<?xml version="1.0" encoding="UTF-8" ?>
<oai_dc:dc schemaLocation="http://www.openarchives.org/OAI/2.0/oai_dc/ http://www.openarchives.org/OAI/2.0/oai_dc.xsd">
<dc:title>A blood microRNA classifier for the prediction of ICU mortality in COVID-19 patients: a multicenter validation study</dc:title>
<dc:creator>de Gonzalo-Calvo, David</dc:creator>
<dc:creator>Molinero, Marta</dc:creator>
<dc:creator>Benítez, Iván D</dc:creator>
<dc:creator>Perez-Pons, Manel</dc:creator>
<dc:creator>García-Mateo, Nadia</dc:creator>
<dc:creator>Ortega, Alicia</dc:creator>
<dc:creator>Postigo, Tamara</dc:creator>
<dc:creator>García-Hidalgo, María C</dc:creator>
<dc:creator>Belmonte, Thalia</dc:creator>
<dc:creator>Rodríguez-Muñoz, Carlos</dc:creator>
<dc:creator>González, Jessica</dc:creator>
<dc:creator>Torres, Gerard</dc:creator>
<dc:creator>Gort-Paniello, Clara</dc:creator>
<dc:creator>Moncusí-Moix, Anna</dc:creator>
<dc:creator>Estella, Angel</dc:creator>
<dc:creator>Tamayo Lomas, Luis</dc:creator>
<dc:creator>Martínez de la Gándara, Amalia</dc:creator>
<dc:creator>Socias, Lorenzo</dc:creator>
<dc:creator>Peñasco, Yhivian</dc:creator>
<dc:creator>de la Torre, María Del Carmen</dc:creator>
<dc:creator>Bustamante-Munguira, Elena</dc:creator>
<dc:creator>Gallego Curto, Elena</dc:creator>
<dc:creator>Martínez Varela, Ignacio</dc:creator>
<dc:creator>Martin Delgado, María Cruz</dc:creator>
<dc:creator>Vidal-Cortes, Pablo</dc:creator>
<dc:creator>López Messa, Juan</dc:creator>
<dc:creator>Pérez-García, Felipe</dc:creator>
<dc:creator>Caballero, Jesús</dc:creator>
<dc:creator>Añón, José M</dc:creator>
<dc:creator>Loza-Vázquez, Ana</dc:creator>
<dc:creator>Carbonell, Nieves</dc:creator>
<dc:creator>Marin-Corral, Judith</dc:creator>
<dc:creator>Jorge García, Ruth Noemí</dc:creator>
<dc:creator>Barberà, Carmen</dc:creator>
<dc:creator>Ceccato, Adrián</dc:creator>
<dc:creator>Fernández-Barat, Laia</dc:creator>
<dc:creator>Ferrer, Ricard</dc:creator>
<dc:creator>Garcia-Gasulla, Dario</dc:creator>
<dc:creator>Lorente-Balanza, Jose Ángel</dc:creator>
<dc:creator>Menéndez, Rosario</dc:creator>
<dc:creator>Motos, Ana</dc:creator>
<dc:creator>Peñuelas, Oscar</dc:creator>
<dc:creator>Riera, Jordi</dc:creator>
<dc:creator>Bermejo-Martin, Jesús F</dc:creator>
<dc:creator>Torres, Antoni</dc:creator>
<dc:creator>Barbé, Ferran</dc:creator>
<dc:subject>Intensive Care Units</dc:subject>
<dc:subject>Prospective Studies</dc:subject>
<dc:subject>Biomarkers</dc:subject>
<dc:subject>MicroRNAs</dc:subject>
<dc:subject>Critical Illness</dc:subject>
<dc:subject>Humans</dc:subject>
<dc:subject>COVID-19</dc:subject>
<dc:subject>Retrospective Studies</dc:subject>
<dc:subject>Humanos</dc:subject>
<dc:subject>Estudios Prospectivos</dc:subject>
<dc:subject>Biomarcadores</dc:subject>
<dc:subject>Enfermedad Crítica</dc:subject>
<dc:subject>Estudios Retrospectivos</dc:subject>
<dc:subject>COVID-19</dc:subject>
<dc:subject>MicroARNs</dc:subject>
<dc:subject>Unidades de Cuidados Intensivos</dc:subject>
<dc:description>The identification of critically ill COVID-19 patients at risk of fatal outcomes remains a challenge. Here, we first validated candidate microRNAs (miRNAs) as biomarkers for clinical decision-making in critically ill patients. Second, we constructed a blood miRNA classifier for the early prediction of adverse outcomes in the ICU. This was a multicenter, observational and retrospective/prospective study including 503 critically ill patients admitted to the ICU from 19 hospitals. qPCR assays were performed in plasma samples collected within the first 48 h upon admission. A 16-miRNA panel was designed based on recently published data from our group. Nine miRNAs were validated as biomarkers of all-cause in-ICU mortality in the independent cohort of critically ill patients (FDR < 0.05). Cox regression analysis revealed that low expression levels of eight miRNAs were associated with a higher risk of death (HR from 1.56 to 2.61). LASSO regression for variable selection was used to construct a miRNA classifier. A 4-blood miRNA signature composed of miR-16-5p, miR-192-5p, miR-323a-3p and miR-451a predicts the risk of all-cause in-ICU mortality (HR 2.5). Kaplan‒Meier analysis confirmed these findings. The miRNA signature provides a significant increase in the prognostic capacity of conventional scores, APACHE-II (C-index 0.71, DeLong test p-value 0.055) and SOFA (C-index 0.67, DeLong test p-value 0.001), and a risk model based on clinical predictors (C-index 0.74, DeLong test-p-value 0.035). For 28-day and 90-day mortality, the classifier also improved the prognostic value of APACHE-II, SOFA and the clinical model. The association between the classifier and mortality persisted even after multivariable adjustment. The functional analysis reported biological pathways involved in SARS-CoV infection and inflammatory, fibrotic and transcriptional pathways. A blood miRNA classifier improves the early prediction of fatal outcomes in critically ill COVID-19 patients.</dc:description>
<dc:description>DdGC has received financial support from Instituto de Salud Carlos III (Miguel Servet 2020: CP20/00041), co-funded by the European Union. MM is the recipient of a predoctoral fellowship (PFIS 2021: FI21/00187) from Instituto de Salud Carlos III and co-funded by the European Union. MCGH is the recipient of a predoctoral fellowship from the University of Lleida. AC is supported by Instituto de Salud Carlos III (Sara Borrell 2021: CD21/00087), co-funded by the European Union. Financial support was provided by the Instituto de Salud Carlos III de Madrid (COV20/00110), co-funded by the European Union and Centro de Investigación Biomedica En Red – Enfermedades Respiratorias (CIBERES). CIBERES is an initiative of the Instituto de Salud Carlos III. Further supported by: Programa de donaciones “estar preparados”; UNESPA (Madrid, Spain); La Fundació La Marató de TV3, projecte amb codi 202108-30/-31.</dc:description>
<dc:date>2023-06-26T08:21:18Z</dc:date>
<dc:date>2023-06-26T08:21:18Z</dc:date>
<dc:date>2023-06-17</dc:date>
<dc:type>research article</dc:type>
<dc:identifier>de Gonzalo-Calvo D, Molinero M, Benítez ID, Perez-Pons M, García-Mateo N, Ortega A, et al. A blood microRNA classifier for the prediction of ICU mortality in COVID-19 patients: a multicenter validation study. Respir Res. 2023 Jun 17;24(1):159.</dc:identifier>
<dc:identifier>https://hdl.handle.net/20.500.13003/19054</dc:identifier>
<dc:identifier>10.1186/s12931-023-02462-x</dc:identifier>
<dc:identifier>1465-993X</dc:identifier>
<dc:identifier>37328754</dc:identifier>
<dc:identifier>L2023890193</dc:identifier>
<dc:language>eng</dc:language>
<dc:relation>CP20/00041</dc:relation>
<dc:relation>FI21/00187</dc:relation>
<dc:relation>CD21/00087</dc:relation>
<dc:relation>COV20/00110</dc:relation>
<dc:relation>202108-30/-31</dc:relation>
<dc:relation>https://doi.org/10.1186/s12931-023-02462-x</dc:relation>
<dc:rights>Atribución 4.0 Internacional</dc:rights>
<dc:rights>http://creativecommons.org/licenses/by/4.0/</dc:rights>
<dc:rights>open access</dc:rights>
<dc:publisher>BMC</dc:publisher>
</oai_dc:dc>
<?xml version="1.0" encoding="UTF-8" ?>
<d:DIDL schemaLocation="urn:mpeg:mpeg21:2002:02-DIDL-NS http://standards.iso.org/ittf/PubliclyAvailableStandards/MPEG-21_schema_files/did/didl.xsd">
<dcterms:created schemaLocation="http://purl.org/dc/terms/ http://dublincore.org/schemas/xmls/qdc/dcterms.xsd">2023-06-26T08:21:18Z</dcterms:created>
</d:DIDLInfo>
<d:Item id="hdl_20.500.13003_19054">
<d:Statement mimeType="application/xml; charset=utf-8">
<oai_dc:dc schemaLocation="http://www.openarchives.org/OAI/2.0/oai_dc/ http://www.openarchives.org/OAI/2.0/oai_dc.xsd">
<dc:title>A blood microRNA classifier for the prediction of ICU mortality in COVID-19 patients: a multicenter validation study</dc:title>
<dc:creator>de Gonzalo-Calvo, David</dc:creator>
<dc:creator>Molinero, Marta</dc:creator>
<dc:creator>Benítez, Iván D</dc:creator>
<dc:creator>Perez-Pons, Manel</dc:creator>
<dc:creator>García-Mateo, Nadia</dc:creator>
<dc:creator>Ortega, Alicia</dc:creator>
<dc:creator>Postigo, Tamara</dc:creator>
<dc:creator>García-Hidalgo, María C</dc:creator>
<dc:creator>Belmonte, Thalia</dc:creator>
<dc:creator>Rodríguez-Muñoz, Carlos</dc:creator>
<dc:creator>González, Jessica</dc:creator>
<dc:creator>Torres, Gerard</dc:creator>
<dc:creator>Gort-Paniello, Clara</dc:creator>
<dc:creator>Moncusí-Moix, Anna</dc:creator>
<dc:creator>Estella, Angel</dc:creator>
<dc:creator>Tamayo Lomas, Luis</dc:creator>
<dc:creator>Martínez de la Gándara, Amalia</dc:creator>
<dc:creator>Socias, Lorenzo</dc:creator>
<dc:creator>Peñasco, Yhivian</dc:creator>
<dc:creator>de la Torre, María Del Carmen</dc:creator>
<dc:creator>Bustamante-Munguira, Elena</dc:creator>
<dc:creator>Gallego Curto, Elena</dc:creator>
<dc:creator>Martínez Varela, Ignacio</dc:creator>
<dc:creator>Martin Delgado, María Cruz</dc:creator>
<dc:creator>Vidal-Cortes, Pablo</dc:creator>
<dc:creator>López Messa, Juan</dc:creator>
<dc:creator>Pérez-García, Felipe</dc:creator>
<dc:creator>Caballero, Jesús</dc:creator>
<dc:creator>Añón, José M</dc:creator>
<dc:creator>Loza-Vázquez, Ana</dc:creator>
<dc:creator>Carbonell, Nieves</dc:creator>
<dc:creator>Marin-Corral, Judith</dc:creator>
<dc:creator>Jorge García, Ruth Noemí</dc:creator>
<dc:creator>Barberà, Carmen</dc:creator>
<dc:creator>Ceccato, Adrián</dc:creator>
<dc:creator>Fernández-Barat, Laia</dc:creator>
<dc:creator>Ferrer, Ricard</dc:creator>
<dc:creator>Garcia-Gasulla, Dario</dc:creator>
<dc:creator>Lorente-Balanza, Jose Ángel</dc:creator>
<dc:creator>Menéndez, Rosario</dc:creator>
<dc:creator>Motos, Ana</dc:creator>
<dc:creator>Peñuelas, Oscar</dc:creator>
<dc:creator>Riera, Jordi</dc:creator>
<dc:creator>Bermejo-Martin, Jesús F</dc:creator>
<dc:creator>Torres, Antoni</dc:creator>
<dc:creator>Barbé, Ferran</dc:creator>
<dc:description>The identification of critically ill COVID-19 patients at risk of fatal outcomes remains a challenge. Here, we first validated candidate microRNAs (miRNAs) as biomarkers for clinical decision-making in critically ill patients. Second, we constructed a blood miRNA classifier for the early prediction of adverse outcomes in the ICU. This was a multicenter, observational and retrospective/prospective study including 503 critically ill patients admitted to the ICU from 19 hospitals. qPCR assays were performed in plasma samples collected within the first 48 h upon admission. A 16-miRNA panel was designed based on recently published data from our group. Nine miRNAs were validated as biomarkers of all-cause in-ICU mortality in the independent cohort of critically ill patients (FDR < 0.05). Cox regression analysis revealed that low expression levels of eight miRNAs were associated with a higher risk of death (HR from 1.56 to 2.61). LASSO regression for variable selection was used to construct a miRNA classifier. A 4-blood miRNA signature composed of miR-16-5p, miR-192-5p, miR-323a-3p and miR-451a predicts the risk of all-cause in-ICU mortality (HR 2.5). Kaplan‒Meier analysis confirmed these findings. The miRNA signature provides a significant increase in the prognostic capacity of conventional scores, APACHE-II (C-index 0.71, DeLong test p-value 0.055) and SOFA (C-index 0.67, DeLong test p-value 0.001), and a risk model based on clinical predictors (C-index 0.74, DeLong test-p-value 0.035). For 28-day and 90-day mortality, the classifier also improved the prognostic value of APACHE-II, SOFA and the clinical model. The association between the classifier and mortality persisted even after multivariable adjustment. The functional analysis reported biological pathways involved in SARS-CoV infection and inflammatory, fibrotic and transcriptional pathways. A blood miRNA classifier improves the early prediction of fatal outcomes in critically ill COVID-19 patients.</dc:description>
<dc:date>2023-06-26T08:21:18Z</dc:date>
<dc:date>2023-06-26T08:21:18Z</dc:date>
<dc:date>2023-06-17</dc:date>
<dc:type>research article</dc:type>
<dc:identifier>de Gonzalo-Calvo D, Molinero M, Benítez ID, Perez-Pons M, García-Mateo N, Ortega A, et al. A blood microRNA classifier for the prediction of ICU mortality in COVID-19 patients: a multicenter validation study. Respir Res. 2023 Jun 17;24(1):159.</dc:identifier>
<dc:identifier>https://hdl.handle.net/20.500.13003/19054</dc:identifier>
<dc:identifier>10.1186/s12931-023-02462-x</dc:identifier>
<dc:identifier>1465-993X</dc:identifier>
<dc:identifier>37328754</dc:identifier>
<dc:identifier>L2023890193</dc:identifier>
<dc:language>eng</dc:language>
<dc:relation>CP20/00041</dc:relation>
<dc:relation>FI21/00187</dc:relation>
<dc:relation>CD21/00087</dc:relation>
<dc:relation>COV20/00110</dc:relation>
<dc:relation>202108-30/-31</dc:relation>
<dc:relation>https://doi.org/10.1186/s12931-023-02462-x</dc:relation>
<dc:rights>http://creativecommons.org/licenses/by/4.0/</dc:rights>
<dc:rights>open access</dc:rights>
<dc:rights>Atribución 4.0 Internacional</dc:rights>
<dc:publisher>BMC</dc:publisher>
</oai_dc:dc>
</d:Statement>
</d:Descriptor>
<d:Component id="20.500.13003_19054_1">
</d:Component>
</d:Item>
</d:DIDL>
<?xml version="1.0" encoding="UTF-8" ?>
<dim:dim schemaLocation="http://www.dspace.org/xmlns/dspace/dim http://www.dspace.org/schema/dim.xsd">
<dim:field authority="17cfb69c-f725-422f-84c5-2937e32edfd8" confidence="500" element="contributor" mdschema="dc" orcid_id="" qualifier="author">de Gonzalo-Calvo, David</dim:field>
<dim:field authority="2661dd26-9187-4f38-b44b-dc479bdc3dbb" confidence="500" element="contributor" mdschema="dc" orcid_id="" qualifier="author">Molinero, Marta</dim:field>
<dim:field authority="44642a3a-1ee0-4751-9b55-75652d8babae" confidence="500" element="contributor" mdschema="dc" orcid_id="" qualifier="author">Benítez, Iván D</dim:field>
<dim:field authority="f2ab1c6c-b388-4ca9-a79b-fa13718d56a2" confidence="500" element="contributor" mdschema="dc" orcid_id="" qualifier="author">Perez-Pons, Manel</dim:field>
<dim:field authority="7287d9a0-ad1c-4eda-9b96-6269bfd0c4a6" confidence="500" element="contributor" mdschema="dc" orcid_id="" qualifier="author">García-Mateo, Nadia</dim:field>
<dim:field authority="84766d19-52f0-4728-86e5-35ee995cbd3f" confidence="500" element="contributor" mdschema="dc" orcid_id="" qualifier="author">Ortega, Alicia</dim:field>
<dim:field authority="94d5bfb3-fafd-4332-9854-6d0446d08bc8" confidence="500" element="contributor" mdschema="dc" orcid_id="" qualifier="author">Postigo, Tamara</dim:field>
<dim:field authority="17af276d-a396-44cf-8d92-9e2772b076c9" confidence="500" element="contributor" mdschema="dc" orcid_id="" qualifier="author">García-Hidalgo, María C</dim:field>
<dim:field authority="f43a8924-45b9-4d56-88c8-2d3aeed437c3" confidence="500" element="contributor" mdschema="dc" orcid_id="" qualifier="author">Belmonte, Thalia</dim:field>
<dim:field authority="1fa858db-a5fa-43ef-b95b-5596e32d49e2" confidence="500" element="contributor" mdschema="dc" orcid_id="" qualifier="author">Rodríguez-Muñoz, Carlos</dim:field>
<dim:field authority="f8c86526-de07-4ca3-ab7a-e7d93191a322" confidence="500" element="contributor" mdschema="dc" orcid_id="" qualifier="author">González, Jessica</dim:field>
<dim:field authority="c0ddc400-3985-45a8-a395-dddfff05d746" confidence="500" element="contributor" mdschema="dc" orcid_id="" qualifier="author">Torres, Gerard</dim:field>
<dim:field authority="164c2815-5db5-4cf8-87a8-d6536e797a46" confidence="500" element="contributor" mdschema="dc" orcid_id="" qualifier="author">Gort-Paniello, Clara</dim:field>
<dim:field authority="3520fb22-e066-43c5-a8e0-e3efbe8c42ef" confidence="500" element="contributor" mdschema="dc" orcid_id="" qualifier="author">Moncusí-Moix, Anna</dim:field>
<dim:field authority="2069d031-9789-44c2-b6b9-24fdd0b158dd" confidence="500" element="contributor" mdschema="dc" orcid_id="" qualifier="author">Estella, Angel</dim:field>
<dim:field authority="c5bdec03-a0ad-4f0e-aa86-6a7da563ae85" confidence="500" element="contributor" mdschema="dc" orcid_id="" qualifier="author">Tamayo Lomas, Luis</dim:field>
<dim:field authority="dcbbe5ec-0378-456d-91a9-e77ae5627395" confidence="500" element="contributor" mdschema="dc" orcid_id="" qualifier="author">Martínez de la Gándara, Amalia</dim:field>
<dim:field authority="905" confidence="500" element="contributor" mdschema="dc" orcid_id="" qualifier="author">Socias, Lorenzo</dim:field>
<dim:field authority="6227d4ae-e7d5-4c0c-b1f4-2a7e6b5f91b7" confidence="500" element="contributor" mdschema="dc" orcid_id="" qualifier="author">Peñasco, Yhivian</dim:field>
<dim:field authority="7a12ffff-d588-4ad1-a13c-8050e8b440e0" confidence="500" element="contributor" mdschema="dc" orcid_id="" qualifier="author">de la Torre, María Del Carmen</dim:field>
<dim:field authority="76afe29a-0214-424a-8242-bf7a0b634849" confidence="500" element="contributor" mdschema="dc" orcid_id="" qualifier="author">Bustamante-Munguira, Elena</dim:field>
<dim:field authority="d77fe33f-7884-40bf-a79f-530e8e5c4da3" confidence="500" element="contributor" mdschema="dc" orcid_id="" qualifier="author">Gallego Curto, Elena</dim:field>
<dim:field authority="ece8dbb3-158f-4287-94cb-9e5e5331df8f" confidence="500" element="contributor" mdschema="dc" orcid_id="" qualifier="author">Martínez Varela, Ignacio</dim:field>
<dim:field authority="4d101661-0021-48a8-b6e0-fc1154579a15" confidence="500" element="contributor" mdschema="dc" orcid_id="" qualifier="author">Martin Delgado, María Cruz</dim:field>
<dim:field authority="2ad5235e-b66f-45be-b9c5-3a5acb6e6c01" confidence="500" element="contributor" mdschema="dc" orcid_id="" qualifier="author">Vidal-Cortes, Pablo</dim:field>
<dim:field authority="e6cf38a8-13d8-42ef-9615-c557223ee3c9" confidence="500" element="contributor" mdschema="dc" orcid_id="" qualifier="author">López Messa, Juan</dim:field>
<dim:field authority="439ae9ba-75c5-45fa-84e2-a82c91dcabb8" confidence="500" element="contributor" mdschema="dc" orcid_id="" qualifier="author">Pérez-García, Felipe</dim:field>
<dim:field authority="348f13b3-cd66-4017-8fca-7e16c75b9fd5" confidence="500" element="contributor" mdschema="dc" orcid_id="" qualifier="author">Caballero, Jesús</dim:field>
<dim:field authority="8f8bf5e8-dabc-4d7d-8ce2-e1b15388a76e" confidence="500" element="contributor" mdschema="dc" orcid_id="" qualifier="author">Añón, José M</dim:field>
<dim:field authority="d6da8a7a-83a9-4f75-83b0-386f70f8e52f" confidence="500" element="contributor" mdschema="dc" orcid_id="" qualifier="author">Loza-Vázquez, Ana</dim:field>
<dim:field authority="7cfad45b-bd97-4313-aaff-caba9d58ac7d" confidence="500" element="contributor" mdschema="dc" orcid_id="" qualifier="author">Carbonell, Nieves</dim:field>
<dim:field authority="a94a8438-e93e-4576-b53f-031532816d11" confidence="500" element="contributor" mdschema="dc" orcid_id="" qualifier="author">Marin-Corral, Judith</dim:field>
<dim:field authority="9f3c0004-9ef3-49ff-8bf2-326036c5ac2c" confidence="500" element="contributor" mdschema="dc" orcid_id="" qualifier="author">Jorge García, Ruth Noemí</dim:field>
<dim:field authority="462a7602-9926-4938-96e9-7bf44897b455" confidence="500" element="contributor" mdschema="dc" orcid_id="" qualifier="author">Barberà, Carmen</dim:field>
<dim:field authority="65003db6-6bf4-4b08-bb94-3656567270a2" confidence="500" element="contributor" mdschema="dc" orcid_id="" qualifier="author">Ceccato, Adrián</dim:field>
<dim:field authority="16eee3da-50b0-4433-98ad-64e793a51be5" confidence="500" element="contributor" mdschema="dc" orcid_id="" qualifier="author">Fernández-Barat, Laia</dim:field>
<dim:field authority="04bcfb5d-c973-4e26-ab9a-af10a95e99d9" confidence="500" element="contributor" mdschema="dc" orcid_id="" qualifier="author">Ferrer, Ricard</dim:field>
<dim:field authority="22f83f9e-15ec-4798-9a21-ceb878e32d47" confidence="500" element="contributor" mdschema="dc" orcid_id="" qualifier="author">Garcia-Gasulla, Dario</dim:field>
<dim:field authority="c68bee1f-f990-4f70-bcf8-b89e42dcadf1" confidence="500" element="contributor" mdschema="dc" orcid_id="" qualifier="author">Lorente-Balanza, Jose Ángel</dim:field>
<dim:field authority="84ac08fe-8087-442b-b9f4-dfd5bb2fc85f" confidence="500" element="contributor" mdschema="dc" orcid_id="" qualifier="author">Menéndez, Rosario</dim:field>
<dim:field authority="261cf89a-a9e0-40c7-8ed9-4ca1530e09f7" confidence="500" element="contributor" mdschema="dc" orcid_id="" qualifier="author">Motos, Ana</dim:field>
<dim:field authority="2053f3c6-d8f6-488e-9c61-d36412e4f077" confidence="500" element="contributor" mdschema="dc" orcid_id="" qualifier="author">Peñuelas, Oscar</dim:field>
<dim:field authority="69b45758-39e6-4c43-ba25-ff23bc59e8a5" confidence="500" element="contributor" mdschema="dc" orcid_id="" qualifier="author">Riera, Jordi</dim:field>
<dim:field authority="02c3af95-52ae-41f9-9c5b-dc64026b8a01" confidence="500" element="contributor" mdschema="dc" orcid_id="" qualifier="author">Bermejo-Martin, Jesús F</dim:field>
<dim:field authority="7a4e1216-4d77-4f69-a13e-c555b11f45d6" confidence="500" element="contributor" mdschema="dc" orcid_id="" qualifier="author">Torres, Antoni</dim:field>
<dim:field authority="3b5a764d-75b3-4dc9-83d1-0016c29bd300" confidence="500" element="contributor" mdschema="dc" orcid_id="" qualifier="author">Barbé, Ferran</dim:field>
<dim:field element="date" mdschema="dc" qualifier="accessioned">2023-06-26T08:21:18Z</dim:field>
<dim:field element="date" mdschema="dc" qualifier="available">2023-06-26T08:21:18Z</dim:field>
<dim:field element="date" mdschema="dc" qualifier="issued">2023-06-17</dim:field>
<dim:field element="identifier" lang="en" mdschema="dc" qualifier="citation">de Gonzalo-Calvo D, Molinero M, Benítez ID, Perez-Pons M, García-Mateo N, Ortega A, et al. A blood microRNA classifier for the prediction of ICU mortality in COVID-19 patients: a multicenter validation study. Respir Res. 2023 Jun 17;24(1):159.</dim:field>
<dim:field element="identifier" mdschema="dc" qualifier="uri">https://hdl.handle.net/20.500.13003/19054</dim:field>
<dim:field element="identifier" mdschema="dc" qualifier="doi">10.1186/s12931-023-02462-x</dim:field>
<dim:field element="identifier" mdschema="dc" qualifier="essn">1465-993X</dim:field>
<dim:field element="identifier" mdschema="dc" qualifier="pmid">37328754</dim:field>
<dim:field element="identifier" mdschema="dc" qualifier="pui">L2023890193</dim:field>
<dim:field element="description" lang="en" mdschema="dc" qualifier="abstract">The identification of critically ill COVID-19 patients at risk of fatal outcomes remains a challenge. Here, we first validated candidate microRNAs (miRNAs) as biomarkers for clinical decision-making in critically ill patients. Second, we constructed a blood miRNA classifier for the early prediction of adverse outcomes in the ICU. This was a multicenter, observational and retrospective/prospective study including 503 critically ill patients admitted to the ICU from 19 hospitals. qPCR assays were performed in plasma samples collected within the first 48 h upon admission. A 16-miRNA panel was designed based on recently published data from our group. Nine miRNAs were validated as biomarkers of all-cause in-ICU mortality in the independent cohort of critically ill patients (FDR < 0.05). Cox regression analysis revealed that low expression levels of eight miRNAs were associated with a higher risk of death (HR from 1.56 to 2.61). LASSO regression for variable selection was used to construct a miRNA classifier. A 4-blood miRNA signature composed of miR-16-5p, miR-192-5p, miR-323a-3p and miR-451a predicts the risk of all-cause in-ICU mortality (HR 2.5). Kaplan‒Meier analysis confirmed these findings. The miRNA signature provides a significant increase in the prognostic capacity of conventional scores, APACHE-II (C-index 0.71, DeLong test p-value 0.055) and SOFA (C-index 0.67, DeLong test p-value 0.001), and a risk model based on clinical predictors (C-index 0.74, DeLong test-p-value 0.035). For 28-day and 90-day mortality, the classifier also improved the prognostic value of APACHE-II, SOFA and the clinical model. The association between the classifier and mortality persisted even after multivariable adjustment. The functional analysis reported biological pathways involved in SARS-CoV infection and inflammatory, fibrotic and transcriptional pathways. A blood miRNA classifier improves the early prediction of fatal outcomes in critically ill COVID-19 patients.</dim:field>
<dim:field element="description" lang="en" mdschema="dc" qualifier="fundingtext">DdGC has received financial support from Instituto de Salud Carlos III (Miguel Servet 2020: CP20/00041), co-funded by the European Union. MM is the recipient of a predoctoral fellowship (PFIS 2021: FI21/00187) from Instituto de Salud Carlos III and co-funded by the European Union. MCGH is the recipient of a predoctoral fellowship from the University of Lleida. AC is supported by Instituto de Salud Carlos III (Sara Borrell 2021: CD21/00087), co-funded by the European Union. Financial support was provided by the Instituto de Salud Carlos III de Madrid (COV20/00110), co-funded by the European Union and Centro de Investigación Biomedica En Red – Enfermedades Respiratorias (CIBERES). CIBERES is an initiative of the Instituto de Salud Carlos III. Further supported by: Programa de donaciones “estar preparados”; UNESPA (Madrid, Spain); La Fundació La Marató de TV3, projecte amb codi 202108-30/-31.</dim:field>
<dim:field element="language" lang="en" mdschema="dc" qualifier="iso">eng</dim:field>
<dim:field element="publisher" lang="en" mdschema="dc">BMC</dim:field>
<dim:field element="rights" lang="*" mdschema="dc">Atribución 4.0 Internacional</dim:field>
<dim:field element="rights" lang="*" mdschema="dc" qualifier="uri">http://creativecommons.org/licenses/by/4.0/</dim:field>
<dim:field element="rights" lang="en" mdschema="dc" qualifier="accessRights">open access</dim:field>
<dim:field authority="D007362" confidence="500" element="subject" lang="*" mdschema="dc" qualifier="mesh">Intensive Care Units</dim:field>
<dim:field authority="D011446" confidence="500" element="subject" lang="*" mdschema="dc" qualifier="mesh">Prospective Studies</dim:field>
<dim:field authority="D015415" confidence="500" element="subject" lang="*" mdschema="dc" qualifier="mesh">Biomarkers</dim:field>
<dim:field authority="D035683" confidence="500" element="subject" lang="*" mdschema="dc" qualifier="mesh">MicroRNAs</dim:field>
<dim:field authority="D016638" confidence="500" element="subject" lang="*" mdschema="dc" qualifier="mesh">Critical Illness</dim:field>
<dim:field authority="D006801" confidence="500" element="subject" lang="*" mdschema="dc" qualifier="mesh">Humans</dim:field>
<dim:field authority="D000086382" confidence="500" element="subject" lang="*" mdschema="dc" qualifier="mesh">COVID-19</dim:field>
<dim:field authority="D012189" confidence="500" element="subject" lang="*" mdschema="dc" qualifier="mesh">Retrospective Studies</dim:field>
<dim:field authority="DECSD006801" confidence="500" element="subject" lang="*" mdschema="dc" qualifier="decs">Humanos</dim:field>
<dim:field authority="DECSD011446" confidence="500" element="subject" lang="*" mdschema="dc" qualifier="decs">Estudios Prospectivos</dim:field>
<dim:field authority="DECSD015415" confidence="500" element="subject" lang="*" mdschema="dc" qualifier="decs">Biomarcadores</dim:field>
<dim:field authority="DECSD016638" confidence="500" element="subject" lang="*" mdschema="dc" qualifier="decs">Enfermedad Crítica</dim:field>
<dim:field authority="DECSD012189" confidence="500" element="subject" lang="*" mdschema="dc" qualifier="decs">Estudios Retrospectivos</dim:field>
<dim:field authority="DECSD000086382" confidence="500" element="subject" lang="*" mdschema="dc" qualifier="decs">COVID-19</dim:field>
<dim:field authority="DECSD035683" confidence="500" element="subject" lang="*" mdschema="dc" qualifier="decs">MicroARNs</dim:field>
<dim:field authority="DECSD007362" confidence="500" element="subject" lang="*" mdschema="dc" qualifier="decs">Unidades de Cuidados Intensivos</dim:field>
<dim:field element="title" lang="en" mdschema="dc">A blood microRNA classifier for the prediction of ICU mortality in COVID-19 patients: a multicenter validation study</dim:field>
<dim:field element="type" lang="en" mdschema="dc">research article</dim:field>
<dim:field element="issue" lang="en" mdschema="dc" qualifier="number">1</dim:field>
<dim:field element="journal" lang="en" mdschema="dc" qualifier="title">Respiratory research</dim:field>
<dim:field element="page" lang="en" mdschema="dc" qualifier="initial">159</dim:field>
<dim:field element="relation" lang="en" mdschema="dc" qualifier="projectID">CP20/00041</dim:field>
<dim:field element="relation" lang="en" mdschema="dc" qualifier="projectID">FI21/00187</dim:field>
<dim:field element="relation" lang="en" mdschema="dc" qualifier="projectID">CD21/00087</dim:field>
<dim:field element="relation" lang="en" mdschema="dc" qualifier="projectID">COV20/00110</dim:field>
<dim:field element="relation" lang="en" mdschema="dc" qualifier="projectID">202108-30/-31</dim:field>
<dim:field element="relation" lang="en" mdschema="dc" qualifier="publisherversion">https://doi.org/10.1186/s12931-023-02462-x</dim:field>
<dim:field element="volume" lang="en" mdschema="dc" qualifier="number">24</dim:field>
</dim:dim>
<?xml version="1.0" encoding="UTF-8" ?>
<thesis schemaLocation="http://www.ndltd.org/standards/metadata/etdms/1.0/ http://www.ndltd.org/standards/metadata/etdms/1.0/etdms.xsd">
<title>A blood microRNA classifier for the prediction of ICU mortality in COVID-19 patients: a multicenter validation study</title>
<creator>de Gonzalo-Calvo, David</creator>
<creator>Molinero, Marta</creator>
<creator>Benítez, Iván D</creator>
<creator>Perez-Pons, Manel</creator>
<creator>García-Mateo, Nadia</creator>
<creator>Ortega, Alicia</creator>
<creator>Postigo, Tamara</creator>
<creator>García-Hidalgo, María C</creator>
<creator>Belmonte, Thalia</creator>
<creator>Rodríguez-Muñoz, Carlos</creator>
<creator>González, Jessica</creator>
<creator>Torres, Gerard</creator>
<creator>Gort-Paniello, Clara</creator>
<creator>Moncusí-Moix, Anna</creator>
<creator>Estella, Angel</creator>
<creator>Tamayo Lomas, Luis</creator>
<creator>Martínez de la Gándara, Amalia</creator>
<creator>Socias, Lorenzo</creator>
<creator>Peñasco, Yhivian</creator>
<creator>de la Torre, María Del Carmen</creator>
<creator>Bustamante-Munguira, Elena</creator>
<creator>Gallego Curto, Elena</creator>
<creator>Martínez Varela, Ignacio</creator>
<creator>Martin Delgado, María Cruz</creator>
<creator>Vidal-Cortes, Pablo</creator>
<creator>López Messa, Juan</creator>
<creator>Pérez-García, Felipe</creator>
<creator>Caballero, Jesús</creator>
<creator>Añón, José M</creator>
<creator>Loza-Vázquez, Ana</creator>
<creator>Carbonell, Nieves</creator>
<creator>Marin-Corral, Judith</creator>
<creator>Jorge García, Ruth Noemí</creator>
<creator>Barberà, Carmen</creator>
<creator>Ceccato, Adrián</creator>
<creator>Fernández-Barat, Laia</creator>
<creator>Ferrer, Ricard</creator>
<creator>Garcia-Gasulla, Dario</creator>
<creator>Lorente-Balanza, Jose Ángel</creator>
<creator>Menéndez, Rosario</creator>
<creator>Motos, Ana</creator>
<creator>Peñuelas, Oscar</creator>
<creator>Riera, Jordi</creator>
<creator>Bermejo-Martin, Jesús F</creator>
<creator>Torres, Antoni</creator>
<creator>Barbé, Ferran</creator>
<description>The identification of critically ill COVID-19 patients at risk of fatal outcomes remains a challenge. Here, we first validated candidate microRNAs (miRNAs) as biomarkers for clinical decision-making in critically ill patients. Second, we constructed a blood miRNA classifier for the early prediction of adverse outcomes in the ICU. This was a multicenter, observational and retrospective/prospective study including 503 critically ill patients admitted to the ICU from 19 hospitals. qPCR assays were performed in plasma samples collected within the first 48 h upon admission. A 16-miRNA panel was designed based on recently published data from our group. Nine miRNAs were validated as biomarkers of all-cause in-ICU mortality in the independent cohort of critically ill patients (FDR < 0.05). Cox regression analysis revealed that low expression levels of eight miRNAs were associated with a higher risk of death (HR from 1.56 to 2.61). LASSO regression for variable selection was used to construct a miRNA classifier. A 4-blood miRNA signature composed of miR-16-5p, miR-192-5p, miR-323a-3p and miR-451a predicts the risk of all-cause in-ICU mortality (HR 2.5). Kaplan‒Meier analysis confirmed these findings. The miRNA signature provides a significant increase in the prognostic capacity of conventional scores, APACHE-II (C-index 0.71, DeLong test p-value 0.055) and SOFA (C-index 0.67, DeLong test p-value 0.001), and a risk model based on clinical predictors (C-index 0.74, DeLong test-p-value 0.035). For 28-day and 90-day mortality, the classifier also improved the prognostic value of APACHE-II, SOFA and the clinical model. The association between the classifier and mortality persisted even after multivariable adjustment. The functional analysis reported biological pathways involved in SARS-CoV infection and inflammatory, fibrotic and transcriptional pathways. A blood miRNA classifier improves the early prediction of fatal outcomes in critically ill COVID-19 patients.</description>
<date>2023-06-26</date>
<date>2023-06-26</date>
<date>2023-06-17</date>
<type>research article</type>
<identifier>de Gonzalo-Calvo D, Molinero M, Benítez ID, Perez-Pons M, García-Mateo N, Ortega A, et al. A blood microRNA classifier for the prediction of ICU mortality in COVID-19 patients: a multicenter validation study. Respir Res. 2023 Jun 17;24(1):159.</identifier>
<identifier>https://hdl.handle.net/20.500.13003/19054</identifier>
<identifier>10.1186/s12931-023-02462-x</identifier>
<identifier>1465-993X</identifier>
<identifier>37328754</identifier>
<identifier>L2023890193</identifier>
<language>eng</language>
<relation>CP20/00041</relation>
<relation>FI21/00187</relation>
<relation>CD21/00087</relation>
<relation>COV20/00110</relation>
<relation>202108-30/-31</relation>
<relation>https://doi.org/10.1186/s12931-023-02462-x</relation>
<rights>http://creativecommons.org/licenses/by/4.0/</rights>
<rights>open access</rights>
<rights>Atribución 4.0 Internacional</rights>
<publisher>BMC</publisher>
</thesis>
<?xml version="1.0" encoding="UTF-8" ?>
<record schemaLocation="http://www.loc.gov/MARC21/slim http://www.loc.gov/standards/marcxml/schema/MARC21slim.xsd">
<leader>00925njm 22002777a 4500</leader>
<datafield ind1=" " ind2=" " tag="042">
<subfield code="a">dc</subfield>
</datafield>
<datafield ind1=" " ind2=" " tag="720">
<subfield code="a">de Gonzalo-Calvo, David</subfield>
<subfield code="e">author</subfield>
</datafield>
<datafield ind1=" " ind2=" " tag="720">
<subfield code="a">Molinero, Marta</subfield>
<subfield code="e">author</subfield>
</datafield>
<datafield ind1=" " ind2=" " tag="720">
<subfield code="a">Benítez, Iván D</subfield>
<subfield code="e">author</subfield>
</datafield>
<datafield ind1=" " ind2=" " tag="720">
<subfield code="a">Perez-Pons, Manel</subfield>
<subfield code="e">author</subfield>
</datafield>
<datafield ind1=" " ind2=" " tag="720">
<subfield code="a">García-Mateo, Nadia</subfield>
<subfield code="e">author</subfield>
</datafield>
<datafield ind1=" " ind2=" " tag="720">
<subfield code="a">Ortega, Alicia</subfield>
<subfield code="e">author</subfield>
</datafield>
<datafield ind1=" " ind2=" " tag="720">
<subfield code="a">Postigo, Tamara</subfield>
<subfield code="e">author</subfield>
</datafield>
<datafield ind1=" " ind2=" " tag="720">
<subfield code="a">García-Hidalgo, María C</subfield>
<subfield code="e">author</subfield>
</datafield>
<datafield ind1=" " ind2=" " tag="720">
<subfield code="a">Belmonte, Thalia</subfield>
<subfield code="e">author</subfield>
</datafield>
<datafield ind1=" " ind2=" " tag="720">
<subfield code="a">Rodríguez-Muñoz, Carlos</subfield>
<subfield code="e">author</subfield>
</datafield>
<datafield ind1=" " ind2=" " tag="720">
<subfield code="a">González, Jessica</subfield>
<subfield code="e">author</subfield>
</datafield>
<datafield ind1=" " ind2=" " tag="720">
<subfield code="a">Torres, Gerard</subfield>
<subfield code="e">author</subfield>
</datafield>
<datafield ind1=" " ind2=" " tag="720">
<subfield code="a">Gort-Paniello, Clara</subfield>
<subfield code="e">author</subfield>
</datafield>
<datafield ind1=" " ind2=" " tag="720">
<subfield code="a">Moncusí-Moix, Anna</subfield>
<subfield code="e">author</subfield>
</datafield>
<datafield ind1=" " ind2=" " tag="720">
<subfield code="a">Estella, Angel</subfield>
<subfield code="e">author</subfield>
</datafield>
<datafield ind1=" " ind2=" " tag="720">
<subfield code="a">Tamayo Lomas, Luis</subfield>
<subfield code="e">author</subfield>
</datafield>
<datafield ind1=" " ind2=" " tag="720">
<subfield code="a">Martínez de la Gándara, Amalia</subfield>
<subfield code="e">author</subfield>
</datafield>
<datafield ind1=" " ind2=" " tag="720">
<subfield code="a">Socias, Lorenzo</subfield>
<subfield code="e">author</subfield>
</datafield>
<datafield ind1=" " ind2=" " tag="720">
<subfield code="a">Peñasco, Yhivian</subfield>
<subfield code="e">author</subfield>
</datafield>
<datafield ind1=" " ind2=" " tag="720">
<subfield code="a">de la Torre, María Del Carmen</subfield>
<subfield code="e">author</subfield>
</datafield>
<datafield ind1=" " ind2=" " tag="720">
<subfield code="a">Bustamante-Munguira, Elena</subfield>
<subfield code="e">author</subfield>
</datafield>
<datafield ind1=" " ind2=" " tag="720">
<subfield code="a">Gallego Curto, Elena</subfield>
<subfield code="e">author</subfield>
</datafield>
<datafield ind1=" " ind2=" " tag="720">
<subfield code="a">Martínez Varela, Ignacio</subfield>
<subfield code="e">author</subfield>
</datafield>
<datafield ind1=" " ind2=" " tag="720">
<subfield code="a">Martin Delgado, María Cruz</subfield>
<subfield code="e">author</subfield>
</datafield>
<datafield ind1=" " ind2=" " tag="720">
<subfield code="a">Vidal-Cortes, Pablo</subfield>
<subfield code="e">author</subfield>
</datafield>
<datafield ind1=" " ind2=" " tag="720">
<subfield code="a">López Messa, Juan</subfield>
<subfield code="e">author</subfield>
</datafield>
<datafield ind1=" " ind2=" " tag="720">
<subfield code="a">Pérez-García, Felipe</subfield>
<subfield code="e">author</subfield>
</datafield>
<datafield ind1=" " ind2=" " tag="720">
<subfield code="a">Caballero, Jesús</subfield>
<subfield code="e">author</subfield>
</datafield>
<datafield ind1=" " ind2=" " tag="720">
<subfield code="a">Añón, José M</subfield>
<subfield code="e">author</subfield>
</datafield>
<datafield ind1=" " ind2=" " tag="720">
<subfield code="a">Loza-Vázquez, Ana</subfield>
<subfield code="e">author</subfield>
</datafield>
<datafield ind1=" " ind2=" " tag="720">
<subfield code="a">Carbonell, Nieves</subfield>
<subfield code="e">author</subfield>
</datafield>
<datafield ind1=" " ind2=" " tag="720">
<subfield code="a">Marin-Corral, Judith</subfield>
<subfield code="e">author</subfield>
</datafield>
<datafield ind1=" " ind2=" " tag="720">
<subfield code="a">Jorge García, Ruth Noemí</subfield>
<subfield code="e">author</subfield>
</datafield>
<datafield ind1=" " ind2=" " tag="720">
<subfield code="a">Barberà, Carmen</subfield>
<subfield code="e">author</subfield>
</datafield>
<datafield ind1=" " ind2=" " tag="720">
<subfield code="a">Ceccato, Adrián</subfield>
<subfield code="e">author</subfield>
</datafield>
<datafield ind1=" " ind2=" " tag="720">
<subfield code="a">Fernández-Barat, Laia</subfield>
<subfield code="e">author</subfield>
</datafield>
<datafield ind1=" " ind2=" " tag="720">
<subfield code="a">Ferrer, Ricard</subfield>
<subfield code="e">author</subfield>
</datafield>
<datafield ind1=" " ind2=" " tag="720">
<subfield code="a">Garcia-Gasulla, Dario</subfield>
<subfield code="e">author</subfield>
</datafield>
<datafield ind1=" " ind2=" " tag="720">
<subfield code="a">Lorente-Balanza, Jose Ángel</subfield>
<subfield code="e">author</subfield>
</datafield>
<datafield ind1=" " ind2=" " tag="720">
<subfield code="a">Menéndez, Rosario</subfield>
<subfield code="e">author</subfield>
</datafield>
<datafield ind1=" " ind2=" " tag="720">
<subfield code="a">Motos, Ana</subfield>
<subfield code="e">author</subfield>
</datafield>
<datafield ind1=" " ind2=" " tag="720">
<subfield code="a">Peñuelas, Oscar</subfield>
<subfield code="e">author</subfield>
</datafield>
<datafield ind1=" " ind2=" " tag="720">
<subfield code="a">Riera, Jordi</subfield>
<subfield code="e">author</subfield>
</datafield>
<datafield ind1=" " ind2=" " tag="720">
<subfield code="a">Bermejo-Martin, Jesús F</subfield>
<subfield code="e">author</subfield>
</datafield>
<datafield ind1=" " ind2=" " tag="720">
<subfield code="a">Torres, Antoni</subfield>
<subfield code="e">author</subfield>
</datafield>
<datafield ind1=" " ind2=" " tag="720">
<subfield code="a">Barbé, Ferran</subfield>
<subfield code="e">author</subfield>
</datafield>
<datafield ind1=" " ind2=" " tag="260">
<subfield code="c">2023-06-17</subfield>
</datafield>
<datafield ind1=" " ind2=" " tag="520">
<subfield code="a">The identification of critically ill COVID-19 patients at risk of fatal outcomes remains a challenge. Here, we first validated candidate microRNAs (miRNAs) as biomarkers for clinical decision-making in critically ill patients. Second, we constructed a blood miRNA classifier for the early prediction of adverse outcomes in the ICU. This was a multicenter, observational and retrospective/prospective study including 503 critically ill patients admitted to the ICU from 19 hospitals. qPCR assays were performed in plasma samples collected within the first 48 h upon admission. A 16-miRNA panel was designed based on recently published data from our group. Nine miRNAs were validated as biomarkers of all-cause in-ICU mortality in the independent cohort of critically ill patients (FDR < 0.05). Cox regression analysis revealed that low expression levels of eight miRNAs were associated with a higher risk of death (HR from 1.56 to 2.61). LASSO regression for variable selection was used to construct a miRNA classifier. A 4-blood miRNA signature composed of miR-16-5p, miR-192-5p, miR-323a-3p and miR-451a predicts the risk of all-cause in-ICU mortality (HR 2.5). Kaplan‒Meier analysis confirmed these findings. The miRNA signature provides a significant increase in the prognostic capacity of conventional scores, APACHE-II (C-index 0.71, DeLong test p-value 0.055) and SOFA (C-index 0.67, DeLong test p-value 0.001), and a risk model based on clinical predictors (C-index 0.74, DeLong test-p-value 0.035). For 28-day and 90-day mortality, the classifier also improved the prognostic value of APACHE-II, SOFA and the clinical model. The association between the classifier and mortality persisted even after multivariable adjustment. The functional analysis reported biological pathways involved in SARS-CoV infection and inflammatory, fibrotic and transcriptional pathways. A blood miRNA classifier improves the early prediction of fatal outcomes in critically ill COVID-19 patients.</subfield>
</datafield>
<datafield ind1="8" ind2=" " tag="024">
<subfield code="a">de Gonzalo-Calvo D, Molinero M, Benítez ID, Perez-Pons M, García-Mateo N, Ortega A, et al. A blood microRNA classifier for the prediction of ICU mortality in COVID-19 patients: a multicenter validation study. Respir Res. 2023 Jun 17;24(1):159.</subfield>
</datafield>
<datafield ind1="8" ind2=" " tag="024">
<subfield code="a">https://hdl.handle.net/20.500.13003/19054</subfield>
</datafield>
<datafield ind1="8" ind2=" " tag="024">
<subfield code="a">10.1186/s12931-023-02462-x</subfield>
</datafield>
<datafield ind1="8" ind2=" " tag="024">
<subfield code="a">1465-993X</subfield>
</datafield>
<datafield ind1="8" ind2=" " tag="024">
<subfield code="a">37328754</subfield>
</datafield>
<datafield ind1="8" ind2=" " tag="024">
<subfield code="a">L2023890193</subfield>
</datafield>
<datafield ind1="0" ind2="0" tag="245">
<subfield code="a">A blood microRNA classifier for the prediction of ICU mortality in COVID-19 patients: a multicenter validation study</subfield>
</datafield>
</record>
<?xml version="1.0" encoding="UTF-8" ?>
<mets ID=" DSpace_ITEM_20.500.13003-19054" OBJID=" hdl:20.500.13003/19054" PROFILE="DSpace METS SIP Profile 1.0" TYPE="DSpace ITEM" schemaLocation="http://www.loc.gov/METS/ http://www.loc.gov/standards/mets/mets.xsd">
<dmdSec ID="DMD_20.500.13003_19054">
<xmlData schemaLocation="http://www.loc.gov/mods/v3 http://www.loc.gov/standards/mods/v3/mods-3-1.xsd">
<mods:mods schemaLocation="http://www.loc.gov/mods/v3 http://www.loc.gov/standards/mods/v3/mods-3-1.xsd">
<mods:dateAccessioned encoding="iso8601">2023-06-26T08:21:18Z</mods:dateAccessioned>
</mods:extension>
<mods:dateAvailable encoding="iso8601">2023-06-26T08:21:18Z</mods:dateAvailable>
</mods:extension>
<mods:dateIssued encoding="iso8601">2023-06-17</mods:dateIssued>
</mods:originInfo>
<mods:identifier type="citation">de Gonzalo-Calvo D, Molinero M, Benítez ID, Perez-Pons M, García-Mateo N, Ortega A, et al. A blood microRNA classifier for the prediction of ICU mortality in COVID-19 patients: a multicenter validation study. Respir Res. 2023 Jun 17;24(1):159.</mods:identifier>
<mods:identifier type="uri">https://hdl.handle.net/20.500.13003/19054</mods:identifier>
<mods:identifier type="doi">10.1186/s12931-023-02462-x</mods:identifier>
<mods:identifier type="essn">1465-993X</mods:identifier>
<mods:identifier type="pmid">37328754</mods:identifier>
<mods:identifier type="pui">L2023890193</mods:identifier>
<mods:abstract>The identification of critically ill COVID-19 patients at risk of fatal outcomes remains a challenge. Here, we first validated candidate microRNAs (miRNAs) as biomarkers for clinical decision-making in critically ill patients. Second, we constructed a blood miRNA classifier for the early prediction of adverse outcomes in the ICU. This was a multicenter, observational and retrospective/prospective study including 503 critically ill patients admitted to the ICU from 19 hospitals. qPCR assays were performed in plasma samples collected within the first 48 h upon admission. A 16-miRNA panel was designed based on recently published data from our group. Nine miRNAs were validated as biomarkers of all-cause in-ICU mortality in the independent cohort of critically ill patients (FDR < 0.05). Cox regression analysis revealed that low expression levels of eight miRNAs were associated with a higher risk of death (HR from 1.56 to 2.61). LASSO regression for variable selection was used to construct a miRNA classifier. A 4-blood miRNA signature composed of miR-16-5p, miR-192-5p, miR-323a-3p and miR-451a predicts the risk of all-cause in-ICU mortality (HR 2.5). Kaplan‒Meier analysis confirmed these findings. The miRNA signature provides a significant increase in the prognostic capacity of conventional scores, APACHE-II (C-index 0.71, DeLong test p-value 0.055) and SOFA (C-index 0.67, DeLong test p-value 0.001), and a risk model based on clinical predictors (C-index 0.74, DeLong test-p-value 0.035). For 28-day and 90-day mortality, the classifier also improved the prognostic value of APACHE-II, SOFA and the clinical model. The association between the classifier and mortality persisted even after multivariable adjustment. The functional analysis reported biological pathways involved in SARS-CoV infection and inflammatory, fibrotic and transcriptional pathways. A blood miRNA classifier improves the early prediction of fatal outcomes in critically ill COVID-19 patients.</mods:abstract>
<mods:languageTerm authority="rfc3066">eng</mods:languageTerm>
</mods:language>
<mods:accessCondition type="useAndReproduction">Atribución 4.0 Internacional</mods:accessCondition>
<mods:title>A blood microRNA classifier for the prediction of ICU mortality in COVID-19 patients: a multicenter validation study</mods:title>
</mods:titleInfo>
<mods:genre>research article</mods:genre>
</mods:mods>
</xmlData>
</mdWrap>
</dmdSec>
<amdSec ID="TMD_20.500.13003_19054">
<rightsMD ID="RIG_20.500.13003_19054">
<mdWrap MDTYPE="OTHER" MIMETYPE="text/plain" OTHERMDTYPE="DSpaceDepositLicense">
<binData>UGFyYSBxdWUgZWwgcmVwb3NpdG9yaW8gaW5zdGl0dWNpb25hbCBEb2N1c2FsdXQgcHVlZGEgYWxtYWNlbmFyIHkgZGlzdHJpYnVpciBlbCBtYXRlcmlhbCBkZXBvc2l0YWRvLCBlcyBuZWNlc2FyaW8gcXVlIHF1aWVuIHJlYWxpemEgZWwgZGVww7NzaXRvIGxlYSB5IGFjZXB0ZSBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBlc3RhIGxpY2VuY2lhLgoKQWNlcHRhbmRvIGVzdGEgbGljZW5jaWEsIHVzdGVkLCBjb21vIGF1dG9yL2EgbyBwcm9waWV0YXJpby9hIGRlbCBjb3B5cmlnaHQsIGNlZGUgYSBsYSBDb25zZWxsZXJpYSBkZSBTYWx1dCBpIENvbnN1bSBkZWwgR292ZXJuIGRlIGxlcyBJbGxlcyBCYWxlYXJzLCBkZSBmb3JtYSBncmF0dWl0YSB5IG5vIGV4Y2x1c2l2YSwgbG9zIGRlcmVjaG9zIGRlIHJlcHJvZHVjY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSB0cmFuc2Zvcm1hY2nDs24gc29icmUgZGljaG8gbWF0ZXJpYWwsIHBlcm1pdGllbmRvIHF1ZSBzZSBwb25nYSBhIGRpc3Bvc2ljacOzbiBkZSB0ZXJjZXJvcyB1c3VhcmlvcyBkZWwgcmVwb3NpdG9yaW8gaW5zdGl0dWNpb25hbCBEb2N1c2FsdXQsIGNvbiBsb3MgdXNvcyBwZXJtaXRpZG9zIHkgY29uZGljaW9uZXMgZXN0YWJsZWNpZG9zIGVuIGVzdGEgbGljZW5jaWEuIAoKVXN0ZWQgYWNlcHRhIHF1ZSBsYSBDb25zZWxsZXJpYSBwdWVkYSwgc2luIGFsdGVyYXIgZWwgY29udGVuaWRvLCB0cmFuc2Zvcm1hciB5L28gYWRhcHRhciBlbCBtYXRlcmlhbCBkZXBvc2l0YWRvIGVuIERvY3VzYWx1dCBhIGN1YWxxdWllciBvdHJvIGZvcm1hdG8sIGVuIGxhIG1lZGlkYSBxdWUgcmVzdWx0ZSBuZWNlc2FyaW8sIGNvbiBmaW5lcyBkZSBwcmVzZXJ2YWNpw7NuIHkgYWNjZXNpYmlsaWRhZC4gSWd1YWxtZW50ZSBhY2VwdGEgcXVlIGxhIENvbnNlbGxlcmlhIHB1ZWRhIGNvbnNlcnZhciBtw6FzIGRlIHVuYSBjb3BpYSBkZWwgbWF0ZXJpYWwgZGVwb3NpdGFkbywgYSBmaW4gZGUgcmVhbGl6YXIgY29waWFzIGRlIHNlZ3VyaWRhZCB5IHByZXNlcnZhciBlbCBtYXRlcmlhbCBwYXJhIGVsIGZ1dHVyby4KClVzdGVkIGRlY2xhcmEgcXVlIGVsIG1hdGVyaWFsIGRlcG9zaXRhZG8gZXMgdW5hIG9icmEgb3JpZ2luYWwgZGUgc3UgY3JlYWNpw7NuIHkgb3N0ZW50YSBsYSB0aXR1bGFyaWRhZCBkZSBkZXJlY2hvcyBkZSBhdXRvciBuZWNlc2FyaWEgcGFyYSBvdG9yZ2FyIGxhIGNlc2nDs24gY29udGVuaWRhIGVuIGxhIHByZXNlbnRlIGxpY2VuY2lhLiBFbiBjYXNvIGRlIGNvdGl0dWxhcmlkYWQsIHVzdGVkIG1hbmlmaWVzdGEgcXVlIGVzdMOhIGFjdHVhbmRvIHRhbWJpw6luIGVuIHJlcHJlc2VudGFjacOzbiBkZSBsb3Mgb3Ryb3MgY29hdXRvcmVzLiBFbiBjb25zZWN1ZW5jaWEsIHVzdGVkIGFzZWd1cmEgeSBnYXJhbnRpemEgcXVlIGVsIG1hdGVyaWFsIHF1ZSBkZXBvc2l0YSBlbiBlbCByZXBvc2l0b3JpbyBpbnN0aXR1Y2lvbmFsIERvY3VzYWx1dCBubyBpbmZyaW5nZSBuaW5nw7puIGRlcmVjaG8gZGUgY29weXJpZ2h0LgoKQ29tbyBnYXJhbnRlIGRlIGxhIGF1dG9yw61hIGRlIGxhIG9icmEgeSBjb24gcmVsYWNpw7NuIGEgbGEgbWlzbWEsIHVzdGVkIGRlY2xhcmEgcXVlIGxhIENvbnNlbGxlcmlhIGRlIFNhbHV0IGkgQ29uc3VtIGRlbCBHb3Zlcm4gZGUgbGVzIElsbGVzIEJhbGVhcnMgc2UgZW5jdWVudHJhIGxpYnJlIGRlIHRvZG8gdGlwbyBkZSByZXNwb25zYWJpbGlkYWQsIHNlYSBjaXZpbCwgYWRtaW5pc3RyYXRpdmEgbyBwZW5hbCAoaW5jbHVpZG8gZWwgcGxhZ2lvKSwgeSB1c3RlZCBhc3VtZSBsYSByZXNwb25zYWJpbGlkYWQgZnJlbnRlIGEgY3VhbHF1aWVyIHJlY2xhbWFjacOzbiBvIGRlbWFuZGEgcG9yIHBhcnRlIGRlIHRlcmNlcm9zIGRlIG1hbmVyYSBleGNsdXNpdmEuCgpEb2N1c2FsdXQgaWRlbnRpZmljYXLDoSBjbGFyYW1lbnRlIGVsIG5vbWJyZSBkZSBsb3MgYXV0b3JlcyBvIHRpdHVsYXJlcyBkZSBsYSBvYnJhIGRlcG9zaXRhZGEsIHkgbm8gZWZlY3R1YXLDoSBtw6FzIGFsdGVyYWNpb25lcyBlbiBkaWNobyBtYXRlcmlhbCBxdWUgbGFzIGV4cHJlc2FtZW50ZSBwZXJtaXRpZGFzIHBvciBlc3RhIGxpY2VuY2lhLiBVc3RlZCBwb2Ryw6Egc29saWNpdGFyLCBwb3IgY2F1c2EganVzdGlmaWNhZGEgeSBhY3JlZGl0YWRhIHBvciBlc2NyaXRvIGFudGUgZWwgYWRtaW5pc3RyYWRvciBkZSBkaWNobyByZXBvc2l0b3JpbywgbGEgcmV0aXJhZGEgZGUgbGEgb2JyYSBkZWwgcmVwb3NpdG9yaW8gaW5zdGl0dWNpb25hbCBEb2N1c2FsdXQuIERlIGlndWFsIG1vZG8sIERvY3VzYWx1dCBwb2Ryw6EgcmV0aXJhciBlbCBtYXRlcmlhbCBlbiBzdXB1ZXN0b3Mgc3VmaWNpZW50ZW1lbnRlIGp1c3RpZmljYWRvcywgbyBlbiBjYXNvIGRlIHJlY2xhbWFjaW9uZXMgZGUgdGVyY2Vyb3MuIFVzdGVkIHNlcsOhIGNvbnZlbmllbnRlbWVudGUgbm90aWZpY2Fkby9hIGRlIGN1YWxxdWllciByZWNsYW1hY2nDs24gcXVlIHB1ZWRhbiBmb3JtdWxhciB0ZXJjZXJhcyBwZXJzb25hcyBlbiByZWxhY2nDs24gY29uIGxhIG9icmEgeSwgZW4gcGFydGljdWxhciwgZGUgcmVjbGFtYWNpb25lcyByZWxhdGl2YXMgYSBsb3MgZGVyZWNob3MgZGUgcHJvcGllZGFkIGludGVsZWN0dWFsIHNvYnJlIGVsbGEuCg==</binData>
</mdWrap>
</rightsMD>
</amdSec>
<amdSec ID="FO_20.500.13003_19054_1">
<techMD ID="TECH_O_20.500.13003_19054_1">
<xmlData schemaLocation="http://www.loc.gov/standards/premis http://www.loc.gov/standards/premis/PREMIS-v1-0.xsd">
<premis:objectIdentifierType>URL</premis:objectIdentifierType>
<premis:objectIdentifierValue>https://docusalut.com/bitstream/20.500.13003/19054/1/respir_research_2023-24-159.pdf</premis:objectIdentifierValue>
</premis:objectIdentifier>
<premis:objectCategory>File</premis:objectCategory>
<premis:objectCharacteristics>
<premis:messageDigestAlgorithm>MD5</premis:messageDigestAlgorithm>
<premis:messageDigest>cac857208f9a95829709d28e62b78e9c</premis:messageDigest>
</premis:fixity>
<premis:size>3301361</premis:size>
</premis:objectCharacteristics>
<premis:originalName>respir_research_2023-24-159.pdf</premis:originalName>
</premis:object>
</premis:premis>
</xmlData>
</mdWrap>
</techMD>
</amdSec>
<amdSec ID="FT_20.500.13003_19054_5">
<techMD ID="TECH_T_20.500.13003_19054_5">
<xmlData schemaLocation="http://www.loc.gov/standards/premis http://www.loc.gov/standards/premis/PREMIS-v1-0.xsd">
<premis:objectIdentifierType>URL</premis:objectIdentifierType>
<premis:objectIdentifierValue>https://docusalut.com/bitstream/20.500.13003/19054/5/respir_research_2023-24-159.pdf.txt</premis:objectIdentifierValue>
</premis:objectIdentifier>
<premis:objectCategory>File</premis:objectCategory>
<premis:objectCharacteristics>
<premis:messageDigestAlgorithm>MD5</premis:messageDigestAlgorithm>
<premis:messageDigest>d3671ecd3f57de4d4b606cd38a1ebeb2</premis:messageDigest>
</premis:fixity>
<premis:size>47944</premis:size>
</premis:objectCharacteristics>
<premis:originalName>respir_research_2023-24-159.pdf.txt</premis:originalName>
</premis:object>
</premis:premis>
</xmlData>
</mdWrap>
</techMD>
</amdSec>
<file ADMID="FO_20.500.13003_19054_1" CHECKSUM="cac857208f9a95829709d28e62b78e9c" CHECKSUMTYPE="MD5" GROUPID="GROUP_BITSTREAM_20.500.13003_19054_1" ID="BITSTREAM_ORIGINAL_20.500.13003_19054_1" MIMETYPE="application/pdf" SEQ="1" SIZE="3301361">
</file>
</fileGrp>
<file ADMID="FT_20.500.13003_19054_5" CHECKSUM="d3671ecd3f57de4d4b606cd38a1ebeb2" CHECKSUMTYPE="MD5" GROUPID="GROUP_BITSTREAM_20.500.13003_19054_5" ID="BITSTREAM_TEXT_20.500.13003_19054_5" MIMETYPE="text/plain" SEQ="5" SIZE="47944">
</file>
</fileGrp>
</fileSec>
</mets>
<?xml version="1.0" encoding="UTF-8" ?>
<mods:mods schemaLocation="http://www.loc.gov/mods/v3 http://www.loc.gov/standards/mods/v3/mods-3-1.xsd">
<mods:namePart>de Gonzalo-Calvo, David</mods:namePart>
</mods:name>
<mods:namePart>Molinero, Marta</mods:namePart>
</mods:name>
<mods:namePart>Benítez, Iván D</mods:namePart>
</mods:name>
<mods:namePart>Perez-Pons, Manel</mods:namePart>
</mods:name>
<mods:namePart>García-Mateo, Nadia</mods:namePart>
</mods:name>
<mods:namePart>Ortega, Alicia</mods:namePart>
</mods:name>
<mods:namePart>Postigo, Tamara</mods:namePart>
</mods:name>
<mods:namePart>García-Hidalgo, María C</mods:namePart>
</mods:name>
<mods:namePart>Belmonte, Thalia</mods:namePart>
</mods:name>
<mods:namePart>Rodríguez-Muñoz, Carlos</mods:namePart>
</mods:name>
<mods:namePart>González, Jessica</mods:namePart>
</mods:name>
<mods:namePart>Torres, Gerard</mods:namePart>
</mods:name>
<mods:namePart>Gort-Paniello, Clara</mods:namePart>
</mods:name>
<mods:namePart>Moncusí-Moix, Anna</mods:namePart>
</mods:name>
<mods:namePart>Estella, Angel</mods:namePart>
</mods:name>
<mods:namePart>Tamayo Lomas, Luis</mods:namePart>
</mods:name>
<mods:namePart>Martínez de la Gándara, Amalia</mods:namePart>
</mods:name>
<mods:namePart>Socias, Lorenzo</mods:namePart>
</mods:name>
<mods:namePart>Peñasco, Yhivian</mods:namePart>
</mods:name>
<mods:namePart>de la Torre, María Del Carmen</mods:namePart>
</mods:name>
<mods:namePart>Bustamante-Munguira, Elena</mods:namePart>
</mods:name>
<mods:namePart>Gallego Curto, Elena</mods:namePart>
</mods:name>
<mods:namePart>Martínez Varela, Ignacio</mods:namePart>
</mods:name>
<mods:namePart>Martin Delgado, María Cruz</mods:namePart>
</mods:name>
<mods:namePart>Vidal-Cortes, Pablo</mods:namePart>
</mods:name>
<mods:namePart>López Messa, Juan</mods:namePart>
</mods:name>
<mods:namePart>Pérez-García, Felipe</mods:namePart>
</mods:name>
<mods:namePart>Caballero, Jesús</mods:namePart>
</mods:name>
<mods:namePart>Añón, José M</mods:namePart>
</mods:name>
<mods:namePart>Loza-Vázquez, Ana</mods:namePart>
</mods:name>
<mods:namePart>Carbonell, Nieves</mods:namePart>
</mods:name>
<mods:namePart>Marin-Corral, Judith</mods:namePart>
</mods:name>
<mods:namePart>Jorge García, Ruth Noemí</mods:namePart>
</mods:name>
<mods:namePart>Barberà, Carmen</mods:namePart>
</mods:name>
<mods:namePart>Ceccato, Adrián</mods:namePart>
</mods:name>
<mods:namePart>Fernández-Barat, Laia</mods:namePart>
</mods:name>
<mods:namePart>Ferrer, Ricard</mods:namePart>
</mods:name>
<mods:namePart>Garcia-Gasulla, Dario</mods:namePart>
</mods:name>
<mods:namePart>Lorente-Balanza, Jose Ángel</mods:namePart>
</mods:name>
<mods:namePart>Menéndez, Rosario</mods:namePart>
</mods:name>
<mods:namePart>Motos, Ana</mods:namePart>
</mods:name>
<mods:namePart>Peñuelas, Oscar</mods:namePart>
</mods:name>
<mods:namePart>Riera, Jordi</mods:namePart>
</mods:name>
<mods:namePart>Bermejo-Martin, Jesús F</mods:namePart>
</mods:name>
<mods:namePart>Torres, Antoni</mods:namePart>
</mods:name>
<mods:namePart>Barbé, Ferran</mods:namePart>
</mods:name>
<mods:dateAvailable encoding="iso8601">2023-06-26T08:21:18Z</mods:dateAvailable>
</mods:extension>
<mods:dateAccessioned encoding="iso8601">2023-06-26T08:21:18Z</mods:dateAccessioned>
</mods:extension>
<mods:dateIssued encoding="iso8601">2023-06-17</mods:dateIssued>
</mods:originInfo>
<mods:identifier type="citation">de Gonzalo-Calvo D, Molinero M, Benítez ID, Perez-Pons M, García-Mateo N, Ortega A, et al. A blood microRNA classifier for the prediction of ICU mortality in COVID-19 patients: a multicenter validation study. Respir Res. 2023 Jun 17;24(1):159.</mods:identifier>
<mods:identifier type="uri">https://hdl.handle.net/20.500.13003/19054</mods:identifier>
<mods:identifier type="doi">10.1186/s12931-023-02462-x</mods:identifier>
<mods:identifier type="essn">1465-993X</mods:identifier>
<mods:identifier type="pmid">37328754</mods:identifier>
<mods:identifier type="pui">L2023890193</mods:identifier>
<mods:abstract>The identification of critically ill COVID-19 patients at risk of fatal outcomes remains a challenge. Here, we first validated candidate microRNAs (miRNAs) as biomarkers for clinical decision-making in critically ill patients. Second, we constructed a blood miRNA classifier for the early prediction of adverse outcomes in the ICU. This was a multicenter, observational and retrospective/prospective study including 503 critically ill patients admitted to the ICU from 19 hospitals. qPCR assays were performed in plasma samples collected within the first 48 h upon admission. A 16-miRNA panel was designed based on recently published data from our group. Nine miRNAs were validated as biomarkers of all-cause in-ICU mortality in the independent cohort of critically ill patients (FDR < 0.05). Cox regression analysis revealed that low expression levels of eight miRNAs were associated with a higher risk of death (HR from 1.56 to 2.61). LASSO regression for variable selection was used to construct a miRNA classifier. A 4-blood miRNA signature composed of miR-16-5p, miR-192-5p, miR-323a-3p and miR-451a predicts the risk of all-cause in-ICU mortality (HR 2.5). Kaplan‒Meier analysis confirmed these findings. The miRNA signature provides a significant increase in the prognostic capacity of conventional scores, APACHE-II (C-index 0.71, DeLong test p-value 0.055) and SOFA (C-index 0.67, DeLong test p-value 0.001), and a risk model based on clinical predictors (C-index 0.74, DeLong test-p-value 0.035). For 28-day and 90-day mortality, the classifier also improved the prognostic value of APACHE-II, SOFA and the clinical model. The association between the classifier and mortality persisted even after multivariable adjustment. The functional analysis reported biological pathways involved in SARS-CoV infection and inflammatory, fibrotic and transcriptional pathways. A blood miRNA classifier improves the early prediction of fatal outcomes in critically ill COVID-19 patients.</mods:abstract>
<mods:languageTerm>eng</mods:languageTerm>
</mods:language>
<mods:accessCondition type="useAndReproduction">http://creativecommons.org/licenses/by/4.0/</mods:accessCondition>
<mods:accessCondition type="useAndReproduction">open access</mods:accessCondition>
<mods:accessCondition type="useAndReproduction">Atribución 4.0 Internacional</mods:accessCondition>
<mods:title>A blood microRNA classifier for the prediction of ICU mortality in COVID-19 patients: a multicenter validation study</mods:title>
</mods:titleInfo>
<mods:genre>research article</mods:genre>
</mods:mods>
<?xml version="1.0" encoding="UTF-8" ?>
<atom:entry schemaLocation="http://www.w3.org/2005/Atom http://www.kbcafe.com/rss/atom.xsd.xml">
<atom:id>https://hdl.handle.net/20.500.13003/19054/ore.xml</atom:id>
<atom:published>2023-06-26T08:21:18Z</atom:published>
<atom:updated>2023-06-26T08:21:18Z</atom:updated>
<atom:generator>Docusalut</atom:generator>
</atom:source>
<atom:title>A blood microRNA classifier for the prediction of ICU mortality in COVID-19 patients: a multicenter validation study</atom:title>
<atom:name>de Gonzalo-Calvo, David</atom:name>
</atom:author>
<atom:name>Molinero, Marta</atom:name>
</atom:author>
<atom:name>Benítez, Iván D</atom:name>
</atom:author>
<atom:name>Perez-Pons, Manel</atom:name>
</atom:author>
<atom:name>García-Mateo, Nadia</atom:name>
</atom:author>
<atom:name>Ortega, Alicia</atom:name>
</atom:author>
<atom:name>Postigo, Tamara</atom:name>
</atom:author>
<atom:name>García-Hidalgo, María C</atom:name>
</atom:author>
<atom:name>Belmonte, Thalia</atom:name>
</atom:author>
<atom:name>Rodríguez-Muñoz, Carlos</atom:name>
</atom:author>
<atom:name>González, Jessica</atom:name>
</atom:author>
<atom:name>Torres, Gerard</atom:name>
</atom:author>
<atom:name>Gort-Paniello, Clara</atom:name>
</atom:author>
<atom:name>Moncusí-Moix, Anna</atom:name>
</atom:author>
<atom:name>Estella, Angel</atom:name>
</atom:author>
<atom:name>Tamayo Lomas, Luis</atom:name>
</atom:author>
<atom:name>Martínez de la Gándara, Amalia</atom:name>
</atom:author>
<atom:name>Socias, Lorenzo</atom:name>
</atom:author>
<atom:name>Peñasco, Yhivian</atom:name>
</atom:author>
<atom:name>de la Torre, María Del Carmen</atom:name>
</atom:author>
<atom:name>Bustamante-Munguira, Elena</atom:name>
</atom:author>
<atom:name>Gallego Curto, Elena</atom:name>
</atom:author>
<atom:name>Martínez Varela, Ignacio</atom:name>
</atom:author>
<atom:name>Martin Delgado, María Cruz</atom:name>
</atom:author>
<atom:name>Vidal-Cortes, Pablo</atom:name>
</atom:author>
<atom:name>López Messa, Juan</atom:name>
</atom:author>
<atom:name>Pérez-García, Felipe</atom:name>
</atom:author>
<atom:name>Caballero, Jesús</atom:name>
</atom:author>
<atom:name>Añón, José M</atom:name>
</atom:author>
<atom:name>Loza-Vázquez, Ana</atom:name>
</atom:author>
<atom:name>Carbonell, Nieves</atom:name>
</atom:author>
<atom:name>Marin-Corral, Judith</atom:name>
</atom:author>
<atom:name>Jorge García, Ruth Noemí</atom:name>
</atom:author>
<atom:name>Barberà, Carmen</atom:name>
</atom:author>
<atom:name>Ceccato, Adrián</atom:name>
</atom:author>
<atom:name>Fernández-Barat, Laia</atom:name>
</atom:author>
<atom:name>Ferrer, Ricard</atom:name>
</atom:author>
<atom:name>Garcia-Gasulla, Dario</atom:name>
</atom:author>
<atom:name>Lorente-Balanza, Jose Ángel</atom:name>
</atom:author>
<atom:name>Menéndez, Rosario</atom:name>
</atom:author>
<atom:name>Motos, Ana</atom:name>
</atom:author>
<atom:name>Peñuelas, Oscar</atom:name>
</atom:author>
<atom:name>Riera, Jordi</atom:name>
</atom:author>
<atom:name>Bermejo-Martin, Jesús F</atom:name>
</atom:author>
<atom:name>Torres, Antoni</atom:name>
</atom:author>
<atom:name>Barbé, Ferran</atom:name>
</atom:author>
<rdf:Description about="https://hdl.handle.net/20.500.13003/19054/ore.xml#atom">
<dcterms:modified>2023-06-26T08:21:18Z</dcterms:modified>
</rdf:Description>
<rdf:Description about="https://docusalut.com/bitstream/20.500.13003/19054/1/respir_research_2023-24-159.pdf">
<dcterms:description>ORIGINAL</dcterms:description>
</rdf:Description>
<rdf:Description about="https://docusalut.com/bitstream/20.500.13003/19054/2/license_rdf">
<dcterms:description>CC-LICENSE</dcterms:description>
</rdf:Description>
<rdf:Description about="https://docusalut.com/bitstream/20.500.13003/19054/3/license.txt">
<dcterms:description>LICENSE</dcterms:description>
</rdf:Description>
<rdf:Description about="https://docusalut.com/bitstream/20.500.13003/19054/4/arxiu_delegat_blood%20MiRNAfdo260623.pdf">
<dcterms:description>LICENSE</dcterms:description>
</rdf:Description>
<rdf:Description about="https://docusalut.com/bitstream/20.500.13003/19054/5/respir_research_2023-24-159.pdf.txt">
<dcterms:description>TEXT</dcterms:description>
</rdf:Description>
<rdf:Description about="https://docusalut.com/bitstream/20.500.13003/19054/6/respir_research_2023-24-159.pdf.jpg">
<dcterms:description>THUMBNAIL</dcterms:description>
</rdf:Description>
</oreatom:triples>
</atom:entry>
<?xml version="1.0" encoding="UTF-8" ?>
<qdc:qualifieddc schemaLocation="http://purl.org/dc/elements/1.1/ http://dublincore.org/schemas/xmls/qdc/2006/01/06/dc.xsd http://purl.org/dc/terms/ http://dublincore.org/schemas/xmls/qdc/2006/01/06/dcterms.xsd http://dspace.org/qualifieddc/ http://www.ukoln.ac.uk/metadata/dcmi/xmlschema/qualifieddc.xsd">
<dc:title>A blood microRNA classifier for the prediction of ICU mortality in COVID-19 patients: a multicenter validation study</dc:title>
<dc:creator>de Gonzalo-Calvo, David</dc:creator>
<dc:creator>Molinero, Marta</dc:creator>
<dc:creator>Benítez, Iván D</dc:creator>
<dc:creator>Perez-Pons, Manel</dc:creator>
<dc:creator>García-Mateo, Nadia</dc:creator>
<dc:creator>Ortega, Alicia</dc:creator>
<dc:creator>Postigo, Tamara</dc:creator>
<dc:creator>García-Hidalgo, María C</dc:creator>
<dc:creator>Belmonte, Thalia</dc:creator>
<dc:creator>Rodríguez-Muñoz, Carlos</dc:creator>
<dc:creator>González, Jessica</dc:creator>
<dc:creator>Torres, Gerard</dc:creator>
<dc:creator>Gort-Paniello, Clara</dc:creator>
<dc:creator>Moncusí-Moix, Anna</dc:creator>
<dc:creator>Estella, Angel</dc:creator>
<dc:creator>Tamayo Lomas, Luis</dc:creator>
<dc:creator>Martínez de la Gándara, Amalia</dc:creator>
<dc:creator>Socias, Lorenzo</dc:creator>
<dc:creator>Peñasco, Yhivian</dc:creator>
<dc:creator>de la Torre, María Del Carmen</dc:creator>
<dc:creator>Bustamante-Munguira, Elena</dc:creator>
<dc:creator>Gallego Curto, Elena</dc:creator>
<dc:creator>Martínez Varela, Ignacio</dc:creator>
<dc:creator>Martin Delgado, María Cruz</dc:creator>
<dc:creator>Vidal-Cortes, Pablo</dc:creator>
<dc:creator>López Messa, Juan</dc:creator>
<dc:creator>Pérez-García, Felipe</dc:creator>
<dc:creator>Caballero, Jesús</dc:creator>
<dc:creator>Añón, José M</dc:creator>
<dc:creator>Loza-Vázquez, Ana</dc:creator>
<dc:creator>Carbonell, Nieves</dc:creator>
<dc:creator>Marin-Corral, Judith</dc:creator>
<dc:creator>Jorge García, Ruth Noemí</dc:creator>
<dc:creator>Barberà, Carmen</dc:creator>
<dc:creator>Ceccato, Adrián</dc:creator>
<dc:creator>Fernández-Barat, Laia</dc:creator>
<dc:creator>Ferrer, Ricard</dc:creator>
<dc:creator>Garcia-Gasulla, Dario</dc:creator>
<dc:creator>Lorente-Balanza, Jose Ángel</dc:creator>
<dc:creator>Menéndez, Rosario</dc:creator>
<dc:creator>Motos, Ana</dc:creator>
<dc:creator>Peñuelas, Oscar</dc:creator>
<dc:creator>Riera, Jordi</dc:creator>
<dc:creator>Bermejo-Martin, Jesús F</dc:creator>
<dc:creator>Torres, Antoni</dc:creator>
<dc:creator>Barbé, Ferran</dc:creator>
<dcterms:abstract>The identification of critically ill COVID-19 patients at risk of fatal outcomes remains a challenge. Here, we first validated candidate microRNAs (miRNAs) as biomarkers for clinical decision-making in critically ill patients. Second, we constructed a blood miRNA classifier for the early prediction of adverse outcomes in the ICU. This was a multicenter, observational and retrospective/prospective study including 503 critically ill patients admitted to the ICU from 19 hospitals. qPCR assays were performed in plasma samples collected within the first 48 h upon admission. A 16-miRNA panel was designed based on recently published data from our group. Nine miRNAs were validated as biomarkers of all-cause in-ICU mortality in the independent cohort of critically ill patients (FDR < 0.05). Cox regression analysis revealed that low expression levels of eight miRNAs were associated with a higher risk of death (HR from 1.56 to 2.61). LASSO regression for variable selection was used to construct a miRNA classifier. A 4-blood miRNA signature composed of miR-16-5p, miR-192-5p, miR-323a-3p and miR-451a predicts the risk of all-cause in-ICU mortality (HR 2.5). Kaplan‒Meier analysis confirmed these findings. The miRNA signature provides a significant increase in the prognostic capacity of conventional scores, APACHE-II (C-index 0.71, DeLong test p-value 0.055) and SOFA (C-index 0.67, DeLong test p-value 0.001), and a risk model based on clinical predictors (C-index 0.74, DeLong test-p-value 0.035). For 28-day and 90-day mortality, the classifier also improved the prognostic value of APACHE-II, SOFA and the clinical model. The association between the classifier and mortality persisted even after multivariable adjustment. The functional analysis reported biological pathways involved in SARS-CoV infection and inflammatory, fibrotic and transcriptional pathways. A blood miRNA classifier improves the early prediction of fatal outcomes in critically ill COVID-19 patients.</dcterms:abstract>
<dcterms:dateAccepted>2023-06-26T08:21:18Z</dcterms:dateAccepted>
<dcterms:available>2023-06-26T08:21:18Z</dcterms:available>
<dcterms:created>2023-06-26T08:21:18Z</dcterms:created>
<dcterms:issued>2023-06-17</dcterms:issued>
<dc:type>research article</dc:type>
<dc:identifier>de Gonzalo-Calvo D, Molinero M, Benítez ID, Perez-Pons M, García-Mateo N, Ortega A, et al. A blood microRNA classifier for the prediction of ICU mortality in COVID-19 patients: a multicenter validation study. Respir Res. 2023 Jun 17;24(1):159.</dc:identifier>
<dc:identifier>https://hdl.handle.net/20.500.13003/19054</dc:identifier>
<dc:identifier>10.1186/s12931-023-02462-x</dc:identifier>
<dc:identifier>1465-993X</dc:identifier>
<dc:identifier>37328754</dc:identifier>
<dc:identifier>L2023890193</dc:identifier>
<dc:language>eng</dc:language>
<dc:relation>CP20/00041</dc:relation>
<dc:relation>FI21/00187</dc:relation>
<dc:relation>CD21/00087</dc:relation>
<dc:relation>COV20/00110</dc:relation>
<dc:relation>202108-30/-31</dc:relation>
<dc:relation>https://doi.org/10.1186/s12931-023-02462-x</dc:relation>
<dc:rights>http://creativecommons.org/licenses/by/4.0/</dc:rights>
<dc:rights>open access</dc:rights>
<dc:rights>Atribución 4.0 Internacional</dc:rights>
<dc:publisher>BMC</dc:publisher>
</qdc:qualifieddc>
<?xml version="1.0" encoding="UTF-8" ?>
<rdf:RDF schemaLocation="http://www.openarchives.org/OAI/2.0/rdf/ http://www.openarchives.org/OAI/2.0/rdf.xsd">
<ow:Publication about="oai:docusalut.com:20.500.13003/19054">
<dc:title>A blood microRNA classifier for the prediction of ICU mortality in COVID-19 patients: a multicenter validation study</dc:title>
<dc:creator>de Gonzalo-Calvo, David</dc:creator>
<dc:creator>Molinero, Marta</dc:creator>
<dc:creator>Benítez, Iván D</dc:creator>
<dc:creator>Perez-Pons, Manel</dc:creator>
<dc:creator>García-Mateo, Nadia</dc:creator>
<dc:creator>Ortega, Alicia</dc:creator>
<dc:creator>Postigo, Tamara</dc:creator>
<dc:creator>García-Hidalgo, María C</dc:creator>
<dc:creator>Belmonte, Thalia</dc:creator>
<dc:creator>Rodríguez-Muñoz, Carlos</dc:creator>
<dc:creator>González, Jessica</dc:creator>
<dc:creator>Torres, Gerard</dc:creator>
<dc:creator>Gort-Paniello, Clara</dc:creator>
<dc:creator>Moncusí-Moix, Anna</dc:creator>
<dc:creator>Estella, Angel</dc:creator>
<dc:creator>Tamayo Lomas, Luis</dc:creator>
<dc:creator>Martínez de la Gándara, Amalia</dc:creator>
<dc:creator>Socias, Lorenzo</dc:creator>
<dc:creator>Peñasco, Yhivian</dc:creator>
<dc:creator>de la Torre, María Del Carmen</dc:creator>
<dc:creator>Bustamante-Munguira, Elena</dc:creator>
<dc:creator>Gallego Curto, Elena</dc:creator>
<dc:creator>Martínez Varela, Ignacio</dc:creator>
<dc:creator>Martin Delgado, María Cruz</dc:creator>
<dc:creator>Vidal-Cortes, Pablo</dc:creator>
<dc:creator>López Messa, Juan</dc:creator>
<dc:creator>Pérez-García, Felipe</dc:creator>
<dc:creator>Caballero, Jesús</dc:creator>
<dc:creator>Añón, José M</dc:creator>
<dc:creator>Loza-Vázquez, Ana</dc:creator>
<dc:creator>Carbonell, Nieves</dc:creator>
<dc:creator>Marin-Corral, Judith</dc:creator>
<dc:creator>Jorge García, Ruth Noemí</dc:creator>
<dc:creator>Barberà, Carmen</dc:creator>
<dc:creator>Ceccato, Adrián</dc:creator>
<dc:creator>Fernández-Barat, Laia</dc:creator>
<dc:creator>Ferrer, Ricard</dc:creator>
<dc:creator>Garcia-Gasulla, Dario</dc:creator>
<dc:creator>Lorente-Balanza, Jose Ángel</dc:creator>
<dc:creator>Menéndez, Rosario</dc:creator>
<dc:creator>Motos, Ana</dc:creator>
<dc:creator>Peñuelas, Oscar</dc:creator>
<dc:creator>Riera, Jordi</dc:creator>
<dc:creator>Bermejo-Martin, Jesús F</dc:creator>
<dc:creator>Torres, Antoni</dc:creator>
<dc:creator>Barbé, Ferran</dc:creator>
<dc:description>The identification of critically ill COVID-19 patients at risk of fatal outcomes remains a challenge. Here, we first validated candidate microRNAs (miRNAs) as biomarkers for clinical decision-making in critically ill patients. Second, we constructed a blood miRNA classifier for the early prediction of adverse outcomes in the ICU. This was a multicenter, observational and retrospective/prospective study including 503 critically ill patients admitted to the ICU from 19 hospitals. qPCR assays were performed in plasma samples collected within the first 48 h upon admission. A 16-miRNA panel was designed based on recently published data from our group. Nine miRNAs were validated as biomarkers of all-cause in-ICU mortality in the independent cohort of critically ill patients (FDR < 0.05). Cox regression analysis revealed that low expression levels of eight miRNAs were associated with a higher risk of death (HR from 1.56 to 2.61). LASSO regression for variable selection was used to construct a miRNA classifier. A 4-blood miRNA signature composed of miR-16-5p, miR-192-5p, miR-323a-3p and miR-451a predicts the risk of all-cause in-ICU mortality (HR 2.5). Kaplan‒Meier analysis confirmed these findings. The miRNA signature provides a significant increase in the prognostic capacity of conventional scores, APACHE-II (C-index 0.71, DeLong test p-value 0.055) and SOFA (C-index 0.67, DeLong test p-value 0.001), and a risk model based on clinical predictors (C-index 0.74, DeLong test-p-value 0.035). For 28-day and 90-day mortality, the classifier also improved the prognostic value of APACHE-II, SOFA and the clinical model. The association between the classifier and mortality persisted even after multivariable adjustment. The functional analysis reported biological pathways involved in SARS-CoV infection and inflammatory, fibrotic and transcriptional pathways. A blood miRNA classifier improves the early prediction of fatal outcomes in critically ill COVID-19 patients.</dc:description>
<dc:date>2023-06-26T08:21:18Z</dc:date>
<dc:date>2023-06-26T08:21:18Z</dc:date>
<dc:date>2023-06-17</dc:date>
<dc:type>research article</dc:type>
<dc:identifier>de Gonzalo-Calvo D, Molinero M, Benítez ID, Perez-Pons M, García-Mateo N, Ortega A, et al. A blood microRNA classifier for the prediction of ICU mortality in COVID-19 patients: a multicenter validation study. Respir Res. 2023 Jun 17;24(1):159.</dc:identifier>
<dc:identifier>https://hdl.handle.net/20.500.13003/19054</dc:identifier>
<dc:identifier>10.1186/s12931-023-02462-x</dc:identifier>
<dc:identifier>1465-993X</dc:identifier>
<dc:identifier>37328754</dc:identifier>
<dc:identifier>L2023890193</dc:identifier>
<dc:language>eng</dc:language>
<dc:relation>CP20/00041</dc:relation>
<dc:relation>FI21/00187</dc:relation>
<dc:relation>CD21/00087</dc:relation>
<dc:relation>COV20/00110</dc:relation>
<dc:relation>202108-30/-31</dc:relation>
<dc:relation>https://doi.org/10.1186/s12931-023-02462-x</dc:relation>
<dc:rights>http://creativecommons.org/licenses/by/4.0/</dc:rights>
<dc:rights>open access</dc:rights>
<dc:rights>Atribución 4.0 Internacional</dc:rights>
<dc:publisher>BMC</dc:publisher>
</ow:Publication>
</rdf:RDF>
Se ha omitido la presentación del registro por ser demasiado largo. Si lo desea, puede descargárselo en el enlace anterior.