<?xml version="1.0" encoding="UTF-8" ?>
<oai_dc:dc schemaLocation="http://www.openarchives.org/OAI/2.0/oai_dc/ http://www.openarchives.org/OAI/2.0/oai_dc.xsd">
<dc:title>2D copper-imidazolate framework without thermal treatment as an efficient ORR electrocatalyst for Zn–air batteries</dc:title>
<dc:creator>Franco, Ana</dc:creator>
<dc:creator>Salatti Dorado, José Ángel</dc:creator>
<dc:creator>García-Caballero, Valentín</dc:creator>
<dc:creator>Lorca, Sebastián</dc:creator>
<dc:creator>Camacho, Luis</dc:creator>
<dc:creator>Cano, Manuel</dc:creator>
<dc:creator>Fernández Romero, A.J.</dc:creator>
<dc:creator>Delgado, Juan J.</dc:creator>
<dc:creator>Giner-Casares, Juan J.</dc:creator>
<dc:creator>Carrillo-Carrión, C.</dc:creator>
<dc:subject>Oxygen reduction reaction</dc:subject>
<dc:subject>Electrocatalysts</dc:subject>
<dc:subject>Electrocatalysis</dc:subject>
<dc:subject>Zn-air batteries</dc:subject>
<dc:subject>Metal–organic framework</dc:subject>
<dc:description>To face unmet energy demands, the search for more stable, low-cost, and scalable electrocatalyst materials is imperative. Within this context, single-atom catalysts (SACs) have drawn considerable attention due to their maximum atom utilization. With this idea in mind, we have synthesized a new ultrathin and water-stable 2D Cu-based metal-organic framework (2DCIFs), which presents a notable electrocatalytic activity for oxygen reduction reaction (ORR) in alkaline media without the need of calcination, which makes the difference when compared to most MOF-based electrocatalysts. The designed MOF-based SAC consists of single-atom sites (isolated and accessible Cu) coordinated to imidazole carboxylic ligands, giving rise to Cu-N4O actives sites confined into a 2D-nanostructured network. This unique structure, along with the ultrathin nature of nanosheets that favors mass transport and electrical conductivity, and the high chemical stability of these 2DCIFs are the key features of the excellent ORR performance, which occurs by a direct four-electron transfer pathway, an onset potential of 0.86 V vs RHE and a maximum current density of 6.4 mA·cm-2. These good catalytic properties of 2DCIFs have allowed their use as efficient air electrodes in alkaline flooded and all-solid-state Zn-air batteries. In the former case, 2DCIFsbased air electrodes presented a specific power density of 91.2 kW·cm-2·kg-1 and a specific capacity of 296.2 A·h·g-1, significantly exceeding the specific capacity values reported previously for other Cu-based catalysts. Besides, the specific capacity increased to 389.1 A·h·g-1 when 2DCIFs were tested in an all-solid-state Zn-air battery.</dc:description>
<dc:date>2022-11-09T12:51:54Z</dc:date>
<dc:date>2022-11-09T12:51:54Z</dc:date>
<dc:date>2022</dc:date>
<dc:type>info:eu-repo/semantics/article</dc:type>
<dc:identifier>http://hdl.handle.net/10396/24307</dc:identifier>
<dc:language>eng</dc:language>
<dc:relation>https://doi.org/10.1039/D2TA05988F</dc:relation>
<dc:relation>Gobierno de España. 2019-027527-I</dc:relation>
<dc:relation>Gobierno de España. PID2019-107665RJ-I00</dc:relation>
<dc:relation>Gobierno de España. CTQ2016- 78289-P</dc:relation>
<dc:relation>Gobierno de España. PID2020-112744GB-I00</dc:relation>
<dc:relation>Gobierno de España. PID2020-113809RB-C33</dc:relation>
<dc:relation>Gobierno de España. PID2019-104272RB-C55</dc:relation>
<dc:relation>Gobierno de España. AEI/10.13039/501100011033</dc:relation>
<dc:rights>https://creativecommons.org/licenses/by-nc/4.0/</dc:rights>
<dc:rights>info:eu-repo/semantics/openAccess</dc:rights>
<dc:format>application/pdf</dc:format>
<dc:publisher>Royal Society of Chemistry</dc:publisher>
<dc:source>Journal of Materials Chemistry A 10, 24590-24597 (2022)</dc:source>
</oai_dc:dc>
<?xml version="1.0" encoding="UTF-8" ?>
<rdf:RDF schemaLocation="http://www.w3.org/1999/02/22-rdf-syntax-ns# http://www.europeana.eu/schemas/edm">
<edm:ProvidedCHO about="http://hdl.handle.net/10396/24307">
<dc:title>2D copper-imidazolate framework without thermal treatment as an efficient ORR electrocatalyst for Zn–air batteries</dc:title>
<dc:creator>Franco, Ana</dc:creator>
<dc:creator>Salatti Dorado, José Ángel</dc:creator>
<dc:creator>García-Caballero, Valentín</dc:creator>
<dc:creator>Lorca, Sebastián</dc:creator>
<dc:creator>Camacho, Luis</dc:creator>
<dc:creator>Cano, Manuel</dc:creator>
<dc:creator>Fernández Romero, A.J.</dc:creator>
<dc:creator>Delgado, Juan J.</dc:creator>
<dc:creator>Giner-Casares, Juan J.</dc:creator>
<dc:creator>Carrillo-Carrión, C.</dc:creator>
<dc:subject>Oxygen reduction reaction</dc:subject>
<dc:subject>Electrocatalysts</dc:subject>
<dc:subject>Electrocatalysis</dc:subject>
<dc:subject>Zn-air batteries</dc:subject>
<dc:subject>Metal–organic framework</dc:subject>
<dc:description>To face unmet energy demands, the search for more stable, low-cost, and scalable electrocatalyst materials is imperative. Within this context, single-atom catalysts (SACs) have drawn considerable attention due to their maximum atom utilization. With this idea in mind, we have synthesized a new ultrathin and water-stable 2D Cu-based metal-organic framework (2DCIFs), which presents a notable electrocatalytic activity for oxygen reduction reaction (ORR) in alkaline media without the need of calcination, which makes the difference when compared to most MOF-based electrocatalysts. The designed MOF-based SAC consists of single-atom sites (isolated and accessible Cu) coordinated to imidazole carboxylic ligands, giving rise to Cu-N4O actives sites confined into a 2D-nanostructured network. This unique structure, along with the ultrathin nature of nanosheets that favors mass transport and electrical conductivity, and the high chemical stability of these 2DCIFs are the key features of the excellent ORR performance, which occurs by a direct four-electron transfer pathway, an onset potential of 0.86 V vs RHE and a maximum current density of 6.4 mA·cm-2. These good catalytic properties of 2DCIFs have allowed their use as efficient air electrodes in alkaline flooded and all-solid-state Zn-air batteries. In the former case, 2DCIFsbased air electrodes presented a specific power density of 91.2 kW·cm-2·kg-1 and a specific capacity of 296.2 A·h·g-1, significantly exceeding the specific capacity values reported previously for other Cu-based catalysts. Besides, the specific capacity increased to 389.1 A·h·g-1 when 2DCIFs were tested in an all-solid-state Zn-air battery.</dc:description>
<dc:date>2022</dc:date>
<dc:type>info:eu-repo/semantics/article</dc:type>
<dc:identifier>http://hdl.handle.net/10396/24307</dc:identifier>
<dc:language>eng</dc:language>
<dc:relation>https://doi.org/10.1039/D2TA05988F</dc:relation>
<dc:relation>Gobierno de España. 2019-027527-I</dc:relation>
<dc:relation>Gobierno de España. PID2019-107665RJ-I00</dc:relation>
<dc:relation>Gobierno de España. CTQ2016- 78289-P</dc:relation>
<dc:relation>Gobierno de España. PID2020-112744GB-I00</dc:relation>
<dc:relation>Gobierno de España. PID2020-113809RB-C33</dc:relation>
<dc:relation>Gobierno de España. PID2019-104272RB-C55</dc:relation>
<dc:relation>Gobierno de España. AEI/10.13039/501100011033</dc:relation>
<dc:publisher>Royal Society of Chemistry</dc:publisher>
<dc:source>Journal of Materials Chemistry A 10, 24590-24597 (2022)</dc:source>
<edm:type>TEXT</edm:type>
</edm:ProvidedCHO>
<ore:Aggregation about="http://hdl.handle.net/10396/24307">
<edm:dataProvider>Helvia (Universidad de Córdoba, Spain)</edm:dataProvider>
<edm:provider>Hispana</edm:provider>
</ore:Aggregation>
<edm:WebResource about="http://helvia.uco.es/xmlui/bitstream/10396/24307/3/d2ta05988f.pdf">
</edm:WebResource>
</rdf:RDF>
<?xml version="1.0" encoding="UTF-8" ?>
<europeana:record schemaLocation="http://www.europeana.eu/schemas/ese/ http://www.europeana.eu/schemas/ese/ESE-V3.4.xsd">
<dc:title lang="es-ES">2D copper-imidazolate framework without thermal treatment as an efficient ORR electrocatalyst for Zn–air batteries</dc:title>
<dc:creator lang="none">Franco, Ana</dc:creator>
<dc:creator lang="none">Salatti Dorado, José Ángel</dc:creator>
<dc:creator lang="none">García-Caballero, Valentín</dc:creator>
<dc:creator lang="none">Lorca, Sebastián</dc:creator>
<dc:creator lang="none">Camacho, Luis</dc:creator>
<dc:creator lang="none">Cano, Manuel</dc:creator>
<dc:creator lang="none">Fernández Romero, A.J.</dc:creator>
<dc:creator lang="none">Delgado, Juan J.</dc:creator>
<dc:creator lang="none">Giner-Casares, Juan J.</dc:creator>
<dc:creator lang="none">Carrillo-Carrión, C.</dc:creator>
<dc:subject lang="es-ES">Oxygen reduction reaction</dc:subject>
<dc:subject lang="es-ES">Electrocatalysts</dc:subject>
<dc:subject lang="es-ES">Electrocatalysis</dc:subject>
<dc:subject lang="es-ES">Zn-air batteries</dc:subject>
<dc:subject lang="es-ES">Metal–organic framework</dc:subject>
<dc:description>To face unmet energy demands, the search for more stable, low-cost, and scalable electrocatalyst materials is imperative. Within this context, single-atom catalysts (SACs) have drawn considerable attention due to their maximum atom utilization. With this idea in mind, we have synthesized a new ultrathin and water-stable 2D Cu-based metal-organic framework (2DCIFs), which presents a notable electrocatalytic activity for oxygen reduction reaction (ORR) in alkaline media without the need of calcination, which makes the difference when compared to most MOF-based electrocatalysts. The designed MOF-based SAC consists of single-atom sites (isolated and accessible Cu) coordinated to imidazole carboxylic ligands, giving rise to Cu-N4O actives sites confined into a 2D-nanostructured network. This unique structure, along with the ultrathin nature of nanosheets that favors mass transport and electrical conductivity, and the high chemical stability of these 2DCIFs are the key features of the excellent ORR performance, which occurs by a direct four-electron transfer pathway, an onset potential of 0.86 V vs RHE and a maximum current density of 6.4 mA·cm-2. These good catalytic properties of 2DCIFs have allowed their use as efficient air electrodes in alkaline flooded and all-solid-state Zn-air batteries. In the former case, 2DCIFsbased air electrodes presented a specific power density of 91.2 kW·cm-2·kg-1 and a specific capacity of 296.2 A·h·g-1, significantly exceeding the specific capacity values reported previously for other Cu-based catalysts. Besides, the specific capacity increased to 389.1 A·h·g-1 when 2DCIFs were tested in an all-solid-state Zn-air battery.</dc:description>
<dc:type>info:eu-repo/semantics/article</dc:type>
<dc:identifier>uri:http://hdl.handle.net/10396/24307</dc:identifier>
<dc:language>eng</dc:language>
<dc:relation>https://doi.org/10.1039/D2TA05988F</dc:relation>
<dc:relation>Gobierno de España. 2019-027527-I</dc:relation>
<dc:relation>Gobierno de España. PID2019-107665RJ-I00</dc:relation>
<dc:relation>Gobierno de España. CTQ2016- 78289-P</dc:relation>
<dc:relation>Gobierno de España. PID2020-112744GB-I00</dc:relation>
<dc:relation>Gobierno de España. PID2020-113809RB-C33</dc:relation>
<dc:relation>Gobierno de España. PID2019-104272RB-C55</dc:relation>
<dc:relation>Gobierno de España. AEI/10.13039/501100011033</dc:relation>
<dc:rights>info:eu-repo/semantics/openAccess</dc:rights>
<dc:rights>https://creativecommons.org/licenses/by-nc/4.0/</dc:rights>
<dc:publisher>Royal Society of Chemistry</dc:publisher>
<dc:source>Journal of Materials Chemistry A 10, 24590-24597 (2022)</dc:source>
<europeana:provider>Helvia (Universidad de Córdoba, Spain)</europeana:provider>
<europeana:type>TEXT</europeana:type>
<europeana:rights>https://creativecommons.org/licenses/by-nc/4.0/</europeana:rights>
<europeana:dataProvider>Helvia (Universidad de Córdoba, Spain)</europeana:dataProvider>
<europeana:object>http://helvia.uco.es/xmlui/bitstream/10396/24307/3/d2ta05988f.pdf</europeana:object>
<europeana:isShownAt>http://hdl.handle.net/10396/24307</europeana:isShownAt>
</europeana:record>