<?xml version="1.0" encoding="UTF-8" ?>
<oai_dc:dc schemaLocation="http://www.openarchives.org/OAI/2.0/oai_dc/ http://www.openarchives.org/OAI/2.0/oai_dc.xsd">
<dc:title>2D Van der Waals Heterostructures for Chemical Sensing</dc:title>
<dc:creator>Hou, Huilei</dc:creator>
<dc:creator>Anichini, Cosimo</dc:creator>
<dc:creator>Samorì, Paolo</dc:creator>
<dc:creator>Criado, Alejandro</dc:creator>
<dc:creator>Prato, Maurizio</dc:creator>
<dc:subject>2D materials</dc:subject>
<dc:subject>Sensors</dc:subject>
<dc:subject>Van der Waals heterostructures</dc:subject>
<dc:description>[Abstract] During the last 15 years, 2D materials have revolutionized the field of materials science. Moreover, because of their highest surface-to-volume ratio and properties extremely susceptible to their interaction with the local environment they became powerful active components for the development the high-performance chemical sensors. By combining different 2D materials to form van der Waals heterostructures (VDWHs) it is possible to overcome the drawback of individual materials (such as inertness and zero-bandgap of pristine graphene and less environmental stability of transition metal dichalcogenides). Meanwhile, VDWHs possess unprecedented and fascinating properties arising from the intimate interaction between the components, which can yield superior sensitivities, higher selectivity, and stability when employed to detect gases, biomolecules, and other organic/inorganic molecules. Herein, the latest developments and advances in the field of chemical sensors based on VDWH of 2D materials, with specific insight into the sensing mechanisms, are reviewed and future directions, challenges, and opportunities for the development of the next generation of (bio)chemical sensors with potential impact in environmental sciences and biomedical applications, and more specifically in (bio)chemical defense, industrial safety, food, and environmental surveillance, and medical (early) diagnostics, are discussed.</dc:description>
<dc:description>The authors gratefully acknowledge the financial support from the University of Trieste, INSTM, the Italian Ministry of Education MIUR (Cofin Prot. 2017PBXPN4) and the Maria de Maeztu Units of Excellence Program from the Spanish State Research Agency (Grant No. MDM-2017-0720). The authors acknowledge financial support from the EC through the Graphene Flagship Core 3 project (GA-881603) and the ERC project SUPRA2DMAT (GA-833707), the Interdisciplinary Thematic Institute SysChem via the IdEx Unistra (ANR-10-IDEX-0002) within the program Investissement d’Avenir program, the International Center for Frontier Research in Chemistry and the Institut Universitaire de France (IUF). M.P. is AXA Chair of Bionanotechnology. A.C. thanks MINECO and Xunta de Galicia for his research grants (Ramon y Cajal No. RYC2020-030183-I, and Atracción de Talento No. ED431H 2020/17, respectively). H.-L.H. thanks MINECO for his research grant (Juan de la Cierva Incorporacion/No. IJC-2018-037396-I). Open access funding provided by Universita degli Studi di Trieste within the CRUI-CARE Agreement.</dc:description>
<dc:description>Xunta de Galicia; ED431H 2020/17</dc:description>
<dc:date>2022-10-10</dc:date>
<dc:type>info:eu-repo/semantics/article</dc:type>
<dc:identifier>H.-L. Hou, C. Anichini, P. Samorì, A. Criado, M. Prato, 2D Van der Waals Heterostructures for Chemical Sensing. Adv. Funct. Mater. 2022, 32, 2207065. https://doi.org/10.1002/adfm.202207065</dc:identifier>
<dc:identifier>1616-3028 (eISSN)</dc:identifier>
<dc:identifier>1616-301X</dc:identifier>
<dc:identifier>http://hdl.handle.net/2183/37506</dc:identifier>
<dc:identifier>10.1002/adfm.202207065</dc:identifier>
<dc:language>eng</dc:language>
<dc:relation>info:eu-repo/grantAgreement/MIUR/Progetti di Ricerca di Rilevante Interesse Nazionale 2017/2017PBXPN4/IT/</dc:relation>
<dc:relation>info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/MDM-2017-0720/ES/</dc:relation>
<dc:relation>info:eu-repo/grantAgreement/EC/H2020/881603</dc:relation>
<dc:relation>info:eu-repo/grantAgreement/EC/H2020/GA-833707</dc:relation>
<dc:relation>info:eu-repo/grantAgreement/ANR/Programme d'Investissement d'avenir 2010/ANR-10-IDEX-0002-02/FR</dc:relation>
<dc:relation>info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RYC2020-030183-I/ES/</dc:relation>
<dc:relation>info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/IJC-2018-037396-I/ES/</dc:relation>
<dc:relation>https://doi.org/10.1002/adfm.202207065</dc:relation>
<dc:rights>Atribución-NoComercial 4.0 Internacional</dc:rights>
<dc:rights>https://creativecommons.org/licenses/by-nc/4.0/</dc:rights>
<dc:rights>info:eu-repo/semantics/openAccess</dc:rights>
<dc:publisher>Wiley-VCH</dc:publisher>
</oai_dc:dc>
<?xml version="1.0" encoding="UTF-8" ?>
<d:DIDL schemaLocation="urn:mpeg:mpeg21:2002:02-DIDL-NS http://standards.iso.org/ittf/PubliclyAvailableStandards/MPEG-21_schema_files/did/didl.xsd">
<d:DIDLInfo>
<dcterms:created schemaLocation="http://purl.org/dc/terms/ http://dublincore.org/schemas/xmls/qdc/dcterms.xsd">2024-06-27T15:02:00Z</dcterms:created>
</d:DIDLInfo>
<d:Item id="hdl_2183_37506">
<d:Descriptor>
<d:Statement mimeType="application/xml; charset=utf-8">
<dii:Identifier schemaLocation="urn:mpeg:mpeg21:2002:01-DII-NS http://standards.iso.org/ittf/PubliclyAvailableStandards/MPEG-21_schema_files/dii/dii.xsd">urn:hdl:2183/37506</dii:Identifier>
</d:Statement>
</d:Descriptor>
<d:Descriptor>
<d:Statement mimeType="application/xml; charset=utf-8">
<oai_dc:dc schemaLocation="http://www.openarchives.org/OAI/2.0/oai_dc/ http://www.openarchives.org/OAI/2.0/oai_dc.xsd">
<dc:title>2D Van der Waals Heterostructures for Chemical Sensing</dc:title>
<dc:creator>Hou, Huilei</dc:creator>
<dc:creator>Anichini, Cosimo</dc:creator>
<dc:creator>Samorì, Paolo</dc:creator>
<dc:creator>Criado, Alejandro</dc:creator>
<dc:creator>Prato, Maurizio</dc:creator>
<dc:subject>2D materials</dc:subject>
<dc:subject>Sensors</dc:subject>
<dc:subject>Van der Waals heterostructures</dc:subject>
<dc:description>[Abstract] During the last 15 years, 2D materials have revolutionized the field of materials science. Moreover, because of their highest surface-to-volume ratio and properties extremely susceptible to their interaction with the local environment they became powerful active components for the development the high-performance chemical sensors. By combining different 2D materials to form van der Waals heterostructures (VDWHs) it is possible to overcome the drawback of individual materials (such as inertness and zero-bandgap of pristine graphene and less environmental stability of transition metal dichalcogenides). Meanwhile, VDWHs possess unprecedented and fascinating properties arising from the intimate interaction between the components, which can yield superior sensitivities, higher selectivity, and stability when employed to detect gases, biomolecules, and other organic/inorganic molecules. Herein, the latest developments and advances in the field of chemical sensors based on VDWH of 2D materials, with specific insight into the sensing mechanisms, are reviewed and future directions, challenges, and opportunities for the development of the next generation of (bio)chemical sensors with potential impact in environmental sciences and biomedical applications, and more specifically in (bio)chemical defense, industrial safety, food, and environmental surveillance, and medical (early) diagnostics, are discussed.</dc:description>
<dc:date>2024-06-27T15:02:00Z</dc:date>
<dc:date>2024-06-27T15:02:00Z</dc:date>
<dc:date>2022-10-10</dc:date>
<dc:type>info:eu-repo/semantics/article</dc:type>
<dc:identifier>H.-L. Hou, C. Anichini, P. Samorì, A. Criado, M. Prato, 2D Van der Waals Heterostructures for Chemical Sensing. Adv. Funct. Mater. 2022, 32, 2207065. https://doi.org/10.1002/adfm.202207065</dc:identifier>
<dc:identifier>1616-3028 (eISSN)</dc:identifier>
<dc:identifier>1616-301X</dc:identifier>
<dc:identifier>http://hdl.handle.net/2183/37506</dc:identifier>
<dc:identifier>10.1002/adfm.202207065</dc:identifier>
<dc:language>eng</dc:language>
<dc:relation>https://doi.org/10.1002/adfm.202207065</dc:relation>
<dc:relation>info:eu-repo/grantAgreement/MIUR/Progetti di Ricerca di Rilevante Interesse Nazionale 2017/2017PBXPN4/IT/</dc:relation>
<dc:relation>info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/MDM-2017-0720/ES/</dc:relation>
<dc:relation>info:eu-repo/grantAgreement/EC/H2020/881603</dc:relation>
<dc:relation>info:eu-repo/grantAgreement/EC/H2020/GA-833707</dc:relation>
<dc:relation>info:eu-repo/grantAgreement/ANR/Programme d'Investissement d'avenir 2010/ANR-10-IDEX-0002-02/FR</dc:relation>
<dc:relation>info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RYC2020-030183-I/ES/</dc:relation>
<dc:relation>info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/IJC-2018-037396-I/ES/</dc:relation>
<dc:rights>https://creativecommons.org/licenses/by-nc/4.0/</dc:rights>
<dc:rights>info:eu-repo/semantics/openAccess</dc:rights>
<dc:rights>Atribución-NoComercial 4.0 Internacional</dc:rights>
<dc:publisher>Wiley-VCH</dc:publisher>
</oai_dc:dc>
</d:Statement>
</d:Descriptor>
<d:Component id="2183_37506_2">
</d:Component>
</d:Item>
</d:DIDL>
<?xml version="1.0" encoding="UTF-8" ?>
<dim:dim schemaLocation="http://www.dspace.org/xmlns/dspace/dim http://www.dspace.org/schema/dim.xsd">
<dim:field element="contributor" mdschema="dc" qualifier="author">Hou, Huilei</dim:field>
<dim:field element="contributor" mdschema="dc" qualifier="author">Anichini, Cosimo</dim:field>
<dim:field element="contributor" mdschema="dc" qualifier="author">Samorì, Paolo</dim:field>
<dim:field element="contributor" mdschema="dc" qualifier="author">Criado, Alejandro</dim:field>
<dim:field element="contributor" mdschema="dc" qualifier="author">Prato, Maurizio</dim:field>
<dim:field element="date" mdschema="dc" qualifier="accessioned">2024-06-27T15:02:00Z</dim:field>
<dim:field element="date" mdschema="dc" qualifier="available">2024-06-27T15:02:00Z</dim:field>
<dim:field element="date" mdschema="dc" qualifier="issued">2022-10-10</dim:field>
<dim:field element="identifier" lang="es_ES" mdschema="dc" qualifier="citation">H.-L. Hou, C. Anichini, P. Samorì, A. Criado, M. Prato, 2D Van der Waals Heterostructures for Chemical Sensing. Adv. Funct. Mater. 2022, 32, 2207065. https://doi.org/10.1002/adfm.202207065</dim:field>
<dim:field element="identifier" mdschema="dc" qualifier="issn">1616-3028 (eISSN)</dim:field>
<dim:field element="identifier" mdschema="dc" qualifier="issn">1616-301X</dim:field>
<dim:field element="identifier" mdschema="dc" qualifier="uri">http://hdl.handle.net/2183/37506</dim:field>
<dim:field element="identifier" mdschema="dc" qualifier="doi">10.1002/adfm.202207065</dim:field>
<dim:field element="description" lang="es_ES" mdschema="dc" qualifier="abstract">[Abstract] During the last 15 years, 2D materials have revolutionized the field of materials science. Moreover, because of their highest surface-to-volume ratio and properties extremely susceptible to their interaction with the local environment they became powerful active components for the development the high-performance chemical sensors. By combining different 2D materials to form van der Waals heterostructures (VDWHs) it is possible to overcome the drawback of individual materials (such as inertness and zero-bandgap of pristine graphene and less environmental stability of transition metal dichalcogenides). Meanwhile, VDWHs possess unprecedented and fascinating properties arising from the intimate interaction between the components, which can yield superior sensitivities, higher selectivity, and stability when employed to detect gases, biomolecules, and other organic/inorganic molecules. Herein, the latest developments and advances in the field of chemical sensors based on VDWH of 2D materials, with specific insight into the sensing mechanisms, are reviewed and future directions, challenges, and opportunities for the development of the next generation of (bio)chemical sensors with potential impact in environmental sciences and biomedical applications, and more specifically in (bio)chemical defense, industrial safety, food, and environmental surveillance, and medical (early) diagnostics, are discussed.</dim:field>
<dim:field element="description" lang="en" mdschema="dc" qualifier="provenance">Submitted by Pablo Santos Gulías (p.santos@udc.es) on 2024-06-27T15:01:36Z No. of bitstreams: 1 Criado_Fernandez_Alejandro_2022_2D_Van_der_Waals_heterostructures_for_chemical_sensing.pdf: 5237105 bytes, checksum: 9e864b7d78da3349450b859391a97bcb (MD5)</dim:field>
<dim:field element="description" lang="en" mdschema="dc" qualifier="provenance">Approved for entry into archive by Pablo Santos Gulías (p.santos@udc.es) on 2024-06-27T15:02:00Z (GMT) No. of bitstreams: 1 Criado_Fernandez_Alejandro_2022_2D_Van_der_Waals_heterostructures_for_chemical_sensing.pdf: 5237105 bytes, checksum: 9e864b7d78da3349450b859391a97bcb (MD5)</dim:field>
<dim:field element="description" lang="en" mdschema="dc" qualifier="provenance">Made available in DSpace on 2024-06-27T15:02:00Z (GMT). No. of bitstreams: 1 Criado_Fernandez_Alejandro_2022_2D_Van_der_Waals_heterostructures_for_chemical_sensing.pdf: 5237105 bytes, checksum: 9e864b7d78da3349450b859391a97bcb (MD5) Previous issue date: 2022-10-10</dim:field>
<dim:field element="description" lang="es_ES" mdschema="dc" qualifier="sponsorship">The authors gratefully acknowledge the financial support from the University of Trieste, INSTM, the Italian Ministry of Education MIUR (Cofin Prot. 2017PBXPN4) and the Maria de Maeztu Units of Excellence Program from the Spanish State Research Agency (Grant No. MDM-2017-0720). The authors acknowledge financial support from the EC through the Graphene Flagship Core 3 project (GA-881603) and the ERC project SUPRA2DMAT (GA-833707), the Interdisciplinary Thematic Institute SysChem via the IdEx Unistra (ANR-10-IDEX-0002) within the program Investissement d’Avenir program, the International Center for Frontier Research in Chemistry and the Institut Universitaire de France (IUF). M.P. is AXA Chair of Bionanotechnology. A.C. thanks MINECO and Xunta de Galicia for his research grants (Ramon y Cajal No. RYC2020-030183-I, and Atracción de Talento No. ED431H 2020/17, respectively). H.-L.H. thanks MINECO for his research grant (Juan de la Cierva Incorporacion/No. IJC-2018-037396-I). Open access funding provided by Universita degli Studi di Trieste within the CRUI-CARE Agreement.</dim:field>
<dim:field element="description" lang="es_ES" mdschema="dc" qualifier="sponsorship">Xunta de Galicia; ED431H 2020/17</dim:field>
<dim:field element="language" lang="es_ES" mdschema="dc" qualifier="iso">eng</dim:field>
<dim:field element="publisher" lang="es_ES" mdschema="dc">Wiley-VCH</dim:field>
<dim:field element="relation" lang="es_ES" mdschema="dc">info:eu-repo/grantAgreement/MIUR/Progetti di Ricerca di Rilevante Interesse Nazionale 2017/2017PBXPN4/IT/</dim:field>
<dim:field element="relation" lang="es_ES" mdschema="dc">info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/MDM-2017-0720/ES/</dim:field>
<dim:field element="relation" lang="es_ES" mdschema="dc">info:eu-repo/grantAgreement/EC/H2020/881603</dim:field>
<dim:field element="relation" lang="es_ES" mdschema="dc">info:eu-repo/grantAgreement/EC/H2020/GA-833707</dim:field>
<dim:field element="relation" lang="es_ES" mdschema="dc">info:eu-repo/grantAgreement/ANR/Programme d'Investissement d'avenir 2010/ANR-10-IDEX-0002-02/FR</dim:field>
<dim:field element="relation" lang="es_ES" mdschema="dc">info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RYC2020-030183-I/ES/</dim:field>
<dim:field element="relation" lang="es_ES" mdschema="dc">info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/IJC-2018-037396-I/ES/</dim:field>
<dim:field element="relation" lang="es_ES" mdschema="dc" qualifier="uri">https://doi.org/10.1002/adfm.202207065</dim:field>
<dim:field element="rights" mdschema="dc">Atribución-NoComercial 4.0 Internacional</dim:field>
<dim:field element="rights" mdschema="dc" qualifier="uri">https://creativecommons.org/licenses/by-nc/4.0/</dim:field>
<dim:field element="rights" lang="es_ES" mdschema="dc" qualifier="access">info:eu-repo/semantics/openAccess</dim:field>
<dim:field element="subject" lang="es_ES" mdschema="dc">2D materials</dim:field>
<dim:field element="subject" lang="es_ES" mdschema="dc">Sensors</dim:field>
<dim:field element="subject" lang="es_ES" mdschema="dc">Van der Waals heterostructures</dim:field>
<dim:field element="title" lang="es_ES" mdschema="dc">2D Van der Waals Heterostructures for Chemical Sensing</dim:field>
<dim:field element="type" lang="es_ES" mdschema="dc">info:eu-repo/semantics/article</dim:field>
</dim:dim>
<?xml version="1.0" encoding="UTF-8" ?>
<thesis schemaLocation="http://www.ndltd.org/standards/metadata/etdms/1.0/ http://www.ndltd.org/standards/metadata/etdms/1.0/etdms.xsd">
<title>2D Van der Waals Heterostructures for Chemical Sensing</title>
<creator>Hou, Huilei</creator>
<creator>Anichini, Cosimo</creator>
<creator>Samorì, Paolo</creator>
<creator>Criado, Alejandro</creator>
<creator>Prato, Maurizio</creator>
<subject>2D materials</subject>
<subject>Sensors</subject>
<subject>Van der Waals heterostructures</subject>
<description>[Abstract] During the last 15 years, 2D materials have revolutionized the field of materials science. Moreover, because of their highest surface-to-volume ratio and properties extremely susceptible to their interaction with the local environment they became powerful active components for the development the high-performance chemical sensors. By combining different 2D materials to form van der Waals heterostructures (VDWHs) it is possible to overcome the drawback of individual materials (such as inertness and zero-bandgap of pristine graphene and less environmental stability of transition metal dichalcogenides). Meanwhile, VDWHs possess unprecedented and fascinating properties arising from the intimate interaction between the components, which can yield superior sensitivities, higher selectivity, and stability when employed to detect gases, biomolecules, and other organic/inorganic molecules. Herein, the latest developments and advances in the field of chemical sensors based on VDWH of 2D materials, with specific insight into the sensing mechanisms, are reviewed and future directions, challenges, and opportunities for the development of the next generation of (bio)chemical sensors with potential impact in environmental sciences and biomedical applications, and more specifically in (bio)chemical defense, industrial safety, food, and environmental surveillance, and medical (early) diagnostics, are discussed.</description>
<date>2024-06-27</date>
<date>2024-06-27</date>
<date>2022-10-10</date>
<type>info:eu-repo/semantics/article</type>
<identifier>H.-L. Hou, C. Anichini, P. Samorì, A. Criado, M. Prato, 2D Van der Waals Heterostructures for Chemical Sensing. Adv. Funct. Mater. 2022, 32, 2207065. https://doi.org/10.1002/adfm.202207065</identifier>
<identifier>1616-3028 (eISSN)</identifier>
<identifier>1616-301X</identifier>
<identifier>http://hdl.handle.net/2183/37506</identifier>
<identifier>10.1002/adfm.202207065</identifier>
<language>eng</language>
<relation>https://doi.org/10.1002/adfm.202207065</relation>
<relation>info:eu-repo/grantAgreement/MIUR/Progetti di Ricerca di Rilevante Interesse Nazionale 2017/2017PBXPN4/IT/</relation>
<relation>info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/MDM-2017-0720/ES/</relation>
<relation>info:eu-repo/grantAgreement/EC/H2020/881603</relation>
<relation>info:eu-repo/grantAgreement/EC/H2020/GA-833707</relation>
<relation>info:eu-repo/grantAgreement/ANR/Programme d'Investissement d'avenir 2010/ANR-10-IDEX-0002-02/FR</relation>
<relation>info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RYC2020-030183-I/ES/</relation>
<relation>info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/IJC-2018-037396-I/ES/</relation>
<rights>https://creativecommons.org/licenses/by-nc/4.0/</rights>
<rights>info:eu-repo/semantics/openAccess</rights>
<rights>Atribución-NoComercial 4.0 Internacional</rights>
<publisher>Wiley-VCH</publisher>
</thesis>
<?xml version="1.0" encoding="UTF-8" ?>
<record schemaLocation="http://www.loc.gov/MARC21/slim http://www.loc.gov/standards/marcxml/schema/MARC21slim.xsd">
<leader>00925njm 22002777a 4500</leader>
<datafield ind1=" " ind2=" " tag="042">
<subfield code="a">dc</subfield>
</datafield>
<datafield ind1=" " ind2=" " tag="720">
<subfield code="a">Hou, Huilei</subfield>
<subfield code="e">author</subfield>
</datafield>
<datafield ind1=" " ind2=" " tag="720">
<subfield code="a">Anichini, Cosimo</subfield>
<subfield code="e">author</subfield>
</datafield>
<datafield ind1=" " ind2=" " tag="720">
<subfield code="a">Samorì, Paolo</subfield>
<subfield code="e">author</subfield>
</datafield>
<datafield ind1=" " ind2=" " tag="720">
<subfield code="a">Criado, Alejandro</subfield>
<subfield code="e">author</subfield>
</datafield>
<datafield ind1=" " ind2=" " tag="720">
<subfield code="a">Prato, Maurizio</subfield>
<subfield code="e">author</subfield>
</datafield>
<datafield ind1=" " ind2=" " tag="260">
<subfield code="c">2022-10-10</subfield>
</datafield>
<datafield ind1=" " ind2=" " tag="520">
<subfield code="a">[Abstract] During the last 15 years, 2D materials have revolutionized the field of materials science. Moreover, because of their highest surface-to-volume ratio and properties extremely susceptible to their interaction with the local environment they became powerful active components for the development the high-performance chemical sensors. By combining different 2D materials to form van der Waals heterostructures (VDWHs) it is possible to overcome the drawback of individual materials (such as inertness and zero-bandgap of pristine graphene and less environmental stability of transition metal dichalcogenides). Meanwhile, VDWHs possess unprecedented and fascinating properties arising from the intimate interaction between the components, which can yield superior sensitivities, higher selectivity, and stability when employed to detect gases, biomolecules, and other organic/inorganic molecules. Herein, the latest developments and advances in the field of chemical sensors based on VDWH of 2D materials, with specific insight into the sensing mechanisms, are reviewed and future directions, challenges, and opportunities for the development of the next generation of (bio)chemical sensors with potential impact in environmental sciences and biomedical applications, and more specifically in (bio)chemical defense, industrial safety, food, and environmental surveillance, and medical (early) diagnostics, are discussed.</subfield>
</datafield>
<datafield ind1="8" ind2=" " tag="024">
<subfield code="a">H.-L. Hou, C. Anichini, P. Samorì, A. Criado, M. Prato, 2D Van der Waals Heterostructures for Chemical Sensing. Adv. Funct. Mater. 2022, 32, 2207065. https://doi.org/10.1002/adfm.202207065</subfield>
</datafield>
<datafield ind1="8" ind2=" " tag="024">
<subfield code="a">1616-3028 (eISSN)</subfield>
</datafield>
<datafield ind1="8" ind2=" " tag="024">
<subfield code="a">1616-301X</subfield>
</datafield>
<datafield ind1="8" ind2=" " tag="024">
<subfield code="a">http://hdl.handle.net/2183/37506</subfield>
</datafield>
<datafield ind1="8" ind2=" " tag="024">
<subfield code="a">10.1002/adfm.202207065</subfield>
</datafield>
<datafield ind1=" " ind2=" " tag="653">
<subfield code="a">2D materials</subfield>
</datafield>
<datafield ind1=" " ind2=" " tag="653">
<subfield code="a">Sensors</subfield>
</datafield>
<datafield ind1=" " ind2=" " tag="653">
<subfield code="a">Van der Waals heterostructures</subfield>
</datafield>
<datafield ind1="0" ind2="0" tag="245">
<subfield code="a">2D Van der Waals Heterostructures for Chemical Sensing</subfield>
</datafield>
</record>
Se ha omitido la presentación del registro por ser demasiado largo. Si lo desea, puede descargárselo en el enlace anterior.
<?xml version="1.0" encoding="UTF-8" ?>
<mods:mods schemaLocation="http://www.loc.gov/mods/v3 http://www.loc.gov/standards/mods/v3/mods-3-1.xsd">
<mods:name>
<mods:namePart>Hou, Huilei</mods:namePart>
</mods:name>
<mods:name>
<mods:namePart>Anichini, Cosimo</mods:namePart>
</mods:name>
<mods:name>
<mods:namePart>Samorì, Paolo</mods:namePart>
</mods:name>
<mods:name>
<mods:namePart>Criado, Alejandro</mods:namePart>
</mods:name>
<mods:name>
<mods:namePart>Prato, Maurizio</mods:namePart>
</mods:name>
<mods:extension>
<mods:dateAvailable encoding="iso8601">2024-06-27T15:02:00Z</mods:dateAvailable>
</mods:extension>
<mods:extension>
<mods:dateAccessioned encoding="iso8601">2024-06-27T15:02:00Z</mods:dateAccessioned>
</mods:extension>
<mods:originInfo>
<mods:dateIssued encoding="iso8601">2022-10-10</mods:dateIssued>
</mods:originInfo>
<mods:identifier type="citation">H.-L. Hou, C. Anichini, P. Samorì, A. Criado, M. Prato, 2D Van der Waals Heterostructures for Chemical Sensing. Adv. Funct. Mater. 2022, 32, 2207065. https://doi.org/10.1002/adfm.202207065</mods:identifier>
<mods:identifier type="issn">1616-3028 (eISSN)</mods:identifier>
<mods:identifier type="issn">1616-301X</mods:identifier>
<mods:identifier type="uri">http://hdl.handle.net/2183/37506</mods:identifier>
<mods:identifier type="doi">10.1002/adfm.202207065</mods:identifier>
<mods:abstract>[Abstract] During the last 15 years, 2D materials have revolutionized the field of materials science. Moreover, because of their highest surface-to-volume ratio and properties extremely susceptible to their interaction with the local environment they became powerful active components for the development the high-performance chemical sensors. By combining different 2D materials to form van der Waals heterostructures (VDWHs) it is possible to overcome the drawback of individual materials (such as inertness and zero-bandgap of pristine graphene and less environmental stability of transition metal dichalcogenides). Meanwhile, VDWHs possess unprecedented and fascinating properties arising from the intimate interaction between the components, which can yield superior sensitivities, higher selectivity, and stability when employed to detect gases, biomolecules, and other organic/inorganic molecules. Herein, the latest developments and advances in the field of chemical sensors based on VDWH of 2D materials, with specific insight into the sensing mechanisms, are reviewed and future directions, challenges, and opportunities for the development of the next generation of (bio)chemical sensors with potential impact in environmental sciences and biomedical applications, and more specifically in (bio)chemical defense, industrial safety, food, and environmental surveillance, and medical (early) diagnostics, are discussed.</mods:abstract>
<mods:language>
<mods:languageTerm>eng</mods:languageTerm>
</mods:language>
<mods:accessCondition type="useAndReproduction">https://creativecommons.org/licenses/by-nc/4.0/</mods:accessCondition>
<mods:accessCondition type="useAndReproduction">info:eu-repo/semantics/openAccess</mods:accessCondition>
<mods:accessCondition type="useAndReproduction">Atribución-NoComercial 4.0 Internacional</mods:accessCondition>
<mods:subject>
<mods:topic>2D materials</mods:topic>
</mods:subject>
<mods:subject>
<mods:topic>Sensors</mods:topic>
</mods:subject>
<mods:subject>
<mods:topic>Van der Waals heterostructures</mods:topic>
</mods:subject>
<mods:titleInfo>
<mods:title>2D Van der Waals Heterostructures for Chemical Sensing</mods:title>
</mods:titleInfo>
<mods:genre>info:eu-repo/semantics/article</mods:genre>
</mods:mods>
<?xml version="1.0" encoding="UTF-8" ?>
<atom:entry schemaLocation="http://www.w3.org/2005/Atom http://www.kbcafe.com/rss/atom.xsd.xml">
<atom:id>http://hdl.handle.net/2183/37506/ore.xml</atom:id>
<atom:published>2024-06-27T15:02:00Z</atom:published>
<atom:updated>2024-06-27T15:02:00Z</atom:updated>
<atom:source>
<atom:generator>RUC. Repositorio da Universidade da Coruña</atom:generator>
</atom:source>
<atom:title>2D Van der Waals Heterostructures for Chemical Sensing</atom:title>
<atom:author>
<atom:name>Hou, Huilei</atom:name>
</atom:author>
<atom:author>
<atom:name>Anichini, Cosimo</atom:name>
</atom:author>
<atom:author>
<atom:name>Samorì, Paolo</atom:name>
</atom:author>
<atom:author>
<atom:name>Criado, Alejandro</atom:name>
</atom:author>
<atom:author>
<atom:name>Prato, Maurizio</atom:name>
</atom:author>
<oreatom:triples>
<rdf:Description about="http://hdl.handle.net/2183/37506/ore.xml#atom">
<dcterms:modified>2024-06-27T15:02:00Z</dcterms:modified>
</rdf:Description>
<rdf:Description about="https://ruc.udc.es/dspace/bitstream/2183/37506/4/Criado_Fernandez_Alejandro_2022_2D_Van_der_Waals_heterostructures_for_chemical_sensing.pdf.jpg">
<dcterms:description>THUMBNAIL</dcterms:description>
</rdf:Description>
<rdf:Description about="https://ruc.udc.es/dspace/bitstream/2183/37506/3/Criado_Fernandez_Alejandro_2022_2D_Van_der_Waals_heterostructures_for_chemical_sensing.pdf.txt">
<dcterms:description>TEXT</dcterms:description>
</rdf:Description>
<rdf:Description about="https://ruc.udc.es/dspace/bitstream/2183/37506/2/Criado_Fernandez_Alejandro_2022_2D_Van_der_Waals_heterostructures_for_chemical_sensing.pdf">
<dcterms:description>ORIGINAL</dcterms:description>
</rdf:Description>
<rdf:Description about="https://ruc.udc.es/dspace/bitstream/2183/37506/1/license.txt">
<dcterms:description>LICENSE</dcterms:description>
</rdf:Description>
</oreatom:triples>
</atom:entry>
<?xml version="1.0" encoding="UTF-8" ?>
<qdc:qualifieddc schemaLocation="http://purl.org/dc/elements/1.1/ http://dublincore.org/schemas/xmls/qdc/2006/01/06/dc.xsd http://purl.org/dc/terms/ http://dublincore.org/schemas/xmls/qdc/2006/01/06/dcterms.xsd http://dspace.org/qualifieddc/ http://www.ukoln.ac.uk/metadata/dcmi/xmlschema/qualifieddc.xsd">
<dc:title>2D Van der Waals Heterostructures for Chemical Sensing</dc:title>
<dc:creator>Hou, Huilei</dc:creator>
<dc:creator>Anichini, Cosimo</dc:creator>
<dc:creator>Samorì, Paolo</dc:creator>
<dc:creator>Criado, Alejandro</dc:creator>
<dc:creator>Prato, Maurizio</dc:creator>
<dc:subject>2D materials</dc:subject>
<dc:subject>Sensors</dc:subject>
<dc:subject>Van der Waals heterostructures</dc:subject>
<dcterms:abstract>[Abstract] During the last 15 years, 2D materials have revolutionized the field of materials science. Moreover, because of their highest surface-to-volume ratio and properties extremely susceptible to their interaction with the local environment they became powerful active components for the development the high-performance chemical sensors. By combining different 2D materials to form van der Waals heterostructures (VDWHs) it is possible to overcome the drawback of individual materials (such as inertness and zero-bandgap of pristine graphene and less environmental stability of transition metal dichalcogenides). Meanwhile, VDWHs possess unprecedented and fascinating properties arising from the intimate interaction between the components, which can yield superior sensitivities, higher selectivity, and stability when employed to detect gases, biomolecules, and other organic/inorganic molecules. Herein, the latest developments and advances in the field of chemical sensors based on VDWH of 2D materials, with specific insight into the sensing mechanisms, are reviewed and future directions, challenges, and opportunities for the development of the next generation of (bio)chemical sensors with potential impact in environmental sciences and biomedical applications, and more specifically in (bio)chemical defense, industrial safety, food, and environmental surveillance, and medical (early) diagnostics, are discussed.</dcterms:abstract>
<dcterms:dateAccepted>2024-06-27T15:02:00Z</dcterms:dateAccepted>
<dcterms:available>2024-06-27T15:02:00Z</dcterms:available>
<dcterms:created>2024-06-27T15:02:00Z</dcterms:created>
<dcterms:issued>2022-10-10</dcterms:issued>
<dc:type>info:eu-repo/semantics/article</dc:type>
<dc:identifier>H.-L. Hou, C. Anichini, P. Samorì, A. Criado, M. Prato, 2D Van der Waals Heterostructures for Chemical Sensing. Adv. Funct. Mater. 2022, 32, 2207065. https://doi.org/10.1002/adfm.202207065</dc:identifier>
<dc:identifier>1616-3028 (eISSN)</dc:identifier>
<dc:identifier>1616-301X</dc:identifier>
<dc:identifier>http://hdl.handle.net/2183/37506</dc:identifier>
<dc:identifier>10.1002/adfm.202207065</dc:identifier>
<dc:language>eng</dc:language>
<dc:relation>https://doi.org/10.1002/adfm.202207065</dc:relation>
<dc:relation>info:eu-repo/grantAgreement/MIUR/Progetti di Ricerca di Rilevante Interesse Nazionale 2017/2017PBXPN4/IT/</dc:relation>
<dc:relation>info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/MDM-2017-0720/ES/</dc:relation>
<dc:relation>info:eu-repo/grantAgreement/EC/H2020/881603</dc:relation>
<dc:relation>info:eu-repo/grantAgreement/EC/H2020/GA-833707</dc:relation>
<dc:relation>info:eu-repo/grantAgreement/ANR/Programme d'Investissement d'avenir 2010/ANR-10-IDEX-0002-02/FR</dc:relation>
<dc:relation>info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RYC2020-030183-I/ES/</dc:relation>
<dc:relation>info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/IJC-2018-037396-I/ES/</dc:relation>
<dc:rights>https://creativecommons.org/licenses/by-nc/4.0/</dc:rights>
<dc:rights>info:eu-repo/semantics/openAccess</dc:rights>
<dc:rights>Atribución-NoComercial 4.0 Internacional</dc:rights>
<dc:publisher>Wiley-VCH</dc:publisher>
</qdc:qualifieddc>
<?xml version="1.0" encoding="UTF-8" ?>
<rdf:RDF schemaLocation="http://www.openarchives.org/OAI/2.0/rdf/ http://www.openarchives.org/OAI/2.0/rdf.xsd">
<ow:Publication about="oai:ruc.udc.es:2183/37506">
<dc:title>2D Van der Waals Heterostructures for Chemical Sensing</dc:title>
<dc:creator>Hou, Huilei</dc:creator>
<dc:creator>Anichini, Cosimo</dc:creator>
<dc:creator>Samorì, Paolo</dc:creator>
<dc:creator>Criado, Alejandro</dc:creator>
<dc:creator>Prato, Maurizio</dc:creator>
<dc:subject>2D materials</dc:subject>
<dc:subject>Sensors</dc:subject>
<dc:subject>Van der Waals heterostructures</dc:subject>
<dc:description>[Abstract] During the last 15 years, 2D materials have revolutionized the field of materials science. Moreover, because of their highest surface-to-volume ratio and properties extremely susceptible to their interaction with the local environment they became powerful active components for the development the high-performance chemical sensors. By combining different 2D materials to form van der Waals heterostructures (VDWHs) it is possible to overcome the drawback of individual materials (such as inertness and zero-bandgap of pristine graphene and less environmental stability of transition metal dichalcogenides). Meanwhile, VDWHs possess unprecedented and fascinating properties arising from the intimate interaction between the components, which can yield superior sensitivities, higher selectivity, and stability when employed to detect gases, biomolecules, and other organic/inorganic molecules. Herein, the latest developments and advances in the field of chemical sensors based on VDWH of 2D materials, with specific insight into the sensing mechanisms, are reviewed and future directions, challenges, and opportunities for the development of the next generation of (bio)chemical sensors with potential impact in environmental sciences and biomedical applications, and more specifically in (bio)chemical defense, industrial safety, food, and environmental surveillance, and medical (early) diagnostics, are discussed.</dc:description>
<dc:date>2024-06-27T15:02:00Z</dc:date>
<dc:date>2024-06-27T15:02:00Z</dc:date>
<dc:date>2022-10-10</dc:date>
<dc:type>info:eu-repo/semantics/article</dc:type>
<dc:identifier>H.-L. Hou, C. Anichini, P. Samorì, A. Criado, M. Prato, 2D Van der Waals Heterostructures for Chemical Sensing. Adv. Funct. Mater. 2022, 32, 2207065. https://doi.org/10.1002/adfm.202207065</dc:identifier>
<dc:identifier>1616-3028 (eISSN)</dc:identifier>
<dc:identifier>1616-301X</dc:identifier>
<dc:identifier>http://hdl.handle.net/2183/37506</dc:identifier>
<dc:identifier>10.1002/adfm.202207065</dc:identifier>
<dc:language>eng</dc:language>
<dc:relation>https://doi.org/10.1002/adfm.202207065</dc:relation>
<dc:relation>info:eu-repo/grantAgreement/MIUR/Progetti di Ricerca di Rilevante Interesse Nazionale 2017/2017PBXPN4/IT/</dc:relation>
<dc:relation>info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/MDM-2017-0720/ES/</dc:relation>
<dc:relation>info:eu-repo/grantAgreement/EC/H2020/881603</dc:relation>
<dc:relation>info:eu-repo/grantAgreement/EC/H2020/GA-833707</dc:relation>
<dc:relation>info:eu-repo/grantAgreement/ANR/Programme d'Investissement d'avenir 2010/ANR-10-IDEX-0002-02/FR</dc:relation>
<dc:relation>info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RYC2020-030183-I/ES/</dc:relation>
<dc:relation>info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/IJC-2018-037396-I/ES/</dc:relation>
<dc:rights>https://creativecommons.org/licenses/by-nc/4.0/</dc:rights>
<dc:rights>info:eu-repo/semantics/openAccess</dc:rights>
<dc:rights>Atribución-NoComercial 4.0 Internacional</dc:rights>
<dc:publisher>Wiley-VCH</dc:publisher>
</ow:Publication>
</rdf:RDF>
Se ha omitido la presentación del registro por ser demasiado largo. Si lo desea, puede descargárselo en el enlace anterior.