<?xml version="1.0" encoding="UTF-8" ?>
<oai_dc:dc schemaLocation="http://www.openarchives.org/OAI/2.0/oai_dc/ http://www.openarchives.org/OAI/2.0/oai_dc.xsd">
<dc:title>$\mu$-Bases de corbes racionals planes</dc:title>
<dc:creator>Moner i Farran, Berta</dc:creator>
<dc:contributor>Montoro López, M. Eulàlia</dc:contributor>
<dc:subject>Corbes el·líptiques</dc:subject>
<dc:subject>Geometria algebraica</dc:subject>
<dc:subject>Treballs de fi de grau</dc:subject>
<dc:subject>Varietats abelianes</dc:subject>
<dc:subject>Elliptic curves</dc:subject>
<dc:subject>Algebraic geometry</dc:subject>
<dc:subject>Bachelor's theses</dc:subject>
<dc:subject>Abelian varieties</dc:subject>
<dc:description>Treballs Finals de Grau de Matemàtiques, Facultat de Matemàtiques, Universitat de Barcelona, Any: 2023, Director: M. Eulàlia Montoro López</dc:description>
<dc:description>[en] In this work, the $\mu$-bases of plane rational curves are shown from the point of view of algebraic geometry and algebraic varieties. Thus, the Gröbner bases are previously presented, which are of great importance in this area but more expensive than the $\mu$ bases. Based on the definition and construction of the latter, two applications are shown: modules and implication, both polynomial and rational. The work is based on the article The moving line ideal basis of planar rational curves from Cox, D.A, Sederberg, T.W., Chen, F. published on 1998 by Computer Aided Geometry Design 15.</dc:description>
<dc:date>2023-10-25T08:50:23Z</dc:date>
<dc:date>2023-10-25T08:50:23Z</dc:date>
<dc:date>2023-06-12</dc:date>
<dc:type>info:eu-repo/semantics/bachelorThesis</dc:type>
<dc:identifier>http://hdl.handle.net/2445/203140</dc:identifier>
<dc:language>cat</dc:language>
<dc:rights>cc-by-nc-nd (c) Berta Moner i Farran, 2023</dc:rights>
<dc:rights>http://creativecommons.org/licenses/by-nc-nd/3.0/es/</dc:rights>
<dc:rights>info:eu-repo/semantics/openAccess</dc:rights>
<dc:format>61 p.</dc:format>
<dc:format>application/pdf</dc:format>
<dc:source>Treballs Finals de Grau (TFG) - Matemàtiques</dc:source>
</oai_dc:dc>
<?xml version="1.0" encoding="UTF-8" ?>
<record schemaLocation="http://www.loc.gov/MARC21/slim http://www.loc.gov/standards/marcxml/schema/MARC21slim.xsd">
<leader>00925njm 22002777a 4500</leader>
<datafield ind1=" " ind2=" " tag="042">
<subfield code="a">dc</subfield>
</datafield>
<datafield ind1=" " ind2=" " tag="720">
<subfield code="a">Moner i Farran, Berta</subfield>
<subfield code="e">author</subfield>
</datafield>
<datafield ind1=" " ind2=" " tag="260">
<subfield code="c">2023-06-12</subfield>
</datafield>
<datafield ind1=" " ind2=" " tag="520">
<subfield code="a">[en] In this work, the $\mu$-bases of plane rational curves are shown from the point of view of algebraic geometry and algebraic varieties. Thus, the Gröbner bases are previously presented, which are of great importance in this area but more expensive than the $\mu$ bases. Based on the definition and construction of the latter, two applications are shown: modules and implication, both polynomial and rational. The work is based on the article The moving line ideal basis of planar rational curves from Cox, D.A, Sederberg, T.W., Chen, F. published on 1998 by Computer Aided Geometry Design 15.</subfield>
</datafield>
<datafield ind1="8" ind2=" " tag="024">
<subfield code="a">http://hdl.handle.net/2445/203140</subfield>
</datafield>
<datafield ind1="0" ind2="0" tag="245">
<subfield code="a">$\mu$-Bases de corbes racionals planes</subfield>
</datafield>
</record>
<?xml version="1.0" encoding="UTF-8" ?>
<mets ID=" DSpace_ITEM_2445-203140" OBJID=" hdl:2445/203140" PROFILE="DSpace METS SIP Profile 1.0" TYPE="DSpace ITEM" schemaLocation="http://www.loc.gov/METS/ http://www.loc.gov/standards/mets/mets.xsd">
<metsHdr CREATEDATE="2024-08-03T06:52:47Z">
<agent ROLE="CUSTODIAN" TYPE="ORGANIZATION">
<name>Dipòsit Digital de la Universitat de Barcelona</name>
</agent>
</metsHdr>
<dmdSec ID="DMD_2445_203140">
<mdWrap MDTYPE="MODS">
<xmlData schemaLocation="http://www.loc.gov/mods/v3 http://www.loc.gov/standards/mods/v3/mods-3-1.xsd">
<mods:mods schemaLocation="http://www.loc.gov/mods/v3 http://www.loc.gov/standards/mods/v3/mods-3-1.xsd">
<mods:name>
<mods:role>
<mods:roleTerm type="text">advisor</mods:roleTerm>
</mods:role>
<mods:namePart>Montoro López, M. Eulàlia</mods:namePart>
</mods:name>
<mods:name>
<mods:role>
<mods:roleTerm type="text">author</mods:roleTerm>
</mods:role>
<mods:namePart>Moner i Farran, Berta</mods:namePart>
</mods:name>
<mods:extension>
<mods:dateAccessioned encoding="iso8601">2023-10-25T08:50:23Z</mods:dateAccessioned>
</mods:extension>
<mods:extension>
<mods:dateAvailable encoding="iso8601">2023-10-25T08:50:23Z</mods:dateAvailable>
</mods:extension>
<mods:originInfo>
<mods:dateIssued encoding="iso8601">2023-06-12</mods:dateIssued>
</mods:originInfo>
<mods:identifier type="uri">http://hdl.handle.net/2445/203140</mods:identifier>
<mods:abstract>[en] In this work, the $\mu$-bases of plane rational curves are shown from the point of view of algebraic geometry and algebraic varieties. Thus, the Gröbner bases are previously presented, which are of great importance in this area but more expensive than the $\mu$ bases. Based on the definition and construction of the latter, two applications are shown: modules and implication, both polynomial and rational. The work is based on the article The moving line ideal basis of planar rational curves from Cox, D.A, Sederberg, T.W., Chen, F. published on 1998 by Computer Aided Geometry Design 15.</mods:abstract>
<mods:language>
<mods:languageTerm authority="rfc3066">cat</mods:languageTerm>
</mods:language>
<mods:accessCondition type="useAndReproduction">cc-by-nc-nd (c) Berta Moner i Farran, 2023</mods:accessCondition>
<mods:titleInfo>
<mods:title>$\mu$-Bases de corbes racionals planes</mods:title>
</mods:titleInfo>
<mods:genre>info:eu-repo/semantics/bachelorThesis</mods:genre>
</mods:mods>
</xmlData>
</mdWrap>
</dmdSec>
<amdSec ID="TMD_2445_203140">
<rightsMD ID="RIG_2445_203140">
<mdWrap MDTYPE="OTHER" MIMETYPE="text/plain" OTHERMDTYPE="DSpaceDepositLicense">
<binData>RWxzIG1hdGVyaWFscyBsbGl1cmF0cyBhbCBEaXDDsnNpdCBkaWdpdGFsIGRlIGxhIFVCIHF1ZSBlc3RpZ3VpbiBzdWJqZWN0ZXMgYSB1bmEgbGxpY8OobmNpYSBkZSBDcmVhdGl2ZSBDb21tb25zLAplbiBlbCBtb21lbnQgZGUgbGxpdXJhciBlbCBkb2N1bWVudCwgZWwgcHJvcGkgdXN1YXJpIGwnaGEgZCdlc2NvbGxpci4KU2kgdXMgcGxhdSBubyBvYmxpZGV1IGFzc2lnbmFyIHVuYSBsbGljw6huY2lhIGFsIHZvc3RyZSBkb2N1bWVudCEuCg==</binData>
</mdWrap>
</rightsMD>
</amdSec>
<amdSec ID="FO_2445_203140_1">
<techMD ID="TECH_O_2445_203140_1">
<mdWrap MDTYPE="PREMIS">
<xmlData schemaLocation="http://www.loc.gov/standards/premis http://www.loc.gov/standards/premis/PREMIS-v1-0.xsd">
<premis:premis>
<premis:object>
<premis:objectIdentifier>
<premis:objectIdentifierType>URL</premis:objectIdentifierType>
<premis:objectIdentifierValue>http://diposit.ub.edu/dspace/bitstream/2445/203140/1/tfg_moner_farran_berta.pdf</premis:objectIdentifierValue>
</premis:objectIdentifier>
<premis:objectCategory>File</premis:objectCategory>
<premis:objectCharacteristics>
<premis:fixity>
<premis:messageDigestAlgorithm>MD5</premis:messageDigestAlgorithm>
<premis:messageDigest>87e30c85f92e30329963f12583587bde</premis:messageDigest>
</premis:fixity>
<premis:size>681054</premis:size>
<premis:format>
<premis:formatDesignation>
<premis:formatName>application/pdf</premis:formatName>
</premis:formatDesignation>
</premis:format>
</premis:objectCharacteristics>
<premis:originalName>tfg_moner_farran_berta.pdf</premis:originalName>
</premis:object>
</premis:premis>
</xmlData>
</mdWrap>
</techMD>
</amdSec>
<amdSec ID="FO_2445_203140_2">
<techMD ID="TECH_O_2445_203140_2">
<mdWrap MDTYPE="PREMIS">
<xmlData schemaLocation="http://www.loc.gov/standards/premis http://www.loc.gov/standards/premis/PREMIS-v1-0.xsd">
<premis:premis>
<premis:object>
<premis:objectIdentifier>
<premis:objectIdentifierType>URL</premis:objectIdentifierType>
<premis:objectIdentifierValue>http://diposit.ub.edu/dspace/bitstream/2445/203140/2/ces203140.pdf</premis:objectIdentifierValue>
</premis:objectIdentifier>
<premis:objectCategory>File</premis:objectCategory>
<premis:objectCharacteristics>
<premis:fixity>
<premis:messageDigestAlgorithm>MD5</premis:messageDigestAlgorithm>
<premis:messageDigest>2a0f16f1e5423cb78366cd857519e3b4</premis:messageDigest>
</premis:fixity>
<premis:size>364643</premis:size>
<premis:format>
<premis:formatDesignation>
<premis:formatName>text/plain</premis:formatName>
</premis:formatDesignation>
</premis:format>
</premis:objectCharacteristics>
<premis:originalName>ces203140.pdf</premis:originalName>
</premis:object>
</premis:premis>
</xmlData>
</mdWrap>
</techMD>
</amdSec>
<amdSec ID="FT_2445_203140_5">
<techMD ID="TECH_T_2445_203140_5">
<mdWrap MDTYPE="PREMIS">
<xmlData schemaLocation="http://www.loc.gov/standards/premis http://www.loc.gov/standards/premis/PREMIS-v1-0.xsd">
<premis:premis>
<premis:object>
<premis:objectIdentifier>
<premis:objectIdentifierType>URL</premis:objectIdentifierType>
<premis:objectIdentifierValue>http://diposit.ub.edu/dspace/bitstream/2445/203140/5/tfg_moner_farran_berta.pdf.txt</premis:objectIdentifierValue>
</premis:objectIdentifier>
<premis:objectCategory>File</premis:objectCategory>
<premis:objectCharacteristics>
<premis:fixity>
<premis:messageDigestAlgorithm>MD5</premis:messageDigestAlgorithm>
<premis:messageDigest>ff3f863e000e2071aeee5ec6415e6ccf</premis:messageDigest>
</premis:fixity>
<premis:size>82520</premis:size>
<premis:format>
<premis:formatDesignation>
<premis:formatName>text/plain</premis:formatName>
</premis:formatDesignation>
</premis:format>
</premis:objectCharacteristics>
<premis:originalName>tfg_moner_farran_berta.pdf.txt</premis:originalName>
</premis:object>
</premis:premis>
</xmlData>
</mdWrap>
</techMD>
</amdSec>
<fileSec>
<fileGrp USE="ORIGINAL">
<file ADMID="FO_2445_203140_1" CHECKSUM="87e30c85f92e30329963f12583587bde" CHECKSUMTYPE="MD5" GROUPID="GROUP_BITSTREAM_2445_203140_1" ID="BITSTREAM_ORIGINAL_2445_203140_1" MIMETYPE="application/pdf" SEQ="1" SIZE="681054">
</file>
<file ADMID="FO_2445_203140_2" CHECKSUM="2a0f16f1e5423cb78366cd857519e3b4" CHECKSUMTYPE="MD5" GROUPID="GROUP_BITSTREAM_2445_203140_2" ID="BITSTREAM_ORIGINAL_2445_203140_2" MIMETYPE="text/plain" SEQ="2" SIZE="364643">
</file>
</fileGrp>
<fileGrp USE="TEXT">
<file ADMID="FT_2445_203140_5" CHECKSUM="ff3f863e000e2071aeee5ec6415e6ccf" CHECKSUMTYPE="MD5" GROUPID="GROUP_BITSTREAM_2445_203140_5" ID="BITSTREAM_TEXT_2445_203140_5" MIMETYPE="text/plain" SEQ="5" SIZE="82520">
</file>
</fileGrp>
</fileSec>
<structMap LABEL="DSpace Object" TYPE="LOGICAL">
<div ADMID="DMD_2445_203140" TYPE="DSpace Object Contents">
<div TYPE="DSpace BITSTREAM">
</div>
<div TYPE="DSpace BITSTREAM">
</div>
</div>
</structMap>
</mets>
<?xml version="1.0" encoding="UTF-8" ?>
<mods:mods schemaLocation="http://www.loc.gov/mods/v3 http://www.loc.gov/standards/mods/v3/mods-3-1.xsd">
<mods:name>
<mods:namePart>Moner i Farran, Berta</mods:namePart>
</mods:name>
<mods:extension>
<mods:dateAvailable encoding="iso8601">2023-10-25T08:50:23Z</mods:dateAvailable>
</mods:extension>
<mods:extension>
<mods:dateAccessioned encoding="iso8601">2023-10-25T08:50:23Z</mods:dateAccessioned>
</mods:extension>
<mods:originInfo>
<mods:dateIssued encoding="iso8601">2023-06-12</mods:dateIssued>
</mods:originInfo>
<mods:identifier type="uri">http://hdl.handle.net/2445/203140</mods:identifier>
<mods:abstract>[en] In this work, the $\mu$-bases of plane rational curves are shown from the point of view of algebraic geometry and algebraic varieties. Thus, the Gröbner bases are previously presented, which are of great importance in this area but more expensive than the $\mu$ bases. Based on the definition and construction of the latter, two applications are shown: modules and implication, both polynomial and rational. The work is based on the article The moving line ideal basis of planar rational curves from Cox, D.A, Sederberg, T.W., Chen, F. published on 1998 by Computer Aided Geometry Design 15.</mods:abstract>
<mods:language>
<mods:languageTerm>cat</mods:languageTerm>
</mods:language>
<mods:accessCondition type="useAndReproduction">http://creativecommons.org/licenses/by-nc-nd/3.0/es/</mods:accessCondition>
<mods:accessCondition type="useAndReproduction">info:eu-repo/semantics/openAccess</mods:accessCondition>
<mods:accessCondition type="useAndReproduction">cc-by-nc-nd (c) Berta Moner i Farran, 2023</mods:accessCondition>
<mods:titleInfo>
<mods:title>$\mu$-Bases de corbes racionals planes</mods:title>
</mods:titleInfo>
<mods:genre>info:eu-repo/semantics/bachelorThesis</mods:genre>
</mods:mods>
<?xml version="1.0" encoding="UTF-8" ?>
<atom:entry schemaLocation="http://www.w3.org/2005/Atom http://www.kbcafe.com/rss/atom.xsd.xml">
<atom:id>http://hdl.handle.net/2445/203140/ore.xml</atom:id>
<atom:published>2023-10-25T08:50:23Z</atom:published>
<atom:updated>2023-10-25T08:50:23Z</atom:updated>
<atom:source>
<atom:generator>Dipòsit Digital de la Universitat de Barcelona</atom:generator>
</atom:source>
<atom:title>$\mu$-Bases de corbes racionals planes</atom:title>
<atom:author>
<atom:name>Moner i Farran, Berta</atom:name>
</atom:author>
<oreatom:triples>
<rdf:Description about="http://hdl.handle.net/2445/203140/ore.xml#atom">
<dcterms:modified>2023-10-25T08:50:23Z</dcterms:modified>
</rdf:Description>
<rdf:Description about="http://diposit.ub.edu/dspace/bitstream/2445/203140/3/license_rdf">
<dcterms:description>CC-LICENSE</dcterms:description>
</rdf:Description>
<rdf:Description about="http://diposit.ub.edu/dspace/bitstream/2445/203140/5/tfg_moner_farran_berta.pdf.txt">
<dcterms:description>TEXT</dcterms:description>
</rdf:Description>
<rdf:Description about="http://diposit.ub.edu/dspace/bitstream/2445/203140/1/tfg_moner_farran_berta.pdf">
<dcterms:description>ORIGINAL</dcterms:description>
</rdf:Description>
<rdf:Description about="http://diposit.ub.edu/dspace/bitstream/2445/203140/2/ces203140.pdf">
<dcterms:description>ORIGINAL</dcterms:description>
</rdf:Description>
<rdf:Description about="http://diposit.ub.edu/dspace/bitstream/2445/203140/4/license.txt">
<dcterms:description>LICENSE</dcterms:description>
</rdf:Description>
</oreatom:triples>
</atom:entry>
<?xml version="1.0" encoding="UTF-8" ?>
<qdc:qualifieddc schemaLocation="http://purl.org/dc/elements/1.1/ http://dublincore.org/schemas/xmls/qdc/2006/01/06/dc.xsd http://purl.org/dc/terms/ http://dublincore.org/schemas/xmls/qdc/2006/01/06/dcterms.xsd http://dspace.org/qualifieddc/ http://www.ukoln.ac.uk/metadata/dcmi/xmlschema/qualifieddc.xsd">
<dc:title>$\mu$-Bases de corbes racionals planes</dc:title>
<dc:contributor.advisor>Montoro López, M. Eulàlia</dc:contributor.advisor>
<dc:creator>Moner i Farran, Berta</dc:creator>
<dc:subject.classification>Corbes el·líptiques</dc:subject.classification>
<dc:subject.classification>Geometria algebraica</dc:subject.classification>
<dc:subject.classification>Treballs de fi de grau</dc:subject.classification>
<dc:subject.classification>Varietats abelianes</dc:subject.classification>
<dc:subject.other>Elliptic curves</dc:subject.other>
<dc:subject.other>Algebraic geometry</dc:subject.other>
<dc:subject.other>Bachelor's theses</dc:subject.other>
<dc:subject.other>Abelian varieties</dc:subject.other>
<dcterms:abstract>[en] In this work, the $\mu$-bases of plane rational curves are shown from the point of view of algebraic geometry and algebraic varieties. Thus, the Gröbner bases are previously presented, which are of great importance in this area but more expensive than the $\mu$ bases. Based on the definition and construction of the latter, two applications are shown: modules and implication, both polynomial and rational. The work is based on the article The moving line ideal basis of planar rational curves from Cox, D.A, Sederberg, T.W., Chen, F. published on 1998 by Computer Aided Geometry Design 15.</dcterms:abstract>
<dcterms:dateAccepted>2023-10-25T08:50:23Z</dcterms:dateAccepted>
<dcterms:available>2023-10-25T08:50:23Z</dcterms:available>
<dcterms:created>2023-10-25T08:50:23Z</dcterms:created>
<dcterms:issued>2023-06-12</dcterms:issued>
<dc:type>info:eu-repo/semantics/bachelorThesis</dc:type>
<dc:identifier>http://hdl.handle.net/2445/203140</dc:identifier>
<dc:language>cat</dc:language>
<dc:rights>http://creativecommons.org/licenses/by-nc-nd/3.0/es/</dc:rights>
<dc:rights>info:eu-repo/semantics/openAccess</dc:rights>
<dc:rights>cc-by-nc-nd (c) Berta Moner i Farran, 2023</dc:rights>
<dc:source>Treballs Finals de Grau (TFG) - Matemàtiques</dc:source>
</qdc:qualifieddc>
<?xml version="1.0" encoding="UTF-8" ?>
<rdf:RDF schemaLocation="http://www.openarchives.org/OAI/2.0/rdf/ http://www.openarchives.org/OAI/2.0/rdf.xsd">
<ow:Publication about="oai:diposit.ub.edu:2445/203140">
<dc:title>$\mu$-Bases de corbes racionals planes</dc:title>
<dc:creator>Moner i Farran, Berta</dc:creator>
<dc:contributor>Montoro López, M. Eulàlia</dc:contributor>
<dc:description>Treballs Finals de Grau de Matemàtiques, Facultat de Matemàtiques, Universitat de Barcelona, Any: 2023, Director: M. Eulàlia Montoro López</dc:description>
<dc:description>[en] In this work, the $\mu$-bases of plane rational curves are shown from the point of view of algebraic geometry and algebraic varieties. Thus, the Gröbner bases are previously presented, which are of great importance in this area but more expensive than the $\mu$ bases. Based on the definition and construction of the latter, two applications are shown: modules and implication, both polynomial and rational. The work is based on the article The moving line ideal basis of planar rational curves from Cox, D.A, Sederberg, T.W., Chen, F. published on 1998 by Computer Aided Geometry Design 15.</dc:description>
<dc:date>2023-10-25T08:50:23Z</dc:date>
<dc:date>2023-10-25T08:50:23Z</dc:date>
<dc:date>2023-06-12</dc:date>
<dc:type>info:eu-repo/semantics/bachelorThesis</dc:type>
<dc:identifier>http://hdl.handle.net/2445/203140</dc:identifier>
<dc:language>cat</dc:language>
<dc:rights>http://creativecommons.org/licenses/by-nc-nd/3.0/es/</dc:rights>
<dc:rights>info:eu-repo/semantics/openAccess</dc:rights>
<dc:rights>cc-by-nc-nd (c) Berta Moner i Farran, 2023</dc:rights>
<dc:source>Treballs Finals de Grau (TFG) - Matemàtiques</dc:source>
</ow:Publication>
</rdf:RDF>