYPE="DSpace ITEM" schemaLocation="http://www.loc.gov/METS/ http://www.loc.gov/standards/mets/mets.xsd">
<metsHdr CREATEDATE="2022-09-27T09:58:48Z">
<agent ROLE="CUSTODIAN" TYPE="ORGANIZATION">
<name>TDX</name>
</agent>
</metsHdr>
<dmdSec ID="DMD_10803_8485">
<mdWrap MDTYPE="MODS">
<xmlData schemaLocation="http://www.loc.gov/mods/v3 http://www.loc.gov/standards/mods/v3/mods-3-1.xsd">
<mods:mods schemaLocation="http://www.loc.gov/mods/v3 http://www.loc.gov/standards/mods/v3/mods-3-1.xsd">
<mods:name>
<mods:role>
<mods:roleTerm type="text">author</mods:roleTerm>
</mods:role>
<mods:namePart>Amezquita Gómez, Nicolás</mods:namePart>
</mods:name>
<mods:name>
<mods:role>
<mods:roleTerm type="text">authoremail</mods:roleTerm>
</mods:role>
<mods:namePart>nicolas.amezquita@gmail.com</mods:namePart>
</mods:name>
<mods:name>
<mods:role>
<mods:roleTerm type="text">authoremailshow</mods:roleTerm>
</mods:role>
<mods:namePart>true</mods:namePart>
</mods:name>
<mods:name>
<mods:role>
<mods:roleTerm type="text">director</mods:roleTerm>
</mods:role>
<mods:namePart>Serratosa i Casanelles, Francesc</mods:namePart>
</mods:name>
<mods:name>
<mods:role>
<mods:roleTerm type="text">codirector</mods:roleTerm>
</mods:role>
<mods:namePart>Alquézar Mancho, René</mods:namePart>
</mods:name>
<mods:extension>
<mods:dateAccessioned encoding="iso8601">2011-04-12T18:00:10Z</mods:dateAccessioned>
</mods:extension>
<mods:extension>
<mods:dateAvailable encoding="iso8601">2010-06-15</mods:dateAvailable>
</mods:extension>
<mods:originInfo>
<mods:dateIssued encoding="iso8601">2009-12-04</mods:dateIssued>
</mods:originInfo>
<mods:identifier type="isbn">9788469333877</mods:identifier>
<mods:identifier type="uri">http://www.tdx.cat/TDX-0615110-140439</mods:identifier>
<mods:abstract>Recognition and tracking of multiple objects in video sequences is one of the main challenges in computer vision that currently deserves a lot of attention from researchers. Almost all the reported approaches are very application-dependent and there is a lack of a general methodology for dynamic object recognition and tracking that can be instantiated in particular cases. In this thesis, the work is oriented towards the definition and development of such a methodology which integrates object recognition and tracking from a general perspective using a probabilistic framework called PIORT (probabilistic integrated object recognition and tracking framework). It include some modules for which a variety of techniques and methods can be applied. Some of them are well-known but other methods have been designed, implemented and tested during the development of this thesis.<br/><br/>The first step in the proposed framework is a static recognition module that provides class probabilities for each pixel of the image from a set of local features. These probabilities are updated dynamically and supplied to a tracking decision module capable of handling full and partial occlusions. The two specific methods presented use RGB colour features and differ in the classifier implemented: one is a Bayesian method based on maximum likelihood and the other one is based on a neural network. The experimental results obtained have shown that, on one hand, the neural net based approach performs similarly and sometimes better than the Bayesian approach when they are integrated within the tracking framework. And on the other hand, our PIORT methods have achieved better results when compared to other published tracking methods. All these methods have been tested experimentally in several test video sequences taken with still and moving cameras and including full and partial occlusions of the tracked object in indoor and outdoor scenarios in a variety of cases with different levels of task complexity. This allowed the evaluation of the general methodology and the alternative methods that compose these modules.<br/>A Probabilistic Integrated Object Recognition and Tracking Framework for Video Sequences</mods:abstract>
<mods:abstract>El reconocimiento y seguimiento de múltiples objetos en secuencias de vídeo es uno de los principales desafíos en visión por ordenador que actualmente merece mucha atención de los investigadores. Casi todos los enfoques reportados son muy dependientes de la aplicación y hay carencia de una metodología general para el reconocimiento y seguimiento dinámico de objetos, que pueda ser instanciada en casos particulares. En esta tesis, el trabajo esta orientado hacia la definición y desarrollo de tal metodología, la cual integra reconocimiento y seguimiento de objetos desde una perspectiva general usando un marco probabilístico de trabajo llamado PIORT (Probabilistic Integrated Object Recognition and Tracking). Este incluye algunos módulos para los que se puede aplicar una variedad de técnicas y métodos. Algunos de ellos son bien conocidos, pero otros métodos han sido diseñados, implementados y probados durante el desarrollo de esta tesis.<br/><br/>El primer paso en el marco de trabajo propuesto es un módulo estático de reconocimiento que provee probabilidades de clase para cada píxel de la imagen desde un conjunto de características locales. Estas probabilidades son actualizadas dinámicamente y suministradas a un modulo decisión de seguimiento capaz de manejar oclusiones parciales o totales. Se presenta dos métodos específicos usando características de color RGB pero diferentes en la implementación del clasificador: uno es un método Bayesiano basado en la máxima verosimilitud y el otro método está basado en una red neuronal. Los resultados experimentales obtenidos han mostrado que, por una parte, el enfoque basado en la red neuronal funciona similarmente y algunas veces mejor que el enfoque bayesiano cuando son integrados dentro del marco probabilístico de seguimiento. Por otra parte, nuestro método PIORT ha alcanzado mejores resultados comparando con otros métodos de seguimiento publicados. Todos estos métodos han sido probados experimentalmente en varias secuencias de vídeo tomadas con cámaras fijas y móviles incluyendo oclusiones parciales y totales del objeto a seguir, en ambientes interiores y exteriores, en diferentes tareas y niveles de complejidad. Esto ha permitido evaluar tanto la metodología general como los métodos alternativos que componen sus módulos.</mods:abstract>
<mods:language>
<mods:languageTerm authority="rfc3066">eng</mods:languageTerm>
</mods:language>
<mods:subject>
<mods:topic>Object recognition</mods:topic>
</mods:subject>
<mods:titleInfo>
<mods:title>A probabilistic integrated object recognition and tracking framework for video sequences</mods:title>
</mods:titleInfo>
<mods:genre>info:eu-repo/semantics/doctoralThesis</mods:genre>
</mods:mods>
</xmlData>
</mdWrap>
</dmdSec>
<amdSec ID="FO_10803_8485_1">
<techMD ID="TECH_O_10803_8485_1">
<mdWrap MDTYPE="PREMIS">
<xmlData schemaLocation="http://www.loc.gov/standards/premis http://www.loc.gov/standards/premis/PREMIS-v1-0.xsd">
<premis:premis>
<premis:object>
<premis:objectIdentifier>
<premis:objectIdentifierType>URL</premis:objectIdentifierType>
<premis:objectIdentifierValue>http://www.tdx.cat/bitstream/10803/8485/1/tesi.pdf</premis:objectIdentifierValue>
</premis:objectIdentifier>
<premis:objectCategory>File</premis:objectCategory>
<premis:objectCharacteristics>
<premis:fixity>
<premis:messageDigestAlgorithm>MD5</premis:messageDigestAlgorithm>
<premis:messageDigest>24f06708f8afce7e9c23113300cb1324</premis:messageDigest>
</premis:fixity>
<premis:size>4993759</premis:size>
<premis:format>
<premis:formatDesignation>
<premis:formatName>application/pdf</premis:formatName>
</premis:formatDesignation>
</premis:format>
</premis:objectCharacteristics>
<premis:originalName>tesi.pdf</premis:originalName>
</premis:object>
</premis:premis>
</xmlData>
</mdWrap>
</techMD>
</amdSec>
<amdSec ID="FT_10803_8485_2">
<techMD ID="TECH_T_10803_8485_2">
<mdWrap MDTYPE="PREMIS">
<xmlData schemaLocation="http://www.loc.gov/standards/premis http://www.loc.gov/standards/premis/PREMIS-v1-0.xsd">
<premis:premis>
<premis:object>
<premis:objectIdentifier>
<premis:objectIdentifierType>URL</premis:objectIdentifierType>
<premis:objectIdentifierValue>http://www.tdx.cat/bitstream/10803/8485/2/tesi.pdf.txt</premis:objectIdentifierValue>
</premis:objectIdentifier>
<premis:objectCategory>File</premis:objectCategory>
<premis:objectCharacteristics>
<premis:fixity>
<premis:messageDigestAlgorithm>MD5</premis:messageDigestAlgorithm>
<premis:messageDigest>2b26a01cf92c66155614c2455011e609</premis:messageDigest>
</premis:fixity>
<premis:size>200716</premis:size>
<premis:format>
<premis:formatDesignation>
<premis:formatName>text/plain</premis:formatName>
</premis:formatDesignation>
</premis:format>
</premis:objectCharacteristics>
<premis:originalName>tesi.pdf.txt</premis:originalName>
</premis:object>
</premis:premis>
</xmlData>
</mdWrap>
</techMD>
</amdSec>
<fileSec>
<fileGrp USE="ORIGINAL">
<file ADMID="FO_10803_8485_1" CHECKSUM="24f06708f8afce7e9c23113300cb1324" CHECKSUMTYPE="MD5" GROUPID="GROUP_BITSTREAM_10803_8485_1" ID="BITSTREAM_ORIGINAL_10803_8485_1" MIMETYPE="application/pdf" SEQ="1" SIZE="4993759">
</file>
</fileGrp>
<fileGrp USE="TEXT">
<file ADMID="FT_10803_8485_2" CHECKSUM="2b26a01cf92c66155614c2455011e609" CHECKSUMTYPE="MD5" GROUPID="GROUP_BITSTREAM_10803_8485_2" ID="BITSTREAM_TEXT_10803_8485_2" MIMETYPE="text/plain" SEQ="2" SIZE="200716">
</file>
</fileGrp>
</fileSec>
<structMap LABEL="DSpace Object" TYPE="LOGICAL">
<div ADMID="DMD_10803_8485" TYPE="DSpace Object Contents">
<div TYPE="DSpace BITSTREAM">
</div>
</div>
</structMap>
</mets>
<?xml version="1.0" encoding="UTF-8" ?>
<mods:mods schemaLocation="http://www.loc.gov/mods/v3 http://www.loc.gov/standards/mods/v3/mods-3-1.xsd">
<mods:name>
<mods:namePart>Amezquita Gómez, Nicolás</mods:namePart>
</mods:name>
<mods:extension>
<mods:dateAvailable encoding="iso8601">2011-04-12T18:00:10Z</mods:dateAvailable>
</mods:extension>
<mods:extension>
<mods:dateAccessioned encoding="iso8601">2010-06-15</mods:dateAccessioned>
</mods:extension>
<mods:originInfo>
<mods:dateIssued encoding="iso8601">2009-12-04</mods:dateIssued>
</mods:originInfo>
<mods:identifier type="isbn">9788469333877</mods:identifier>
<mods:identifier type="uri">http://www.tdx.cat/TDX-0615110-140439</mods:identifier>
<mods:identifier type="uri">http://hdl.handle.net/10803/8485</mods:identifier>
<mods:abstract>Recognition and tracking of multiple objects in video sequences is one of the main challenges in computer vision that currently deserves a lot of attention from researchers. Almost all the reported approaches are very application-dependent and there is a lack of a general methodology for dynamic object recognition and tracking that can be instantiated in particular cases. In this thesis, the work is oriented towards the definition and development of such a methodology which integrates object recognition and tracking from a general perspective using a probabilistic framework called PIORT (probabilistic integrated object recognition and tracking framework). It include some modules for which a variety of techniques and methods can be applied. Some of them are well-known but other methods have been designed, implemented and tested during the development of this thesis.<br/><br/>The first step in the proposed framework is a static recognition module that provides class probabilities for each pixel of the image from a set of local features. These probabilities are updated dynamically and supplied to a tracking decision module capable of handling full and partial occlusions. The two specific methods presented use RGB colour features and differ in the classifier implemented: one is a Bayesian method based on maximum likelihood and the other one is based on a neural network. The experimental results obtained have shown that, on one hand, the neural net based approach performs similarly and sometimes better than the Bayesian approach when they are integrated within the tracking framework. And on the other hand, our PIORT methods have achieved better results when compared to other published tracking methods. All these methods have been tested experimentally in several test video sequences taken with still and moving cameras and including full and partial occlusions of the tracked object in indoor and outdoor scenarios in a variety of cases with different levels of task complexity. This allowed the evaluation of the general methodology and the alternative methods that compose these modules.<br/>A Probabilistic Integrated Object Recognition and Tracking Framework for Video Sequences</mods:abstract>
<mods:abstract>El reconocimiento y seguimiento de múltiples objetos en secuencias de vídeo es uno de los principales desafíos en visión por ordenador que actualmente merece mucha atención de los investigadores. Casi todos los enfoques reportados son muy dependientes de la aplicación y hay carencia de una metodología general para el reconocimiento y seguimiento dinámico de objetos, que pueda ser instanciada en casos particulares. En esta tesis, el trabajo esta orientado hacia la definición y desarrollo de tal metodología, la cual integra reconocimiento y seguimiento de objetos desde una perspectiva general usando un marco probabilístico de trabajo llamado PIORT (Probabilistic Integrated Object Recognition and Tracking). Este incluye algunos módulos para los que se puede aplicar una variedad de técnicas y métodos. Algunos de ellos son bien conocidos, pero otros métodos han sido diseñados, implementados y probados durante el desarrollo de esta tesis.<br/><br/>El primer paso en el marco de trabajo propuesto es un módulo estático de reconocimiento que provee probabilidades de clase para cada píxel de la imagen desde un conjunto de características locales. Estas probabilidades son actualizadas dinámicamente y suministradas a un modulo decisión de seguimiento capaz de manejar oclusiones parciales o totales. Se presenta dos métodos específicos usando características de color RGB pero diferentes en la implementación del clasificador: uno es un método Bayesiano basado en la máxima verosimilitud y el otro método está basado en una red neuronal. Los resultados experimentales obtenidos han mostrado que, por una parte, el enfoque basado en la red neuronal funciona similarmente y algunas veces mejor que el enfoque bayesiano cuando son integrados dentro del marco probabilístico de seguimiento. Por otra parte, nuestro método PIORT ha alcanzado mejores resultados comparando con otros métodos de seguimiento publicados. Todos estos métodos han sido probados experimentalmente en varias secuencias de vídeo tomadas con cámaras fijas y móviles incluyendo oclusiones parciales y totales del objeto a seguir, en ambientes interiores y exteriores, en diferentes tareas y niveles de complejidad. Esto ha permitido evaluar tanto la metodología general como los métodos alternativos que componen sus módulos.</mods:abstract>
<mods:language>
<mods:languageTerm>eng</mods:languageTerm>
</mods:language>
<mods:accessCondition type="useAndReproduction">ADVERTIMENT. L'accés als continguts d'aquesta tesi doctoral i la seva utilització ha de respectar els drets de la persona autora. Pot ser utilitzada per a consulta o estudi personal, així com en activitats o materials d'investigació i docència en els termes establerts a l'art. 32 del Text Refós de la Llei de Propietat Intel·lectual (RDL 1/1996). Per altres utilitzacions es requereix l'autorització prèvia i expressa de la persona autora. En qualsevol cas, en la utilització dels seus continguts caldrà indicar de forma clara el nom i cognoms de la persona autora i el títol de la tesi doctoral. No s'autoritza la seva reproducció o altres formes d'explotació efectuades amb finalitats de lucre ni la seva comunicació pública des d'un lloc aliè al servei TDX. Tampoc s'autoritza la presentació del seu contingut en una finestra o marc aliè a TDX (framing). Aquesta reserva de drets afecta tant als continguts de la tesi com als seus resums i índexs.</mods:accessCondition>
<mods:accessCondition type="useAndReproduction">info:eu-repo/semantics/openAccess</mods:accessCondition>
<mods:subject>
<mods:topic>Object recognition</mods:topic>
</mods:subject>
<mods:titleInfo>
<mods:title>A probabilistic integrated object recognition and tracking framework for video sequences</mods:title>
</mods:titleInfo>
<mods:genre>info:eu-repo/semantics/doctoralThesis</mods:genre>
<mods:genre>info:eu-repo/semantics/publishedVersion</mods:genre>
</mods:mods>
<?xml version="1.0" encoding="UTF-8" ?>
<atom:entry schemaLocation="http://www.w3.org/2005/Atom http://www.kbcafe.com/rss/atom.xsd.xml">
<atom:id>http://www.tdx.cat/TDX-0615110-140439/ore.xml</atom:id>
<atom:published>2010-06-15</atom:published>
<atom:updated>2011-04-12T18:00:10Z</atom:updated>
<atom:source>
<atom:generator>TDX</atom:generator>
</atom:source>
<atom:title>A probabilistic integrated object recognition and tracking framework for video sequences</atom:title>
<atom:author>
<atom:name>Amezquita Gómez, Nicolás</atom:name>
</atom:author>
<oreatom:triples>
<rdf:Description about="http://www.tdx.cat/TDX-0615110-140439/ore.xml#atom">
<dcterms:modified>2011-04-12T18:00:10Z</dcterms:modified>
</rdf:Description>
<rdf:Description about="http://www.tdx.cat/bitstream/10803/8485/3/tesi.pdf.xml">
<dcterms:description>MEDIA_DOCUMENT</dcterms:description>
</rdf:Description>
<rdf:Description about="http://www.tdx.cat/bitstream/10803/8485/1/tesi.pdf">
<dcterms:description>ORIGINAL</dcterms:description>
</rdf:Description>
<rdf:Description about="http://www.tdx.cat/bitstream/10803/8485/2/tesi.pdf.txt">
<dcterms:description>TEXT</dcterms:description>
</rdf:Description>
</oreatom:triples>
</atom:entry>
<?xml version="1.0" encoding="UTF-8" ?>
<qdc:qualifieddc schemaLocation="http://purl.org/dc/elements/1.1/ http://dublincore.org/schemas/xmls/qdc/2006/01/06/dc.xsd http://purl.org/dc/terms/ http://dublincore.org/schemas/xmls/qdc/2006/01/06/dcterms.xsd http://dspace.org/qualifieddc/ http://www.ukoln.ac.uk/metadata/dcmi/xmlschema/qualifieddc.xsd">
<dc:title>A probabilistic integrated object recognition and tracking framework for video sequences</dc:title>
<dc:creator>Amezquita Gómez, Nicolás</dc:creator>
<dc:contributor>Serratosa i Casanelles, Francesc</dc:contributor>
<dc:contributor>Alquézar Mancho, René</dc:contributor>
<dc:subject>Object recognition</dc:subject>
<dcterms:abstract>Recognition and tracking of multiple objects in video sequences is one of the main challenges in computer vision that currently deserves a lot of attention from researchers. Almost all the reported approaches are very application-dependent and there is a lack of a general methodology for dynamic object recognition and tracking that can be instantiated in particular cases. In this thesis, the work is oriented towards the definition and development of such a methodology which integrates object recognition and tracking from a general perspective using a probabilistic framework called PIORT (probabilistic integrated object recognition and tracking framework). It include some modules for which a variety of techniques and methods can be applied. Some of them are well-known but other methods have been designed, implemented and tested during the development of this thesis.<br/><br/>The first step in the proposed framework is a static recognition module that provides class probabilities for each pixel of the image from a set of local features. These probabilities are updated dynamically and supplied to a tracking decision module capable of handling full and partial occlusions. The two specific methods presented use RGB colour features and differ in the classifier implemented: one is a Bayesian method based on maximum likelihood and the other one is based on a neural network. The experimental results obtained have shown that, on one hand, the neural net based approach performs similarly and sometimes better than the Bayesian approach when they are integrated within the tracking framework. And on the other hand, our PIORT methods have achieved better results when compared to other published tracking methods. All these methods have been tested experimentally in several test video sequences taken with still and moving cameras and including full and partial occlusions of the tracked object in indoor and outdoor scenarios in a variety of cases with different levels of task complexity. This allowed the evaluation of the general methodology and the alternative methods that compose these modules.<br/>A Probabilistic Integrated Object Recognition and Tracking Framework for Video Sequences</dcterms:abstract>
<dcterms:abstract>El reconocimiento y seguimiento de múltiples objetos en secuencias de vídeo es uno de los principales desafíos en visión por ordenador que actualmente merece mucha atención de los investigadores. Casi todos los enfoques reportados son muy dependientes de la aplicación y hay carencia de una metodología general para el reconocimiento y seguimiento dinámico de objetos, que pueda ser instanciada en casos particulares. En esta tesis, el trabajo esta orientado hacia la definición y desarrollo de tal metodología, la cual integra reconocimiento y seguimiento de objetos desde una perspectiva general usando un marco probabilístico de trabajo llamado PIORT (Probabilistic Integrated Object Recognition and Tracking). Este incluye algunos módulos para los que se puede aplicar una variedad de técnicas y métodos. Algunos de ellos son bien conocidos, pero otros métodos han sido diseñados, implementados y probados durante el desarrollo de esta tesis.<br/><br/>El primer paso en el marco de trabajo propuesto es un módulo estático de reconocimiento que provee probabilidades de clase para cada píxel de la imagen desde un conjunto de características locales. Estas probabilidades son actualizadas dinámicamente y suministradas a un modulo decisión de seguimiento capaz de manejar oclusiones parciales o totales. Se presenta dos métodos específicos usando características de color RGB pero diferentes en la implementación del clasificador: uno es un método Bayesiano basado en la máxima verosimilitud y el otro método está basado en una red neuronal. Los resultados experimentales obtenidos han mostrado que, por una parte, el enfoque basado en la red neuronal funciona similarmente y algunas veces mejor que el enfoque bayesiano cuando son integrados dentro del marco probabilístico de seguimiento. Por otra parte, nuestro método PIORT ha alcanzado mejores resultados comparando con otros métodos de seguimiento publicados. Todos estos métodos han sido probados experimentalmente en varias secuencias de vídeo tomadas con cámaras fijas y móviles incluyendo oclusiones parciales y totales del objeto a seguir, en ambientes interiores y exteriores, en diferentes tareas y niveles de complejidad. Esto ha permitido evaluar tanto la metodología general como los métodos alternativos que componen sus módulos.</dcterms:abstract>
<dcterms:dateAccepted>2010-06-15</dcterms:dateAccepted>
<dcterms:available>2010-06-15</dcterms:available>
<dcterms:created>2010-06-15</dcterms:created>
<dcterms:issued>2009-12-04</dcterms:issued>
<dc:type>info:eu-repo/semantics/doctoralThesis</dc:type>
<dc:type>info:eu-repo/semantics/publishedVersion</dc:type>
<dc:identifier>9788469333877</dc:identifier>
<dc:identifier>http://www.tdx.cat/TDX-0615110-140439</dc:identifier>
<dc:identifier>http://hdl.handle.net/10803/8485</dc:identifier>
<dc:language>eng</dc:language>
<dc:rights>ADVERTIMENT. L'accés als continguts d'aquesta tesi doctoral i la seva utilització ha de respectar els drets de la persona autora. Pot ser utilitzada per a consulta o estudi personal, així com en activitats o materials d'investigació i docència en els termes establerts a l'art. 32 del Text Refós de la Llei de Propietat Intel·lectual (RDL 1/1996). Per altres utilitzacions es requereix l'autorització prèvia i expressa de la persona autora. En qualsevol cas, en la utilització dels seus continguts caldrà indicar de forma clara el nom i cognoms de la persona autora i el títol de la tesi doctoral. No s'autoritza la seva reproducció o altres formes d'explotació efectuades amb finalitats de lucre ni la seva comunicació pública des d'un lloc aliè al servei TDX. Tampoc s'autoritza la presentació del seu contingut en una finestra o marc aliè a TDX (framing). Aquesta reserva de drets afecta tant als continguts de la tesi com als seus resums i índexs.</dc:rights>
<dc:rights>info:eu-repo/semantics/openAccess</dc:rights>
<dc:publisher>Universitat Rovira i Virgili</dc:publisher>
<dc:source>TDX (Tesis Doctorals en Xarxa)</dc:source>
</qdc:qualifieddc>
<?xml version="1.0" encoding="UTF-8" ?>
<rdf:RDF schemaLocation="http://www.openarchives.org/OAI/2.0/rdf/ http://www.openarchives.org/OAI/2.0/rdf.xsd">
<ow:Publication about="oai:www.tdx.cat:10803/8485">
<dc:title>A probabilistic integrated object recognition and tracking framework for video sequences</dc:title>
<dc:creator>Amezquita Gómez, Nicolás</dc:creator>
<dc:contributor>nicolas.amezquita@gmail.com</dc:contributor>
<dc:contributor>true</dc:contributor>
<dc:contributor>Serratosa i Casanelles, Francesc</dc:contributor>
<dc:contributor>Alquézar Mancho, René</dc:contributor>
<dc:subject>Object recognition</dc:subject>
<dc:description>Recognition and tracking of multiple objects in video sequences is one of the main challenges in computer vision that currently deserves a lot of attention from researchers. Almost all the reported approaches are very application-dependent and there is a lack of a general methodology for dynamic object recognition and tracking that can be instantiated in particular cases. In this thesis, the work is oriented towards the definition and development of such a methodology which integrates object recognition and tracking from a general perspective using a probabilistic framework called PIORT (probabilistic integrated object recognition and tracking framework). It include some modules for which a variety of techniques and methods can be applied. Some of them are well-known but other methods have been designed, implemented and tested during the development of this thesis.<br/><br/>The first step in the proposed framework is a static recognition module that provides class probabilities for each pixel of the image from a set of local features. These probabilities are updated dynamically and supplied to a tracking decision module capable of handling full and partial occlusions. The two specific methods presented use RGB colour features and differ in the classifier implemented: one is a Bayesian method based on maximum likelihood and the other one is based on a neural network. The experimental results obtained have shown that, on one hand, the neural net based approach performs similarly and sometimes better than the Bayesian approach when they are integrated within the tracking framework. And on the other hand, our PIORT methods have achieved better results when compared to other published tracking methods. All these methods have been tested experimentally in several test video sequences taken with still and moving cameras and including full and partial occlusions of the tracked object in indoor and outdoor scenarios in a variety of cases with different levels of task complexity. This allowed the evaluation of the general methodology and the alternative methods that compose these modules.<br/>A Probabilistic Integrated Object Recognition and Tracking Framework for Video Sequences</dc:description>
<dc:description>El reconocimiento y seguimiento de múltiples objetos en secuencias de vídeo es uno de los principales desafíos en visión por ordenador que actualmente merece mucha atención de los investigadores. Casi todos los enfoques reportados son muy dependientes de la aplicación y hay carencia de una metodología general para el reconocimiento y seguimiento dinámico de objetos, que pueda ser instanciada en casos particulares. En esta tesis, el trabajo esta orientado hacia la definición y desarrollo de tal metodología, la cual integra reconocimiento y seguimiento de objetos desde una perspectiva general usando un marco probabilístico de trabajo llamado PIORT (Probabilistic Integrated Object Recognition and Tracking). Este incluye algunos módulos para los que se puede aplicar una variedad de técnicas y métodos. Algunos de ellos son bien conocidos, pero otros métodos han sido diseñados, implementados y probados durante el desarrollo de esta tesis.<br/><br/>El primer paso en el marco de trabajo propuesto es un módulo estático de reconocimiento que provee probabilidades de clase para cada píxel de la imagen desde un conjunto de características locales. Estas probabilidades son actualizadas dinámicamente y suministradas a un modulo decisión de seguimiento capaz de manejar oclusiones parciales o totales. Se presenta dos métodos específicos usando características de color RGB pero diferentes en la implementación del clasificador: uno es un método Bayesiano basado en la máxima verosimilitud y el otro método está basado en una red neuronal. Los resultados experimentales obtenidos han mostrado que, por una parte, el enfoque basado en la red neuronal funciona similarmente y algunas veces mejor que el enfoque bayesiano cuando son integrados dentro del marco probabilístico de seguimiento. Por otra parte, nuestro método PIORT ha alcanzado mejores resultados comparando con otros métodos de seguimiento publicados. Todos estos métodos han sido probados experimentalmente en varias secuencias de vídeo tomadas con cámaras fijas y móviles incluyendo oclusiones parciales y totales del objeto a seguir, en ambientes interiores y exteriores, en diferentes tareas y niveles de complejidad. Esto ha permitido evaluar tanto la metodología general como los métodos alternativos que componen sus módulos.</dc:description>
<dc:date>2011-04-12T18:00:10Z</dc:date>
<dc:date>2010-06-15</dc:date>
<dc:date>2009-12-04</dc:date>
<dc:date>2010-06-15</dc:date>
<dc:type>info:eu-repo/semantics/doctoralThesis</dc:type>
<dc:type>info:eu-repo/semantics/publishedVersion</dc:type>
<dc:identifier>9788469333877</dc:identifier>
<dc:identifier>http://www.tdx.cat/TDX-0615110-140439</dc:identifier>
<dc:identifier>http://hdl.handle.net/10803/8485</dc:identifier>
<dc:language>eng</dc:language>
<dc:rights>ADVERTIMENT. L'accés als continguts d'aquesta tesi doctoral i la seva utilització ha de respectar els drets de la persona autora. Pot ser utilitzada per a consulta o estudi personal, així com en activitats o materials d'investigació i docència en els termes establerts a l'art. 32 del Text Refós de la Llei de Propietat Intel·lectual (RDL 1/1996). Per altres utilitzacions es requereix l'autorització prèvia i expressa de la persona autora. En qualsevol cas, en la utilització dels seus continguts caldrà indicar de forma clara el nom i cognoms de la persona autora i el títol de la tesi doctoral. No s'autoritza la seva reproducció o altres formes d'explotació efectuades amb finalitats de lucre ni la seva comunicació pública des d'un lloc aliè al servei TDX. Tampoc s'autoritza la presentació del seu contingut en una finestra o marc aliè a TDX (framing). Aquesta reserva de drets afecta tant als continguts de la tesi com als seus resums i índexs.</dc:rights>
<dc:rights>info:eu-repo/semantics/openAccess</dc:rights>
<dc:publisher>Universitat Rovira i Virgili</dc:publisher>
<dc:source>TDX (Tesis Doctorals en Xarxa)</dc:source>
</ow:Publication>
</rdf:RDF>
<?xml version="1.0" encoding="UTF-8" ?>
<uketd_dc:uketddc schemaLocation="http://naca.central.cranfield.ac.uk/ethos-oai/2.0/ http://naca.central.cranfield.ac.uk/ethos-oai/2.0/uketd_dc.xsd">
<dc:title>A probabilistic integrated object recognition and tracking framework for video sequences</dc:title>
<dc:creator>Amezquita Gómez, Nicolás</dc:creator>
<dcterms:abstract>Recognition and tracking of multiple objects in video sequences is one of the main challenges in computer vision that currently deserves a lot of attention from researchers. Almost all the reported approaches are very application-dependent and there is a lack of a general methodology for dynamic object recognition and tracking that can be instantiated in particular cases. In this thesis, the work is oriented towards the definition and development of such a methodology which integrates object recognition and tracking from a general perspective using a probabilistic framework called PIORT (probabilistic integrated object recognition and tracking framework). It include some modules for which a variety of techniques and methods can be applied. Some of them are well-known but other methods have been designed, implemented and tested during the development of this thesis.<br/><br/>The first step in the proposed framework is a static recognition module that provides class probabilities for each pixel of the image from a set of local features. These probabilities are updated dynamically and supplied to a tracking decision module capable of handling full and partial occlusions. The two specific methods presented use RGB colour features and differ in the classifier implemented: one is a Bayesian method based on maximum likelihood and the other one is based on a neural network. The experimental results obtained have shown that, on one hand, the neural net based approach performs similarly and sometimes better than the Bayesian approach when they are integrated within the tracking framework. And on the other hand, our PIORT methods have achieved better results when compared to other published tracking methods. All these methods have been tested experimentally in several test video sequences taken with still and moving cameras and including full and partial occlusions of the tracked object in indoor and outdoor scenarios in a variety of cases with different levels of task complexity. This allowed the evaluation of the general methodology and the alternative methods that compose these modules.<br/>A Probabilistic Integrated Object Recognition and Tracking Framework for Video Sequences</dcterms:abstract>
<dcterms:abstract>El reconocimiento y seguimiento de múltiples objetos en secuencias de vídeo es uno de los principales desafíos en visión por ordenador que actualmente merece mucha atención de los investigadores. Casi todos los enfoques reportados son muy dependientes de la aplicación y hay carencia de una metodología general para el reconocimiento y seguimiento dinámico de objetos, que pueda ser instanciada en casos particulares. En esta tesis, el trabajo esta orientado hacia la definición y desarrollo de tal metodología, la cual integra reconocimiento y seguimiento de objetos desde una perspectiva general usando un marco probabilístico de trabajo llamado PIORT (Probabilistic Integrated Object Recognition and Tracking). Este incluye algunos módulos para los que se puede aplicar una variedad de técnicas y métodos. Algunos de ellos son bien conocidos, pero otros métodos han sido diseñados, implementados y probados durante el desarrollo de esta tesis.<br/><br/>El primer paso en el marco de trabajo propuesto es un módulo estático de reconocimiento que provee probabilidades de clase para cada píxel de la imagen desde un conjunto de características locales. Estas probabilidades son actualizadas dinámicamente y suministradas a un modulo decisión de seguimiento capaz de manejar oclusiones parciales o totales. Se presenta dos métodos específicos usando características de color RGB pero diferentes en la implementación del clasificador: uno es un método Bayesiano basado en la máxima verosimilitud y el otro método está basado en una red neuronal. Los resultados experimentales obtenidos han mostrado que, por una parte, el enfoque basado en la red neuronal funciona similarmente y algunas veces mejor que el enfoque bayesiano cuando son integrados dentro del marco probabilístico de seguimiento. Por otra parte, nuestro método PIORT ha alcanzado mejores resultados comparando con otros métodos de seguimiento publicados. Todos estos métodos han sido probados experimentalmente en varias secuencias de vídeo tomadas con cámaras fijas y móviles incluyendo oclusiones parciales y totales del objeto a seguir, en ambientes interiores y exteriores, en diferentes tareas y niveles de complejidad. Esto ha permitido evaluar tanto la metodología general como los métodos alternativos que componen sus módulos.</dcterms:abstract>
<uketdterms:institution>Universitat Rovira i Virgili</uketdterms:institution>
<dcterms:issued>2009-12-04</dcterms:issued>
<dc:type>info:eu-repo/semantics/doctoralThesis</dc:type>
<dc:type>info:eu-repo/semantics/publishedVersion</dc:type>
<dc:language type="dcterms:ISO639-2">eng</dc:language>
<dcterms:isReferencedBy>http://www.tdx.cat/TDX-0615110-140439</dcterms:isReferencedBy>
<dcterms:isReferencedBy>http://hdl.handle.net/10803/8485</dcterms:isReferencedBy>
<dc:identifier type="dcterms:URI">http://www.tdx.cat/bitstream/10803/8485/1/tesi.pdf</dc:identifier>
<uketdterms:checksum type="uketdterms:MD5">24f06708f8afce7e9c23113300cb1324</uketdterms:checksum>
<dcterms:hasFormat>http://www.tdx.cat/bitstream/10803/8485/2/tesi.pdf.txt</dcterms:hasFormat>
<uketdterms:checksum type="uketdterms:MD5">2b26a01cf92c66155614c2455011e609</uketdterms:checksum>
<dc:subject>Object recognition</dc:subject>
<dc:identifier>9788469333877</dc:identifier>
</uketd_dc:uketddc>
<?xml version="1.0" encoding="UTF-8" ?>
<metadata schemaLocation="http://www.lyncode.com/xoai http://www.lyncode.com/xsd/xoai.xsd">
<element name="dc">
<element name="contributor">
<element name="none">
<field name="value">Universitat Rovira i Virgili. Departament d'Enginyeria Informàtica i Matemàtiques</field>
</element>
<element name="author">
<element name="none">
<field name="value">Amezquita Gómez, Nicolás</field>
</element>
</element>
<element name="authoremail">
<element name="none">
<field name="value">nicolas.amezquita@gmail.com</field>
</element>
</element>
<element name="authoremailshow">
<element name="none">
<field name="value">true</field>
</element>
</element>
<element name="director">
<element name="none">
<field name="value">Serratosa i Casanelles, Francesc</field>
</element>
</element>
<element name="codirector">
<element name="none">
<field name="value">Alquézar Mancho, René</field>
</element>
</element>
</element>
<element name="date">
<element name="accessioned">
<element name="none">
<field name="value">2011-04-12T18:00:10Z</field>
</element>
</element>
<element name="available">
<element name="none">
<field name="value">2010-06-15</field>
</element>
</element>
<element name="issued">
<element name="none">
<field name="value">2009-12-04</field>
</element>
</element>
<element name="submitted">
<element name="none">
<field name="value">2010-06-15</field>
</element>
</element>
</element>
<element name="identifier">
<element name="none">
<field name="value">T.1001-2010</field>
</element>
<element name="isbn">
<element name="none">
<field name="value">9788469333877</field>
</element>
</element>
<element name="uri">
<element name="none">
<field name="value">http://www.tdx.cat/TDX-0615110-140439</field>
<field name="value">http://hdl.handle.net/10803/8485</field>
</element>
</element>
</element>
<element name="description">
<element name="abstract">
<element name="eng">
<field name="value">Recognition and tracking of multiple objects in video sequences is one of the main challenges in computer vision that currently deserves a lot of attention from researchers. Almost all the reported approaches are very application-dependent and there is a lack of a general methodology for dynamic object recognition and tracking that can be instantiated in particular cases. In this thesis, the work is oriented towards the definition and development of such a methodology which integrates object recognition and tracking from a general perspective using a probabilistic framework called PIORT (probabilistic integrated object recognition and tracking framework). It include some modules for which a variety of techniques and methods can be applied. Some of them are well-known but other methods have been designed, implemented and tested during the development of this thesis.<br/><br/>The first step in the proposed framework is a static recognition module that provides class probabilities for each pixel of the image from a set of local features. These probabilities are updated dynamically and supplied to a tracking decision module capable of handling full and partial occlusions. The two specific methods presented use RGB colour features and differ in the classifier implemented: one is a Bayesian method based on maximum likelihood and the other one is based on a neural network. The experimental results obtained have shown that, on one hand, the neural net based approach performs similarly and sometimes better than the Bayesian approach when they are integrated within the tracking framework. And on the other hand, our PIORT methods have achieved better results when compared to other published tracking methods. All these methods have been tested experimentally in several test video sequences taken with still and moving cameras and including full and partial occlusions of the tracked object in indoor and outdoor scenarios in a variety of cases with different levels of task complexity. This allowed the evaluation of the general methodology and the alternative methods that compose these modules.<br/>A Probabilistic Integrated Object Recognition and Tracking Framework for Video Sequences</field>
</element>
<element name="spa">
<field name="value">El reconocimiento y seguimiento de múltiples objetos en secuencias de vídeo es uno de los principales desafíos en visión por ordenador que actualmente merece mucha atención de los investigadores. Casi todos los enfoques reportados son muy dependientes de la aplicación y hay carencia de una metodología general para el reconocimiento y seguimiento dinámico de objetos, que pueda ser instanciada en casos particulares. En esta tesis, el trabajo esta orientado hacia la definición y desarrollo de tal metodología, la cual integra reconocimiento y seguimiento de objetos desde una perspectiva general usando un marco probabilístico de trabajo llamado PIORT (Probabilistic Integrated Object Recognition and Tracking). Este incluye algunos módulos para los que se puede aplicar una variedad de técnicas y métodos. Algunos de ellos son bien conocidos, pero otros métodos han sido diseñados, implementados y probados durante el desarrollo de esta tesis.<br/><br/>El primer paso en el marco de trabajo propuesto es un módulo estático de reconocimiento que provee probabilidades de clase para cada píxel de la imagen desde un conjunto de características locales. Estas probabilidades son actualizadas dinámicamente y suministradas a un modulo decisión de seguimiento capaz de manejar oclusiones parciales o totales. Se presenta dos métodos específicos usando características de color RGB pero diferentes en la implementación del clasificador: uno es un método Bayesiano basado en la máxima verosimilitud y el otro método está basado en una red neuronal. Los resultados experimentales obtenidos han mostrado que, por una parte, el enfoque basado en la red neuronal funciona similarmente y algunas veces mejor que el enfoque bayesiano cuando son integrados dentro del marco probabilístico de seguimiento. Por otra parte, nuestro método PIORT ha alcanzado mejores resultados comparando con otros métodos de seguimiento publicados. Todos estos métodos han sido probados experimentalmente en varias secuencias de vídeo tomadas con cámaras fijas y móviles incluyendo oclusiones parciales y totales del objeto a seguir, en ambientes interiores y exteriores, en diferentes tareas y niveles de complejidad. Esto ha permitido evaluar tanto la metodología general como los métodos alternativos que componen sus módulos.</field>
</element>
</element>
</element>
<element name="format">
<element name="mimetype">
<element name="none">
<field name="value">application/pdf</field>
</element>
</element>
</element>
<element name="language">
<element name="iso">
<element name="none">
<field name="value">eng</field>
</element>
</element>
</element>
<element name="publisher">
<element name="none">
<field name="value">Universitat Rovira i Virgili</field>
</element>
</element>
<element name="rights">
<element name="license">
<element name="none">
<field name="value">ADVERTIMENT. L'accés als continguts d'aquesta tesi doctoral i la seva utilització ha de respectar els drets de la persona autora. Pot ser utilitzada per a consulta o estudi personal, així com en activitats o materials d'investigació i docència en els termes establerts a l'art. 32 del Text Refós de la Llei de Propietat Intel·lectual (RDL 1/1996). Per altres utilitzacions es requereix l'autorització prèvia i expressa de la persona autora. En qualsevol cas, en la utilització dels seus continguts caldrà indicar de forma clara el nom i cognoms de la persona autora i el títol de la tesi doctoral. No s'autoritza la seva reproducció o altres formes d'explotació efectuades amb finalitats de lucre ni la seva comunicació pública des d'un lloc aliè al servei TDX. Tampoc s'autoritza la presentació del seu contingut en una finestra o marc aliè a TDX (framing). Aquesta reserva de drets afecta tant als continguts de la tesi com als seus resums i índexs.</field>
</element>
</element>
<element name="accessLevel">
<element name="cat">
<field name="value">info:eu-repo/semantics/openAccess</field>
</element>
</element>
</element>
<element name="source">
<element name="none">
<field name="value">TDX (Tesis Doctorals en Xarxa)</field>
</element>
</element>
<element name="subject">
<element name="none">
<field name="value">Object recognition</field>
</element>
<element name="udc">
<element name="cat">
<field name="value">004</field>
</element>
</element>
</element>
<element name="title">
<element name="none">
<field name="value">A probabilistic integrated object recognition and tracking framework for video sequences</field>
</element>
</element>
<element name="type">
<element name="none">
<field name="value">info:eu-repo/semantics/doctoralThesis</field>
<field name="value">info:eu-repo/semantics/publishedVersion</field>
</element>
</element>
</element>
<element name="bundles">
<element name="bundle">
<field name="name">MEDIA_DOCUMENT</field>
<element name="bitstreams">
<element name="bitstream">
<field name="name">tesi.pdf.xml</field>
<field name="originalName">tesi.pdf.xml</field>
<field name="description">Document Consulta</field>
<field name="format">text/xml</field>
<field name="size">105</field>
<field name="url">http://www.tdx.cat/bitstream/10803/8485/3/tesi.pdf.xml</field>
<field name="checksum">bc023833ceb61f68b01bd1979f14e6e6</field>
<field name="checksumAlgorithm">MD5</field>
<field name="sid">3</field>
</element>
</element>
</element>
<element name="bundle">
<field name="name">ORIGINAL</field>
<element name="bitstreams">
<element name="bitstream">
<field name="name">tesi.pdf</field>
<field name="format">application/pdf</field>
<field name="size">4993759</field>
<field name="url">http://www.tdx.cat/bitstream/10803/8485/1/tesi.pdf</field>
<field name="checksum">24f06708f8afce7e9c23113300cb1324</field>
<field name="checksumAlgorithm">MD5</field>
<field name="sid">1</field>
</element>
</element>
</element>
<element name="bundle">
<field name="name">TEXT</field>
<element name="bitstreams">
<element name="bitstream">
<field name="name">tesi.pdf.txt</field>
<field name="originalName">tesi.pdf.txt</field>
<field name="description">Extracted Text</field>
<field name="format">text/plain</field>
<field name="size">200716</field>
<field name="url">http://www.tdx.cat/bitstream/10803/8485/2/tesi.pdf.txt</field>
<field name="checksum">2b26a01cf92c66155614c2455011e609</field>
<field name="checksumAlgorithm">MD5</field>
<field name="sid">2</field>
</element>
</element>
</element>
</element>
<element name="others">
<field name="handle">10803/8485</field>
<field name="identifier">oai:www.tdx.cat:10803/8485</field>
<field name="lastModifyDate">2017-09-25 20:40:28.495</field>
</element>
<element name="repository">
<field name="name">TDX</field>
<field name="mail">aco@csuc.cat</field>
</element>
</metadata>