<?xml version="1.0" encoding="UTF-8" ?>
<oai_dc:dc schemaLocation="http://www.openarchives.org/OAI/2.0/oai_dc/ http://www.openarchives.org/OAI/2.0/oai_dc.xsd">
<dc:title>3,3′,4,5′-Tetramethoxy-trans-stilbene improves insulin resistance by activating the IRS/PI3K/Akt pathway and inhibiting oxidative stress</dc:title>
<dc:creator>Tan, Yi</dc:creator>
<dc:creator>Miao, Lingchao</dc:creator>
<dc:creator>Xiao, Jianbo</dc:creator>
<dc:creator>Cheang, Wai San</dc:creator>
<dc:subject>2302.14 Glúcidos</dc:subject>
<dc:subject>2302 Bioquímica</dc:subject>
<dc:subject>3309.03 Antioxidantes en Los Alimentos</dc:subject>
<dc:description>The potential anti-diabetic effect of resveratrol derivative, 3,3′,4,5′-tetramethoxy-trans-stilbene (3,3′,4,5′-TMS) and its underlying mechanism in high glucose (HG) and dexamethasone (DXMS)-stimulated insulin-resistant HepG2 cells (IR-HepG2) were investigated. 3,3′,4,5′-TMS did not reduce the cell viability of IR-HepG2 cells at the concentrations of 0.5–10 µM. 3,3′,4,5′-TMS increased the potential of glucose consumption and glycogen synthesis in a concentration-dependent manner in IR-HepG2 cells. 3,3′,4,5′-TMS ameliorated insulin resistance by enhancing the phosphorylation of glycogen synthase kinase 3 beta (GSK3β), inhibiting phosphorylation of insulin receptor substrate-1 (IRS-1), and activating phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) pathway in IR-HepG2 cells. Furthermore, 3,3′,4,5′-TMS significantly suppressed levels of reactive oxygen species (ROS) with up-regulation of nuclear factor erythroid 2-related factor 2 (Nrf2) expression. To conclude, the beneficial effect of 3,3′,4,5′-TMS against insulin resistance to increase glucose consumption and glycogen synthesis was mediated through activation of IRS/PI3K/Akt signaling pathways in the IR-HepG2 cells, accomplished with anti-oxidative activity through up-regulation of Nrf2.</dc:description>
<dc:description>University of Macau | Ref. SRG2019-00154-ICMS</dc:description>
<dc:description>University of Macau | Ref. MYRG2019-00157-ICMS</dc:description>
<dc:description>University of Macau | Ref. MYRG2018-00169-ICMS</dc:description>
<dc:description>Science and Technology Development Fund | Ref. 0117/2020/A</dc:description>
<dc:description>Science and Technology Development Fund | Ref. SKL-QRCM(UM)-2020–2022</dc:description>
<dc:description>Science and Technology Development Fund | Ref. 0098/2020/A</dc:description>
<dc:description>Ministerio de Ciencia e Innovación | Ref. RYC2020-030365-I</dc:description>
<dc:date>2022-06-21T12:09:18Z</dc:date>
<dc:date>2022-06-21T12:09:18Z</dc:date>
<dc:date>2022-05-12</dc:date>
<dc:date>2022-06-21T08:37:49Z</dc:date>
<dc:type>article</dc:type>
<dc:identifier>Current Issues In Molecular Biology, 44(5): 2175-2185 (2022)</dc:identifier>
<dc:identifier>14673037</dc:identifier>
<dc:identifier>http://hdl.handle.net/11093/3599</dc:identifier>
<dc:identifier>10.3390/cimb44050147</dc:identifier>
<dc:identifier>https://www.mdpi.com/1467-3045/44/5/147</dc:identifier>
<dc:language>eng</dc:language>
<dc:relation>info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RYC2020-030365-I/ES</dc:relation>
<dc:rights>Attribution 4.0 International</dc:rights>
<dc:rights>https://creativecommons.org/licenses/by/4.0/</dc:rights>
<dc:rights>openAccess</dc:rights>
<dc:publisher>Current Issues In Molecular Biology</dc:publisher>
<dc:publisher>Química analítica e alimentaria</dc:publisher>
<dc:publisher>Investigacións Agrarias e Alimentarias</dc:publisher>
</oai_dc:dc>
<?xml version="1.0" encoding="UTF-8" ?>
<d:DIDL schemaLocation="urn:mpeg:mpeg21:2002:02-DIDL-NS http://standards.iso.org/ittf/PubliclyAvailableStandards/MPEG-21_schema_files/did/didl.xsd">
<d:DIDLInfo>
<dcterms:created schemaLocation="http://purl.org/dc/terms/ http://dublincore.org/schemas/xmls/qdc/dcterms.xsd">2022-06-21T12:09:18Z</dcterms:created>
</d:DIDLInfo>
<d:Item id="hdl_11093_3599">
<d:Descriptor>
<d:Statement mimeType="application/xml; charset=utf-8">
<dii:Identifier schemaLocation="urn:mpeg:mpeg21:2002:01-DII-NS http://standards.iso.org/ittf/PubliclyAvailableStandards/MPEG-21_schema_files/dii/dii.xsd">urn:hdl:11093/3599</dii:Identifier>
</d:Statement>
</d:Descriptor>
<d:Descriptor>
<d:Statement mimeType="application/xml; charset=utf-8">
<oai_dc:dc schemaLocation="http://www.openarchives.org/OAI/2.0/oai_dc/ http://www.openarchives.org/OAI/2.0/oai_dc.xsd">
<dc:title>3,3′,4,5′-Tetramethoxy-trans-stilbene improves insulin resistance by activating the IRS/PI3K/Akt pathway and inhibiting oxidative stress</dc:title>
<dc:creator>Tan, Yi</dc:creator>
<dc:creator>Miao, Lingchao</dc:creator>
<dc:creator>Xiao, Jianbo</dc:creator>
<dc:creator>Cheang, Wai San</dc:creator>
<dc:description>The potential anti-diabetic effect of resveratrol derivative, 3,3′,4,5′-tetramethoxy-trans-stilbene (3,3′,4,5′-TMS) and its underlying mechanism in high glucose (HG) and dexamethasone (DXMS)-stimulated insulin-resistant HepG2 cells (IR-HepG2) were investigated. 3,3′,4,5′-TMS did not reduce the cell viability of IR-HepG2 cells at the concentrations of 0.5–10 µM. 3,3′,4,5′-TMS increased the potential of glucose consumption and glycogen synthesis in a concentration-dependent manner in IR-HepG2 cells. 3,3′,4,5′-TMS ameliorated insulin resistance by enhancing the phosphorylation of glycogen synthase kinase 3 beta (GSK3β), inhibiting phosphorylation of insulin receptor substrate-1 (IRS-1), and activating phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) pathway in IR-HepG2 cells. Furthermore, 3,3′,4,5′-TMS significantly suppressed levels of reactive oxygen species (ROS) with up-regulation of nuclear factor erythroid 2-related factor 2 (Nrf2) expression. To conclude, the beneficial effect of 3,3′,4,5′-TMS against insulin resistance to increase glucose consumption and glycogen synthesis was mediated through activation of IRS/PI3K/Akt signaling pathways in the IR-HepG2 cells, accomplished with anti-oxidative activity through up-regulation of Nrf2.</dc:description>
<dc:date>2022-06-21T12:09:18Z</dc:date>
<dc:date>2022-06-21T12:09:18Z</dc:date>
<dc:date>2022-05-12</dc:date>
<dc:date>2022-06-21T08:37:49Z</dc:date>
<dc:type>article</dc:type>
<dc:identifier>Current Issues In Molecular Biology, 44(5): 2175-2185 (2022)</dc:identifier>
<dc:identifier>14673037</dc:identifier>
<dc:identifier>http://hdl.handle.net/11093/3599</dc:identifier>
<dc:identifier>10.3390/cimb44050147</dc:identifier>
<dc:identifier>https://www.mdpi.com/1467-3045/44/5/147</dc:identifier>
<dc:language>eng</dc:language>
<dc:relation>info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RYC2020-030365-I/ES</dc:relation>
<dc:rights>https://creativecommons.org/licenses/by/4.0/</dc:rights>
<dc:rights>openAccess</dc:rights>
<dc:rights>Attribution 4.0 International</dc:rights>
<dc:publisher>Current Issues In Molecular Biology</dc:publisher>
<dc:publisher>Química analítica e alimentaria</dc:publisher>
<dc:publisher>Investigacións Agrarias e Alimentarias</dc:publisher>
</oai_dc:dc>
</d:Statement>
</d:Descriptor>
<d:Component id="11093_3599_1">
</d:Component>
</d:Item>
</d:DIDL>
<?xml version="1.0" encoding="UTF-8" ?>
<dim:dim schemaLocation="http://www.dspace.org/xmlns/dspace/dim http://www.dspace.org/schema/dim.xsd">
<dim:field authority="7a3e1df3-1a32-44fa-ad8f-7ede56f1ba98" confidence="500" element="contributor" mdschema="dc" qualifier="author">Tan, Yi</dim:field>
<dim:field authority="6990757d-0616-4564-a22b-150720e6f689" confidence="500" element="contributor" mdschema="dc" qualifier="author">Miao, Lingchao</dim:field>
<dim:field authority="2ffb0278-dbb0-44a3-909d-34e3c9d450de" confidence="500" element="contributor" mdschema="dc" qualifier="author">Xiao, Jianbo</dim:field>
<dim:field authority="14c27800-095e-4dd6-a830-7bc118e8ba7f" confidence="500" element="contributor" mdschema="dc" qualifier="author">Cheang, Wai San</dim:field>
<dim:field element="date" mdschema="dc" qualifier="accessioned">2022-06-21T12:09:18Z</dim:field>
<dim:field element="date" mdschema="dc" qualifier="available">2022-06-21T12:09:18Z</dim:field>
<dim:field element="date" mdschema="dc" qualifier="issued">2022-05-12</dim:field>
<dim:field element="date" mdschema="dc" qualifier="updated">2022-06-21T08:37:49Z</dim:field>
<dim:field element="identifier" lang="spa" mdschema="dc" qualifier="citation">Current Issues In Molecular Biology, 44(5): 2175-2185 (2022)</dim:field>
<dim:field element="identifier" mdschema="dc" qualifier="issn">14673037</dim:field>
<dim:field element="identifier" mdschema="dc" qualifier="uri">http://hdl.handle.net/11093/3599</dim:field>
<dim:field element="identifier" mdschema="dc" qualifier="doi">10.3390/cimb44050147</dim:field>
<dim:field element="identifier" lang="spa" mdschema="dc" qualifier="editor">https://www.mdpi.com/1467-3045/44/5/147</dim:field>
<dim:field element="description" lang="en" mdschema="dc" qualifier="abstract">The potential anti-diabetic effect of resveratrol derivative, 3,3′,4,5′-tetramethoxy-trans-stilbene (3,3′,4,5′-TMS) and its underlying mechanism in high glucose (HG) and dexamethasone (DXMS)-stimulated insulin-resistant HepG2 cells (IR-HepG2) were investigated. 3,3′,4,5′-TMS did not reduce the cell viability of IR-HepG2 cells at the concentrations of 0.5–10 µM. 3,3′,4,5′-TMS increased the potential of glucose consumption and glycogen synthesis in a concentration-dependent manner in IR-HepG2 cells. 3,3′,4,5′-TMS ameliorated insulin resistance by enhancing the phosphorylation of glycogen synthase kinase 3 beta (GSK3β), inhibiting phosphorylation of insulin receptor substrate-1 (IRS-1), and activating phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) pathway in IR-HepG2 cells. Furthermore, 3,3′,4,5′-TMS significantly suppressed levels of reactive oxygen species (ROS) with up-regulation of nuclear factor erythroid 2-related factor 2 (Nrf2) expression. To conclude, the beneficial effect of 3,3′,4,5′-TMS against insulin resistance to increase glucose consumption and glycogen synthesis was mediated through activation of IRS/PI3K/Akt signaling pathways in the IR-HepG2 cells, accomplished with anti-oxidative activity through up-regulation of Nrf2.</dim:field>
<dim:field element="description" lang="spa" mdschema="dc" qualifier="sponsorship">University of Macau | Ref. SRG2019-00154-ICMS</dim:field>
<dim:field element="description" lang="spa" mdschema="dc" qualifier="sponsorship">University of Macau | Ref. MYRG2019-00157-ICMS</dim:field>
<dim:field element="description" lang="spa" mdschema="dc" qualifier="sponsorship">University of Macau | Ref. MYRG2018-00169-ICMS</dim:field>
<dim:field element="description" lang="spa" mdschema="dc" qualifier="sponsorship">Science and Technology Development Fund | Ref. 0117/2020/A</dim:field>
<dim:field element="description" lang="spa" mdschema="dc" qualifier="sponsorship">Science and Technology Development Fund | Ref. SKL-QRCM(UM)-2020–2022</dim:field>
<dim:field element="description" lang="spa" mdschema="dc" qualifier="sponsorship">Science and Technology Development Fund | Ref. 0098/2020/A</dim:field>
<dim:field element="description" lang="spa" mdschema="dc" qualifier="sponsorship">Ministerio de Ciencia e Innovación | Ref. RYC2020-030365-I</dim:field>
<dim:field element="language" lang="spa" mdschema="dc" qualifier="iso">eng</dim:field>
<dim:field element="publisher" lang="spa" mdschema="dc">Current Issues In Molecular Biology</dim:field>
<dim:field element="publisher" lang="spa" mdschema="dc" qualifier="departamento">Química analítica e alimentaria</dim:field>
<dim:field element="publisher" lang="spa" mdschema="dc" qualifier="grupoinvestigacion">Investigacións Agrarias e Alimentarias</dim:field>
<dim:field element="relation" mdschema="dc">info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RYC2020-030365-I/ES</dim:field>
<dim:field element="rights" mdschema="dc">Attribution 4.0 International</dim:field>
<dim:field element="rights" mdschema="dc" qualifier="uri">https://creativecommons.org/licenses/by/4.0/</dim:field>
<dim:field element="rights" lang="spa" mdschema="dc" qualifier="accessRights">openAccess</dim:field>
<dim:field element="title" lang="en" mdschema="dc">3,3′,4,5′-Tetramethoxy-trans-stilbene improves insulin resistance by activating the IRS/PI3K/Akt pathway and inhibiting oxidative stress</dim:field>
<dim:field element="type" lang="spa" mdschema="dc">article</dim:field>
<dim:field element="subject" lang="spa" mdschema="dc" qualifier="unesco">2302.14 Glúcidos</dim:field>
<dim:field element="subject" lang="spa" mdschema="dc" qualifier="unesco">2302 Bioquímica</dim:field>
<dim:field element="subject" lang="spa" mdschema="dc" qualifier="unesco">3309.03 Antioxidantes en Los Alimentos</dim:field>
<dim:field element="computerCitation" lang="spa" mdschema="dc">pub_title=Current Issues In Molecular Biology|volume=44|journal_number=5|start_pag=2175|end_pag=2185</dim:field>
</dim:dim>
<?xml version="1.0" encoding="UTF-8" ?>
<thesis schemaLocation="http://www.ndltd.org/standards/metadata/etdms/1.0/ http://www.ndltd.org/standards/metadata/etdms/1.0/etdms.xsd">
<title>3,3′,4,5′-Tetramethoxy-trans-stilbene improves insulin resistance by activating the IRS/PI3K/Akt pathway and inhibiting oxidative stress</title>
<creator>Tan, Yi</creator>
<creator>Miao, Lingchao</creator>
<creator>Xiao, Jianbo</creator>
<creator>Cheang, Wai San</creator>
<description>The potential anti-diabetic effect of resveratrol derivative, 3,3′,4,5′-tetramethoxy-trans-stilbene (3,3′,4,5′-TMS) and its underlying mechanism in high glucose (HG) and dexamethasone (DXMS)-stimulated insulin-resistant HepG2 cells (IR-HepG2) were investigated. 3,3′,4,5′-TMS did not reduce the cell viability of IR-HepG2 cells at the concentrations of 0.5–10 µM. 3,3′,4,5′-TMS increased the potential of glucose consumption and glycogen synthesis in a concentration-dependent manner in IR-HepG2 cells. 3,3′,4,5′-TMS ameliorated insulin resistance by enhancing the phosphorylation of glycogen synthase kinase 3 beta (GSK3β), inhibiting phosphorylation of insulin receptor substrate-1 (IRS-1), and activating phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) pathway in IR-HepG2 cells. Furthermore, 3,3′,4,5′-TMS significantly suppressed levels of reactive oxygen species (ROS) with up-regulation of nuclear factor erythroid 2-related factor 2 (Nrf2) expression. To conclude, the beneficial effect of 3,3′,4,5′-TMS against insulin resistance to increase glucose consumption and glycogen synthesis was mediated through activation of IRS/PI3K/Akt signaling pathways in the IR-HepG2 cells, accomplished with anti-oxidative activity through up-regulation of Nrf2.</description>
<date>2022-06-21</date>
<date>2022-06-21</date>
<date>2022-05-12</date>
<date>2022-06-21</date>
<type>article</type>
<identifier>Current Issues In Molecular Biology, 44(5): 2175-2185 (2022)</identifier>
<identifier>14673037</identifier>
<identifier>http://hdl.handle.net/11093/3599</identifier>
<identifier>10.3390/cimb44050147</identifier>
<identifier>https://www.mdpi.com/1467-3045/44/5/147</identifier>
<language>eng</language>
<relation>info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RYC2020-030365-I/ES</relation>
<rights>https://creativecommons.org/licenses/by/4.0/</rights>
<rights>openAccess</rights>
<rights>Attribution 4.0 International</rights>
<publisher>Current Issues In Molecular Biology</publisher>
<publisher>Química analítica e alimentaria</publisher>
<publisher>Investigacións Agrarias e Alimentarias</publisher>
</thesis>
<?xml version="1.0" encoding="UTF-8" ?>
<record schemaLocation="http://www.loc.gov/MARC21/slim http://www.loc.gov/standards/marcxml/schema/MARC21slim.xsd">
<leader>00925njm 22002777a 4500</leader>
<datafield ind1=" " ind2=" " tag="042">
<subfield code="a">dc</subfield>
</datafield>
<datafield ind1=" " ind2=" " tag="720">
<subfield code="a">Tan, Yi</subfield>
<subfield code="e">author</subfield>
</datafield>
<datafield ind1=" " ind2=" " tag="720">
<subfield code="a">Miao, Lingchao</subfield>
<subfield code="e">author</subfield>
</datafield>
<datafield ind1=" " ind2=" " tag="720">
<subfield code="a">Xiao, Jianbo</subfield>
<subfield code="e">author</subfield>
</datafield>
<datafield ind1=" " ind2=" " tag="720">
<subfield code="a">Cheang, Wai San</subfield>
<subfield code="e">author</subfield>
</datafield>
<datafield ind1=" " ind2=" " tag="260">
<subfield code="c">2022-05-12</subfield>
</datafield>
<datafield ind1=" " ind2=" " tag="520">
<subfield code="a">The potential anti-diabetic effect of resveratrol derivative, 3,3′,4,5′-tetramethoxy-trans-stilbene (3,3′,4,5′-TMS) and its underlying mechanism in high glucose (HG) and dexamethasone (DXMS)-stimulated insulin-resistant HepG2 cells (IR-HepG2) were investigated. 3,3′,4,5′-TMS did not reduce the cell viability of IR-HepG2 cells at the concentrations of 0.5–10 µM. 3,3′,4,5′-TMS increased the potential of glucose consumption and glycogen synthesis in a concentration-dependent manner in IR-HepG2 cells. 3,3′,4,5′-TMS ameliorated insulin resistance by enhancing the phosphorylation of glycogen synthase kinase 3 beta (GSK3β), inhibiting phosphorylation of insulin receptor substrate-1 (IRS-1), and activating phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) pathway in IR-HepG2 cells. Furthermore, 3,3′,4,5′-TMS significantly suppressed levels of reactive oxygen species (ROS) with up-regulation of nuclear factor erythroid 2-related factor 2 (Nrf2) expression. To conclude, the beneficial effect of 3,3′,4,5′-TMS against insulin resistance to increase glucose consumption and glycogen synthesis was mediated through activation of IRS/PI3K/Akt signaling pathways in the IR-HepG2 cells, accomplished with anti-oxidative activity through up-regulation of Nrf2.</subfield>
</datafield>
<datafield ind1="8" ind2=" " tag="024">
<subfield code="a">Current Issues In Molecular Biology, 44(5): 2175-2185 (2022)</subfield>
</datafield>
<datafield ind1="8" ind2=" " tag="024">
<subfield code="a">14673037</subfield>
</datafield>
<datafield ind1="8" ind2=" " tag="024">
<subfield code="a">http://hdl.handle.net/11093/3599</subfield>
</datafield>
<datafield ind1="8" ind2=" " tag="024">
<subfield code="a">10.3390/cimb44050147</subfield>
</datafield>
<datafield ind1="8" ind2=" " tag="024">
<subfield code="a">https://www.mdpi.com/1467-3045/44/5/147</subfield>
</datafield>
<datafield ind1="0" ind2="0" tag="245">
<subfield code="a">3,3′,4,5′-Tetramethoxy-trans-stilbene improves insulin resistance by activating the IRS/PI3K/Akt pathway and inhibiting oxidative stress</subfield>
</datafield>
</record>
<?xml version="1.0" encoding="UTF-8" ?>
<mets ID=" DSpace_ITEM_11093-3599" OBJID=" hdl:11093/3599" PROFILE="DSpace METS SIP Profile 1.0" TYPE="DSpace ITEM" schemaLocation="http://www.loc.gov/METS/ http://www.loc.gov/standards/mets/mets.xsd">
<metsHdr CREATEDATE="2023-04-16T18:53:35Z">
<agent ROLE="CUSTODIAN" TYPE="ORGANIZATION">
<name>Investigo</name>
</agent>
</metsHdr>
<dmdSec ID="DMD_11093_3599">
<mdWrap MDTYPE="MODS">
<xmlData schemaLocation="http://www.loc.gov/mods/v3 http://www.loc.gov/standards/mods/v3/mods-3-1.xsd">
<mods:mods schemaLocation="http://www.loc.gov/mods/v3 http://www.loc.gov/standards/mods/v3/mods-3-1.xsd">
<mods:name>
<mods:role>
<mods:roleTerm type="text">author</mods:roleTerm>
</mods:role>
<mods:namePart>Tan, Yi</mods:namePart>
</mods:name>
<mods:name>
<mods:role>
<mods:roleTerm type="text">author</mods:roleTerm>
</mods:role>
<mods:namePart>Miao, Lingchao</mods:namePart>
</mods:name>
<mods:name>
<mods:role>
<mods:roleTerm type="text">author</mods:roleTerm>
</mods:role>
<mods:namePart>Xiao, Jianbo</mods:namePart>
</mods:name>
<mods:name>
<mods:role>
<mods:roleTerm type="text">author</mods:roleTerm>
</mods:role>
<mods:namePart>Cheang, Wai San</mods:namePart>
</mods:name>
<mods:extension>
<mods:dateAccessioned encoding="iso8601">2022-06-21T12:09:18Z</mods:dateAccessioned>
</mods:extension>
<mods:extension>
<mods:dateAvailable encoding="iso8601">2022-06-21T12:09:18Z</mods:dateAvailable>
</mods:extension>
<mods:originInfo>
<mods:dateIssued encoding="iso8601">2022-05-12</mods:dateIssued>
</mods:originInfo>
<mods:identifier type="citation">Current Issues In Molecular Biology, 44(5): 2175-2185 (2022)</mods:identifier>
<mods:identifier type="issn">14673037</mods:identifier>
<mods:identifier type="uri">http://hdl.handle.net/11093/3599</mods:identifier>
<mods:identifier type="doi">10.3390/cimb44050147</mods:identifier>
<mods:identifier type="editor">https://www.mdpi.com/1467-3045/44/5/147</mods:identifier>
<mods:abstract>The potential anti-diabetic effect of resveratrol derivative, 3,3′,4,5′-tetramethoxy-trans-stilbene (3,3′,4,5′-TMS) and its underlying mechanism in high glucose (HG) and dexamethasone (DXMS)-stimulated insulin-resistant HepG2 cells (IR-HepG2) were investigated. 3,3′,4,5′-TMS did not reduce the cell viability of IR-HepG2 cells at the concentrations of 0.5–10 µM. 3,3′,4,5′-TMS increased the potential of glucose consumption and glycogen synthesis in a concentration-dependent manner in IR-HepG2 cells. 3,3′,4,5′-TMS ameliorated insulin resistance by enhancing the phosphorylation of glycogen synthase kinase 3 beta (GSK3β), inhibiting phosphorylation of insulin receptor substrate-1 (IRS-1), and activating phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) pathway in IR-HepG2 cells. Furthermore, 3,3′,4,5′-TMS significantly suppressed levels of reactive oxygen species (ROS) with up-regulation of nuclear factor erythroid 2-related factor 2 (Nrf2) expression. To conclude, the beneficial effect of 3,3′,4,5′-TMS against insulin resistance to increase glucose consumption and glycogen synthesis was mediated through activation of IRS/PI3K/Akt signaling pathways in the IR-HepG2 cells, accomplished with anti-oxidative activity through up-regulation of Nrf2.</mods:abstract>
<mods:language>
<mods:languageTerm authority="rfc3066">eng</mods:languageTerm>
</mods:language>
<mods:accessCondition type="useAndReproduction">Attribution 4.0 International</mods:accessCondition>
<mods:titleInfo>
<mods:title>3,3′,4,5′-Tetramethoxy-trans-stilbene improves insulin resistance by activating the IRS/PI3K/Akt pathway and inhibiting oxidative stress</mods:title>
</mods:titleInfo>
<mods:genre>article</mods:genre>
</mods:mods>
</xmlData>
</mdWrap>
</dmdSec>
<amdSec ID="TMD_11093_3599">
<rightsMD ID="RIG_11093_3599">
<mdWrap MDTYPE="OTHER" MIMETYPE="text/plain" OTHERMDTYPE="DSpaceDepositLicense">
</mdWrap>
</rightsMD>
</amdSec>
<amdSec ID="FO_11093_3599_1">
<techMD ID="TECH_O_11093_3599_1">
<mdWrap MDTYPE="PREMIS">
<xmlData schemaLocation="http://www.loc.gov/standards/premis http://www.loc.gov/standards/premis/PREMIS-v1-0.xsd">
<premis:premis>
<premis:object>
<premis:objectIdentifier>
<premis:objectIdentifierType>URL</premis:objectIdentifierType>
<premis:objectIdentifierValue>https://www.investigo.biblioteca.uvigo.es/xmlui/bitstream/11093/3599/1/Tan_yi_2022_334_Tet_tra.pdf</premis:objectIdentifierValue>
</premis:objectIdentifier>
<premis:objectCategory>File</premis:objectCategory>
<premis:objectCharacteristics>
<premis:fixity>
<premis:messageDigestAlgorithm>MD5</premis:messageDigestAlgorithm>
<premis:messageDigest>0bd890194322f9923c862b48a842847c</premis:messageDigest>
</premis:fixity>
<premis:size>1346750</premis:size>
<premis:format>
<premis:formatDesignation>
<premis:formatName>application/pdf</premis:formatName>
</premis:formatDesignation>
</premis:format>
</premis:objectCharacteristics>
<premis:originalName>Tan_yi_2022_334_Tet_tra.pdf</premis:originalName>
</premis:object>
</premis:premis>
</xmlData>
</mdWrap>
</techMD>
</amdSec>
<amdSec ID="FT_11093_3599_4">
<techMD ID="TECH_T_11093_3599_4">
<mdWrap MDTYPE="PREMIS">
<xmlData schemaLocation="http://www.loc.gov/standards/premis http://www.loc.gov/standards/premis/PREMIS-v1-0.xsd">
<premis:premis>
<premis:object>
<premis:objectIdentifier>
<premis:objectIdentifierType>URL</premis:objectIdentifierType>
<premis:objectIdentifierValue>https://www.investigo.biblioteca.uvigo.es/xmlui/bitstream/11093/3599/4/Tan_yi_2022_334_Tet_tra.pdf.txt</premis:objectIdentifierValue>
</premis:objectIdentifier>
<premis:objectCategory>File</premis:objectCategory>
<premis:objectCharacteristics>
<premis:fixity>
<premis:messageDigestAlgorithm>MD5</premis:messageDigestAlgorithm>
<premis:messageDigest>6c17a7148acb3599f9493a5d07ed52fe</premis:messageDigest>
</premis:fixity>
<premis:size>50114</premis:size>
<premis:format>
<premis:formatDesignation>
<premis:formatName>text/plain</premis:formatName>
</premis:formatDesignation>
</premis:format>
</premis:objectCharacteristics>
<premis:originalName>Tan_yi_2022_334_Tet_tra.pdf.txt</premis:originalName>
</premis:object>
</premis:premis>
</xmlData>
</mdWrap>
</techMD>
</amdSec>
<fileSec>
<fileGrp USE="ORIGINAL">
<file ADMID="FO_11093_3599_1" CHECKSUM="0bd890194322f9923c862b48a842847c" CHECKSUMTYPE="MD5" GROUPID="GROUP_BITSTREAM_11093_3599_1" ID="BITSTREAM_ORIGINAL_11093_3599_1" MIMETYPE="application/pdf" SEQ="1" SIZE="1346750">
</file>
</fileGrp>
<fileGrp USE="TEXT">
<file ADMID="FT_11093_3599_4" CHECKSUM="6c17a7148acb3599f9493a5d07ed52fe" CHECKSUMTYPE="MD5" GROUPID="GROUP_BITSTREAM_11093_3599_4" ID="BITSTREAM_TEXT_11093_3599_4" MIMETYPE="text/plain" SEQ="4" SIZE="50114">
</file>
</fileGrp>
</fileSec>
<structMap LABEL="DSpace Object" TYPE="LOGICAL">
<div ADMID="DMD_11093_3599" TYPE="DSpace Object Contents">
<div TYPE="DSpace BITSTREAM">
</div>
</div>
</structMap>
</mets>
<?xml version="1.0" encoding="UTF-8" ?>
<mods:mods schemaLocation="http://www.loc.gov/mods/v3 http://www.loc.gov/standards/mods/v3/mods-3-1.xsd">
<mods:name>
<mods:namePart>Tan, Yi</mods:namePart>
</mods:name>
<mods:name>
<mods:namePart>Miao, Lingchao</mods:namePart>
</mods:name>
<mods:name>
<mods:namePart>Xiao, Jianbo</mods:namePart>
</mods:name>
<mods:name>
<mods:namePart>Cheang, Wai San</mods:namePart>
</mods:name>
<mods:extension>
<mods:dateAvailable encoding="iso8601">2022-06-21T12:09:18Z</mods:dateAvailable>
</mods:extension>
<mods:extension>
<mods:dateAccessioned encoding="iso8601">2022-06-21T12:09:18Z</mods:dateAccessioned>
</mods:extension>
<mods:originInfo>
<mods:dateIssued encoding="iso8601">2022-05-12</mods:dateIssued>
</mods:originInfo>
<mods:identifier type="citation">Current Issues In Molecular Biology, 44(5): 2175-2185 (2022)</mods:identifier>
<mods:identifier type="issn">14673037</mods:identifier>
<mods:identifier type="uri">http://hdl.handle.net/11093/3599</mods:identifier>
<mods:identifier type="doi">10.3390/cimb44050147</mods:identifier>
<mods:identifier type="editor">https://www.mdpi.com/1467-3045/44/5/147</mods:identifier>
<mods:abstract>The potential anti-diabetic effect of resveratrol derivative, 3,3′,4,5′-tetramethoxy-trans-stilbene (3,3′,4,5′-TMS) and its underlying mechanism in high glucose (HG) and dexamethasone (DXMS)-stimulated insulin-resistant HepG2 cells (IR-HepG2) were investigated. 3,3′,4,5′-TMS did not reduce the cell viability of IR-HepG2 cells at the concentrations of 0.5–10 µM. 3,3′,4,5′-TMS increased the potential of glucose consumption and glycogen synthesis in a concentration-dependent manner in IR-HepG2 cells. 3,3′,4,5′-TMS ameliorated insulin resistance by enhancing the phosphorylation of glycogen synthase kinase 3 beta (GSK3β), inhibiting phosphorylation of insulin receptor substrate-1 (IRS-1), and activating phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) pathway in IR-HepG2 cells. Furthermore, 3,3′,4,5′-TMS significantly suppressed levels of reactive oxygen species (ROS) with up-regulation of nuclear factor erythroid 2-related factor 2 (Nrf2) expression. To conclude, the beneficial effect of 3,3′,4,5′-TMS against insulin resistance to increase glucose consumption and glycogen synthesis was mediated through activation of IRS/PI3K/Akt signaling pathways in the IR-HepG2 cells, accomplished with anti-oxidative activity through up-regulation of Nrf2.</mods:abstract>
<mods:language>
<mods:languageTerm>eng</mods:languageTerm>
</mods:language>
<mods:accessCondition type="useAndReproduction">https://creativecommons.org/licenses/by/4.0/</mods:accessCondition>
<mods:accessCondition type="useAndReproduction">openAccess</mods:accessCondition>
<mods:accessCondition type="useAndReproduction">Attribution 4.0 International</mods:accessCondition>
<mods:titleInfo>
<mods:title>3,3′,4,5′-Tetramethoxy-trans-stilbene improves insulin resistance by activating the IRS/PI3K/Akt pathway and inhibiting oxidative stress</mods:title>
</mods:titleInfo>
<mods:genre>article</mods:genre>
</mods:mods>
<?xml version="1.0" encoding="UTF-8" ?>
<atom:entry schemaLocation="http://www.w3.org/2005/Atom http://www.kbcafe.com/rss/atom.xsd.xml">
<atom:id>http://hdl.handle.net/11093/3599/ore.xml</atom:id>
<atom:published>2022-06-21T12:09:18Z</atom:published>
<atom:updated>2022-06-21T12:09:18Z</atom:updated>
<atom:source>
<atom:generator>Investigo</atom:generator>
</atom:source>
<atom:title>3,3′,4,5′-Tetramethoxy-trans-stilbene improves insulin resistance by activating the IRS/PI3K/Akt pathway and inhibiting oxidative stress</atom:title>
<atom:author>
<atom:name>Tan, Yi</atom:name>
</atom:author>
<atom:author>
<atom:name>Miao, Lingchao</atom:name>
</atom:author>
<atom:author>
<atom:name>Xiao, Jianbo</atom:name>
</atom:author>
<atom:author>
<atom:name>Cheang, Wai San</atom:name>
</atom:author>
<oreatom:triples>
<rdf:Description about="http://hdl.handle.net/11093/3599/ore.xml#atom">
<dcterms:modified>2022-06-21T12:09:18Z</dcterms:modified>
</rdf:Description>
<rdf:Description about="https://www.investigo.biblioteca.uvigo.es/xmlui/bitstream/11093/3599/1/Tan_yi_2022_334_Tet_tra.pdf">
<dcterms:description>ORIGINAL</dcterms:description>
</rdf:Description>
<rdf:Description about="https://www.investigo.biblioteca.uvigo.es/xmlui/bitstream/11093/3599/2/license.txt">
<dcterms:description>LICENSE</dcterms:description>
</rdf:Description>
<rdf:Description about="https://www.investigo.biblioteca.uvigo.es/xmlui/bitstream/11093/3599/3/sword.zip">
<dcterms:description>SWORD</dcterms:description>
</rdf:Description>
<rdf:Description about="https://www.investigo.biblioteca.uvigo.es/xmlui/bitstream/11093/3599/4/Tan_yi_2022_334_Tet_tra.pdf.txt">
<dcterms:description>TEXT</dcterms:description>
</rdf:Description>
</oreatom:triples>
</atom:entry>
<?xml version="1.0" encoding="UTF-8" ?>
<qdc:qualifieddc schemaLocation="http://purl.org/dc/elements/1.1/ http://dublincore.org/schemas/xmls/qdc/2006/01/06/dc.xsd http://purl.org/dc/terms/ http://dublincore.org/schemas/xmls/qdc/2006/01/06/dcterms.xsd http://dspace.org/qualifieddc/ http://www.ukoln.ac.uk/metadata/dcmi/xmlschema/qualifieddc.xsd">
<dc:title>3,3′,4,5′-Tetramethoxy-trans-stilbene improves insulin resistance by activating the IRS/PI3K/Akt pathway and inhibiting oxidative stress</dc:title>
<dc:creator>Tan, Yi</dc:creator>
<dc:creator>Miao, Lingchao</dc:creator>
<dc:creator>Xiao, Jianbo</dc:creator>
<dc:creator>Cheang, Wai San</dc:creator>
<dcterms:abstract>The potential anti-diabetic effect of resveratrol derivative, 3,3′,4,5′-tetramethoxy-trans-stilbene (3,3′,4,5′-TMS) and its underlying mechanism in high glucose (HG) and dexamethasone (DXMS)-stimulated insulin-resistant HepG2 cells (IR-HepG2) were investigated. 3,3′,4,5′-TMS did not reduce the cell viability of IR-HepG2 cells at the concentrations of 0.5–10 µM. 3,3′,4,5′-TMS increased the potential of glucose consumption and glycogen synthesis in a concentration-dependent manner in IR-HepG2 cells. 3,3′,4,5′-TMS ameliorated insulin resistance by enhancing the phosphorylation of glycogen synthase kinase 3 beta (GSK3β), inhibiting phosphorylation of insulin receptor substrate-1 (IRS-1), and activating phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) pathway in IR-HepG2 cells. Furthermore, 3,3′,4,5′-TMS significantly suppressed levels of reactive oxygen species (ROS) with up-regulation of nuclear factor erythroid 2-related factor 2 (Nrf2) expression. To conclude, the beneficial effect of 3,3′,4,5′-TMS against insulin resistance to increase glucose consumption and glycogen synthesis was mediated through activation of IRS/PI3K/Akt signaling pathways in the IR-HepG2 cells, accomplished with anti-oxidative activity through up-regulation of Nrf2.</dcterms:abstract>
<dcterms:dateAccepted>2022-06-21T12:09:18Z</dcterms:dateAccepted>
<dcterms:available>2022-06-21T12:09:18Z</dcterms:available>
<dcterms:created>2022-06-21T12:09:18Z</dcterms:created>
<dcterms:issued>2022-05-12</dcterms:issued>
<dc:type>article</dc:type>
<dc:identifier>Current Issues In Molecular Biology, 44(5): 2175-2185 (2022)</dc:identifier>
<dc:identifier>14673037</dc:identifier>
<dc:identifier>http://hdl.handle.net/11093/3599</dc:identifier>
<dc:identifier>10.3390/cimb44050147</dc:identifier>
<dc:identifier>https://www.mdpi.com/1467-3045/44/5/147</dc:identifier>
<dc:language>eng</dc:language>
<dc:relation>info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RYC2020-030365-I/ES</dc:relation>
<dc:rights>https://creativecommons.org/licenses/by/4.0/</dc:rights>
<dc:rights>openAccess</dc:rights>
<dc:rights>Attribution 4.0 International</dc:rights>
<dc:publisher>Current Issues In Molecular Biology</dc:publisher>
<dc:publisher>Química analítica e alimentaria</dc:publisher>
<dc:publisher>Investigacións Agrarias e Alimentarias</dc:publisher>
</qdc:qualifieddc>
<?xml version="1.0" encoding="UTF-8" ?>
<rdf:RDF schemaLocation="http://www.openarchives.org/OAI/2.0/rdf/ http://www.openarchives.org/OAI/2.0/rdf.xsd">
<ow:Publication about="oai:www.investigo.biblioteca.uvigo.es:11093/3599">
<dc:title>3,3′,4,5′-Tetramethoxy-trans-stilbene improves insulin resistance by activating the IRS/PI3K/Akt pathway and inhibiting oxidative stress</dc:title>
<dc:creator>Tan, Yi</dc:creator>
<dc:creator>Miao, Lingchao</dc:creator>
<dc:creator>Xiao, Jianbo</dc:creator>
<dc:creator>Cheang, Wai San</dc:creator>
<dc:description>The potential anti-diabetic effect of resveratrol derivative, 3,3′,4,5′-tetramethoxy-trans-stilbene (3,3′,4,5′-TMS) and its underlying mechanism in high glucose (HG) and dexamethasone (DXMS)-stimulated insulin-resistant HepG2 cells (IR-HepG2) were investigated. 3,3′,4,5′-TMS did not reduce the cell viability of IR-HepG2 cells at the concentrations of 0.5–10 µM. 3,3′,4,5′-TMS increased the potential of glucose consumption and glycogen synthesis in a concentration-dependent manner in IR-HepG2 cells. 3,3′,4,5′-TMS ameliorated insulin resistance by enhancing the phosphorylation of glycogen synthase kinase 3 beta (GSK3β), inhibiting phosphorylation of insulin receptor substrate-1 (IRS-1), and activating phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) pathway in IR-HepG2 cells. Furthermore, 3,3′,4,5′-TMS significantly suppressed levels of reactive oxygen species (ROS) with up-regulation of nuclear factor erythroid 2-related factor 2 (Nrf2) expression. To conclude, the beneficial effect of 3,3′,4,5′-TMS against insulin resistance to increase glucose consumption and glycogen synthesis was mediated through activation of IRS/PI3K/Akt signaling pathways in the IR-HepG2 cells, accomplished with anti-oxidative activity through up-regulation of Nrf2.</dc:description>
<dc:date>2022-06-21T12:09:18Z</dc:date>
<dc:date>2022-06-21T12:09:18Z</dc:date>
<dc:date>2022-05-12</dc:date>
<dc:date>2022-06-21T08:37:49Z</dc:date>
<dc:type>article</dc:type>
<dc:identifier>Current Issues In Molecular Biology, 44(5): 2175-2185 (2022)</dc:identifier>
<dc:identifier>14673037</dc:identifier>
<dc:identifier>http://hdl.handle.net/11093/3599</dc:identifier>
<dc:identifier>10.3390/cimb44050147</dc:identifier>
<dc:identifier>https://www.mdpi.com/1467-3045/44/5/147</dc:identifier>
<dc:language>eng</dc:language>
<dc:relation>info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RYC2020-030365-I/ES</dc:relation>
<dc:rights>https://creativecommons.org/licenses/by/4.0/</dc:rights>
<dc:rights>openAccess</dc:rights>
<dc:rights>Attribution 4.0 International</dc:rights>
<dc:publisher>Current Issues In Molecular Biology</dc:publisher>
<dc:publisher>Química analítica e alimentaria</dc:publisher>
<dc:publisher>Investigacións Agrarias e Alimentarias</dc:publisher>
</ow:Publication>
</rdf:RDF>
<?xml version="1.0" encoding="UTF-8" ?>
<oai_dc:dc schemaLocation="http://www.openarchives.org/OAI/2.0/oai_dc/ http://www.openarchives.org/OAI/2.0/oai_dc.xsd">
<dcterms:dateAccepted>2022-06-21T12:09:18Z</dcterms:dateAccepted>
<dcterms:available>2022-06-21T12:09:18Z</dcterms:available>
<dcterms:issued>2022-05-12</dcterms:issued>
<dcterms:identifier_bibliographicCitation lang="spa">Current Issues In Molecular Biology, 44(5): 2175-2185 (2022)</dcterms:identifier_bibliographicCitation>
<dcterms:identifier_issn>14673037</dcterms:identifier_issn>
<dcterms:identifier_doi>10.3390/cimb44050147</dcterms:identifier_doi>
<dcterms:identifier type="dcterms:URI">http://hdl.handle.net/11093/3599</dcterms:identifier>
<dcterms:identifier_editor lang="spa">https://www.mdpi.com/1467-3045/44/5/147</dcterms:identifier_editor>
<dcterms:abstract lang="en">The potential anti-diabetic effect of resveratrol derivative, 3,3′,4,5′-tetramethoxy-trans-stilbene (3,3′,4,5′-TMS) and its underlying mechanism in high glucose (HG) and dexamethasone (DXMS)-stimulated insulin-resistant HepG2 cells (IR-HepG2) were investigated. 3,3′,4,5′-TMS did not reduce the cell viability of IR-HepG2 cells at the concentrations of 0.5–10 µM. 3,3′,4,5′-TMS increased the potential of glucose consumption and glycogen synthesis in a concentration-dependent manner in IR-HepG2 cells. 3,3′,4,5′-TMS ameliorated insulin resistance by enhancing the phosphorylation of glycogen synthase kinase 3 beta (GSK3β), inhibiting phosphorylation of insulin receptor substrate-1 (IRS-1), and activating phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) pathway in IR-HepG2 cells. Furthermore, 3,3′,4,5′-TMS significantly suppressed levels of reactive oxygen species (ROS) with up-regulation of nuclear factor erythroid 2-related factor 2 (Nrf2) expression. To conclude, the beneficial effect of 3,3′,4,5′-TMS against insulin resistance to increase glucose consumption and glycogen synthesis was mediated through activation of IRS/PI3K/Akt signaling pathways in the IR-HepG2 cells, accomplished with anti-oxidative activity through up-regulation of Nrf2.</dcterms:abstract>
<dcterms:description_sponsorship lang="spa">University of Macau | Ref. SRG2019-00154-ICMS</dcterms:description_sponsorship>
<dcterms:description_sponsorship lang="spa">University of Macau | Ref. MYRG2019-00157-ICMS</dcterms:description_sponsorship>
<dcterms:description_sponsorship lang="spa">University of Macau | Ref. MYRG2018-00169-ICMS</dcterms:description_sponsorship>
<dcterms:description_sponsorship lang="spa">Science and Technology Development Fund | Ref. 0117/2020/A</dcterms:description_sponsorship>
<dcterms:description_sponsorship lang="spa">Science and Technology Development Fund | Ref. SKL-QRCM(UM)-2020–2022</dcterms:description_sponsorship>
<dcterms:description_sponsorship lang="spa">Science and Technology Development Fund | Ref. 0098/2020/A</dcterms:description_sponsorship>
<dcterms:description_sponsorship lang="spa">Ministerio de Ciencia e Innovación | Ref. RYC2020-030365-I</dcterms:description_sponsorship>
<dcterms:language type="dcterms:ISO639-2" lang="spa">eng</dcterms:language>
<dcterms:publisher lang="spa">Current Issues In Molecular Biology</dcterms:publisher>
<dcterms:relation>info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RYC2020-030365-I/ES</dcterms:relation>
<dcterms:rights>Attribution 4.0 International</dcterms:rights>
<dcterms:accessRights lang="spa">openAccess</dcterms:accessRights>
<dcterms:rights_uri type="dcterms:URI">https://creativecommons.org/licenses/by/4.0/</dcterms:rights_uri>
<dcterms:title lang="en">3,3′,4,5′-Tetramethoxy-trans-stilbene improves insulin resistance by activating the IRS/PI3K/Akt pathway and inhibiting oxidative stress</dcterms:title>
<dcterms:type lang="spa">article</dcterms:type>
<dcterms:computerCitation lang="spa">pub_title=Current Issues In Molecular Biology|volume=44|journal_number=5|start_pag=2175|end_pag=2185</dcterms:computerCitation>
<dcterms:publisher_department lang="spa">Química analítica e alimentaria</dcterms:publisher_department>
<dcterms:publisher_group lang="spa">Investigacións Agrarias e Alimentarias</dcterms:publisher_group>
<dcterms:subject lang="spa">2302.14 Glúcidos</dcterms:subject>
<dcterms:subject lang="spa">2302 Bioquímica</dcterms:subject>
<dcterms:subject lang="spa">3309.03 Antioxidantes en Los Alimentos</dcterms:subject>
<dcterms:authorList>Tan, Yi#Miao, Lingchao#Xiao, Jianbo#Cheang, Wai San</dcterms:authorList>
</oai_dc:dc>
<?xml version="1.0" encoding="UTF-8" ?>
<metadata schemaLocation="http://www.lyncode.com/xoai http://www.lyncode.com/xsd/xoai.xsd">
<element name="dc">
<element name="contributor">
<element name="author">
<element name="none">
<field name="value">Tan, Yi</field>
<field name="authority">7a3e1df3-1a32-44fa-ad8f-7ede56f1ba98</field>
<field name="confidence">500</field>
<field name="value">Miao, Lingchao</field>
<field name="authority">6990757d-0616-4564-a22b-150720e6f689</field>
<field name="confidence">500</field>
<field name="value">Xiao, Jianbo</field>
<field name="authority">2ffb0278-dbb0-44a3-909d-34e3c9d450de</field>
<field name="confidence">500</field>
<field name="value">Cheang, Wai San</field>
<field name="authority">14c27800-095e-4dd6-a830-7bc118e8ba7f</field>
<field name="confidence">500</field>
</element>
</element>
</element>
<element name="date">
<element name="accessioned">
<element name="none">
<field name="value">2022-06-21T12:09:18Z</field>
</element>
</element>
<element name="available">
<element name="none">
<field name="value">2022-06-21T12:09:18Z</field>
</element>
</element>
<element name="issued">
<element name="none">
<field name="value">2022-05-12</field>
</element>
</element>
<element name="updated">
<element name="none">
<field name="value">2022-06-21T08:37:49Z</field>
</element>
</element>
</element>
<element name="identifier">
<element name="citation">
<element name="spa">
<field name="value">Current Issues In Molecular Biology, 44(5): 2175-2185 (2022)</field>
</element>
</element>
<element name="issn">
<element name="none">
<field name="value">14673037</field>
</element>
</element>
<element name="uri">
<element name="none">
<field name="value">http://hdl.handle.net/11093/3599</field>
</element>
</element>
<element name="doi">
<element name="none">
<field name="value">10.3390/cimb44050147</field>
</element>
</element>
<element name="editor">
<element name="spa">
<field name="value">https://www.mdpi.com/1467-3045/44/5/147</field>
</element>
</element>
</element>
<element name="description">
<element name="abstract">
<element name="en">
<field name="value">The potential anti-diabetic effect of resveratrol derivative, 3,3′,4,5′-tetramethoxy-trans-stilbene (3,3′,4,5′-TMS) and its underlying mechanism in high glucose (HG) and dexamethasone (DXMS)-stimulated insulin-resistant HepG2 cells (IR-HepG2) were investigated. 3,3′,4,5′-TMS did not reduce the cell viability of IR-HepG2 cells at the concentrations of 0.5–10 µM. 3,3′,4,5′-TMS increased the potential of glucose consumption and glycogen synthesis in a concentration-dependent manner in IR-HepG2 cells. 3,3′,4,5′-TMS ameliorated insulin resistance by enhancing the phosphorylation of glycogen synthase kinase 3 beta (GSK3β), inhibiting phosphorylation of insulin receptor substrate-1 (IRS-1), and activating phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) pathway in IR-HepG2 cells. Furthermore, 3,3′,4,5′-TMS significantly suppressed levels of reactive oxygen species (ROS) with up-regulation of nuclear factor erythroid 2-related factor 2 (Nrf2) expression. To conclude, the beneficial effect of 3,3′,4,5′-TMS against insulin resistance to increase glucose consumption and glycogen synthesis was mediated through activation of IRS/PI3K/Akt signaling pathways in the IR-HepG2 cells, accomplished with anti-oxidative activity through up-regulation of Nrf2.</field>
</element>
</element>
<element name="sponsorship">
<element name="spa">
<field name="value">University of Macau | Ref. SRG2019-00154-ICMS</field>
<field name="value">University of Macau | Ref. MYRG2019-00157-ICMS</field>
<field name="value">University of Macau | Ref. MYRG2018-00169-ICMS</field>
<field name="value">Science and Technology Development Fund | Ref. 0117/2020/A</field>
<field name="value">Science and Technology Development Fund | Ref. SKL-QRCM(UM)-2020–2022</field>
<field name="value">Science and Technology Development Fund | Ref. 0098/2020/A</field>
<field name="value">Ministerio de Ciencia e Innovación | Ref. RYC2020-030365-I</field>
</element>
</element>
</element>
<element name="language">
<element name="iso">
<element name="spa">
<field name="value">eng</field>
</element>
</element>
</element>
<element name="publisher">
<element name="spa">
<field name="value">Current Issues In Molecular Biology</field>
</element>
<element name="departamento">
<element name="spa">
<field name="value">Química analítica e alimentaria</field>
</element>
</element>
<element name="grupoinvestigacion">
<element name="spa">
<field name="value">Investigacións Agrarias e Alimentarias</field>
</element>
</element>
</element>
<element name="relation">
<element name="none">
<field name="value">info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RYC2020-030365-I/ES</field>
</element>
</element>
<element name="rights">
<element name="none">
<field name="value">Attribution 4.0 International</field>
</element>
<element name="uri">
<element name="none">
<field name="value">https://creativecommons.org/licenses/by/4.0/</field>
</element>
</element>
<element name="accessRights">
<element name="spa">
<field name="value">openAccess</field>
</element>
</element>
</element>
<element name="title">
<element name="en">
<field name="value">3,3′,4,5′-Tetramethoxy-trans-stilbene improves insulin resistance by activating the IRS/PI3K/Akt pathway and inhibiting oxidative stress</field>
</element>
</element>
<element name="type">
<element name="spa">
<field name="value">article</field>
</element>
</element>
<element name="subject">
<element name="unesco">
<element name="spa">
<field name="value">2302.14 Glúcidos</field>
<field name="value">2302 Bioquímica</field>
<field name="value">3309.03 Antioxidantes en Los Alimentos</field>
</element>
</element>
</element>
<element name="computerCitation">
<element name="spa">
<field name="value">pub_title=Current Issues In Molecular Biology|volume=44|journal_number=5|start_pag=2175|end_pag=2185</field>
</element>
</element>
</element>
<element name="bundles">
<element name="bundle">
<field name="name">ORIGINAL</field>
<element name="bitstreams">
<element name="bitstream">
<field name="name">Tan_yi_2022_334_Tet_tra.pdf</field>
<field name="format">application/pdf</field>
<field name="size">1346750</field>
<field name="url">https://www.investigo.biblioteca.uvigo.es/xmlui/bitstream/11093/3599/1/Tan_yi_2022_334_Tet_tra.pdf</field>
<field name="checksum">0bd890194322f9923c862b48a842847c</field>
<field name="checksumAlgorithm">MD5</field>
<field name="sid">1</field>
<field name="drm">open access</field>
</element>
</element>
</element>
<element name="bundle">
<field name="name">LICENSE</field>
<element name="bitstreams">
<element name="bitstream">
<field name="name">license.txt</field>
<field name="originalName">license.txt</field>
<field name="format">text/plain; charset=utf-8</field>
<field name="size">0</field>
<field name="url">https://www.investigo.biblioteca.uvigo.es/xmlui/bitstream/11093/3599/2/license.txt</field>
<field name="checksum">d41d8cd98f00b204e9800998ecf8427e</field>
<field name="checksumAlgorithm">MD5</field>
<field name="sid">2</field>
<field name="drm">open access</field>
</element>
</element>
</element>
<element name="bundle">
<field name="name">SWORD</field>
<element name="bitstreams">
<element name="bitstream">
<field name="name">sword.zip</field>
<field name="description">SWORD deposit package</field>
<field name="format">application/zip</field>
<field name="size">1208494</field>
<field name="url">https://www.investigo.biblioteca.uvigo.es/xmlui/bitstream/11093/3599/3/sword.zip</field>
<field name="checksum">2bc0e7aa5ed6c1f090d28df483ca667c</field>
<field name="checksumAlgorithm">MD5</field>
<field name="sid">3</field>
<field name="drm">open access</field>
</element>
</element>
</element>
<element name="bundle">
<field name="name">TEXT</field>
<element name="bitstreams">
<element name="bitstream">
<field name="name">Tan_yi_2022_334_Tet_tra.pdf.txt</field>
<field name="originalName">Tan_yi_2022_334_Tet_tra.pdf.txt</field>
<field name="description">Extracted text</field>
<field name="format">text/plain</field>
<field name="size">50114</field>
<field name="url">https://www.investigo.biblioteca.uvigo.es/xmlui/bitstream/11093/3599/4/Tan_yi_2022_334_Tet_tra.pdf.txt</field>
<field name="checksum">6c17a7148acb3599f9493a5d07ed52fe</field>
<field name="checksumAlgorithm">MD5</field>
<field name="sid">4</field>
<field name="drm">open access</field>
</element>
</element>
</element>
</element>
<element name="others">
<field name="handle">11093/3599</field>
<field name="identifier">oai:www.investigo.biblioteca.uvigo.es:11093/3599</field>
<field name="lastModifyDate">2023-04-11 03:18:31.531</field>
<field name="drm">open access</field>
</element>
<element name="repository">
<field name="name">Investigo</field>
<field name="mail">investigo@uvigo.es</field>
</element>
<element name="license">
</element>
</metadata>