Logotipo de HISPANA
Logotipo del Ministerio de Cultura
  • Zer da HISPANA?
  • Bilaketa
  • Bildumen direktorioa
  • Harremanetarako
  • eu
    • Español
    • Euskara
    • English
    • Galego
    • Català
    • Valencià
Está en:  › Erregistro
Linked Open Data
A mathematical analysis of an extended MHD Darcy–Forchheimer type fluid.
Identificadores del recurso
2045-2322
https://hdl.handle.net/10641/3274
10.1038/s41598-022-08623-0
Jatorria
(Repositorio Institucional de la Universidad Francisco de Vitoria)

Fitxa

Izenburu:
A mathematical analysis of an extended MHD Darcy–Forchheimer type fluid.
Deskribapen:
The presented analysis has the aim of introducing general properties of solutions to an Extended Darcy–Forchheimer flow. The Extended Darcy–Forchheimer set of equations are introduced based on mathematical principles. Firstly, the diffusion is formulated with a non-homogeneous operator, and is supported by the addition of a non-linear advection together with a non-uniform reaction term. The involved analysis is given in generalized Hilbert–Sobolev spaces to account for regularity, existence and uniqueness of solutions supported by the semi-group theory. Afterwards, oscillating patterns of Travelling wave solutions are analyzed inspired by a set of Lemmas focused on solutions instability. Based on this, the Geometric Perturbation Theory provides linearized flows for which the eigenvalues are provided in an homotopy representation, and hence, any exponential bundles of solutions by direct linear combination. In addition, a numerical exploration is developed to find exact Travelling waves profiles and to study zones where solutions are positive. It is shown that, in general, solutions are oscillating in the proximity of the null critical state. In addition, an inner region (inner as a contrast to an outer region where solutions oscillate) of positive solutions is shown to hold locally in time.
post-print
2749 KB
Idioma:
English
Harreman:
https://www.nature.com/articles/s41598-022-08623-0
Autor/Productor:
Díaz Palencia, José Luis
Argitaratzaile:
Scientific Reports
Eskubideak:
Atribución-NoComercial-SinDerivadas 3.0 España
http://creativecommons.org/licenses/by-nc-nd/3.0/es/
openAccess
Data:
2023-02-24T13:18:48Z
2022
Tipo de recurso:
article

oai_dc

Deskargatu XML

    <?xml version="1.0" encoding="UTF-8" ?>

  1. <oai_dc:dc schemaLocation="http://www.openarchives.org/OAI/2.0/oai_dc/ http://www.openarchives.org/OAI/2.0/oai_dc.xsd">

    1. <dc:title>A mathematical analysis of an extended MHD Darcy–Forchheimer type fluid.</dc:title>

    2. <dc:creator>Díaz Palencia, José Luis</dc:creator>

    3. <dc:description>The presented analysis has the aim of introducing general properties of solutions to an Extended Darcy–Forchheimer flow. The Extended Darcy–Forchheimer set of equations are introduced based on mathematical principles. Firstly, the diffusion is formulated with a non-homogeneous operator, and is supported by the addition of a non-linear advection together with a non-uniform reaction term. The involved analysis is given in generalized Hilbert–Sobolev spaces to account for regularity, existence and uniqueness of solutions supported by the semi-group theory. Afterwards, oscillating patterns of Travelling wave solutions are analyzed inspired by a set of Lemmas focused on solutions instability. Based on this, the Geometric Perturbation Theory provides linearized flows for which the eigenvalues are provided in an homotopy representation, and hence, any exponential bundles of solutions by direct linear combination. In addition, a numerical exploration is developed to find exact Travelling waves profiles and to study zones where solutions are positive. It is shown that, in general, solutions are oscillating in the proximity of the null critical state. In addition, an inner region (inner as a contrast to an outer region where solutions oscillate) of positive solutions is shown to hold locally in time.</dc:description>

    4. <dc:description>post-print</dc:description>

    5. <dc:description>2749 KB</dc:description>

    6. <dc:date>2023-02-24T13:18:48Z</dc:date>

    7. <dc:date>2023-02-24T13:18:48Z</dc:date>

    8. <dc:date>2022</dc:date>

    9. <dc:type>article</dc:type>

    10. <dc:identifier>2045-2322</dc:identifier>

    11. <dc:identifier>https://hdl.handle.net/10641/3274</dc:identifier>

    12. <dc:identifier>10.1038/s41598-022-08623-0</dc:identifier>

    13. <dc:language>eng</dc:language>

    14. <dc:relation>https://www.nature.com/articles/s41598-022-08623-0</dc:relation>

    15. <dc:rights>Atribución-NoComercial-SinDerivadas 3.0 España</dc:rights>

    16. <dc:rights>http://creativecommons.org/licenses/by-nc-nd/3.0/es/</dc:rights>

    17. <dc:rights>openAccess</dc:rights>

    18. <dc:publisher>Scientific Reports</dc:publisher>

    </oai_dc:dc>

didl

Deskargatu XML

    <?xml version="1.0" encoding="UTF-8" ?>

  1. <d:DIDL schemaLocation="urn:mpeg:mpeg21:2002:02-DIDL-NS http://standards.iso.org/ittf/PubliclyAvailableStandards/MPEG-21_schema_files/did/didl.xsd">

    1. <d:DIDLInfo>

      1. <dcterms:created schemaLocation="http://purl.org/dc/terms/ http://dublincore.org/schemas/xmls/qdc/dcterms.xsd">2023-02-24T13:18:48Z</dcterms:created>

      </d:DIDLInfo>

    2. <d:Item id="hdl_10641_3274">

      1. <d:Descriptor>

        1. <d:Statement mimeType="application/xml; charset=utf-8">

          1. <dii:Identifier schemaLocation="urn:mpeg:mpeg21:2002:01-DII-NS http://standards.iso.org/ittf/PubliclyAvailableStandards/MPEG-21_schema_files/dii/dii.xsd">urn:hdl:10641/3274</dii:Identifier>

          </d:Statement>

        </d:Descriptor>

      2. <d:Descriptor>

        1. <d:Statement mimeType="application/xml; charset=utf-8">

          1. <oai_dc:dc schemaLocation="http://www.openarchives.org/OAI/2.0/oai_dc/ http://www.openarchives.org/OAI/2.0/oai_dc.xsd">

            1. <dc:title>A mathematical analysis of an extended MHD Darcy–Forchheimer type fluid.</dc:title>

            2. <dc:creator>Díaz Palencia, José Luis</dc:creator>

            3. <dc:description>The presented analysis has the aim of introducing general properties of solutions to an Extended Darcy–Forchheimer flow. The Extended Darcy–Forchheimer set of equations are introduced based on mathematical principles. Firstly, the diffusion is formulated with a non-homogeneous operator, and is supported by the addition of a non-linear advection together with a non-uniform reaction term. The involved analysis is given in generalized Hilbert–Sobolev spaces to account for regularity, existence and uniqueness of solutions supported by the semi-group theory. Afterwards, oscillating patterns of Travelling wave solutions are analyzed inspired by a set of Lemmas focused on solutions instability. Based on this, the Geometric Perturbation Theory provides linearized flows for which the eigenvalues are provided in an homotopy representation, and hence, any exponential bundles of solutions by direct linear combination. In addition, a numerical exploration is developed to find exact Travelling waves profiles and to study zones where solutions are positive. It is shown that, in general, solutions are oscillating in the proximity of the null critical state. In addition, an inner region (inner as a contrast to an outer region where solutions oscillate) of positive solutions is shown to hold locally in time.</dc:description>

            4. <dc:date>2023-02-24T13:18:48Z</dc:date>

            5. <dc:date>2023-02-24T13:18:48Z</dc:date>

            6. <dc:date>2022</dc:date>

            7. <dc:type>article</dc:type>

            8. <dc:identifier>2045-2322</dc:identifier>

            9. <dc:identifier>https://hdl.handle.net/10641/3274</dc:identifier>

            10. <dc:identifier>10.1038/s41598-022-08623-0</dc:identifier>

            11. <dc:language>eng</dc:language>

            12. <dc:relation>https://www.nature.com/articles/s41598-022-08623-0</dc:relation>

            13. <dc:rights>http://creativecommons.org/licenses/by-nc-nd/3.0/es/</dc:rights>

            14. <dc:rights>openAccess</dc:rights>

            15. <dc:rights>Atribución-NoComercial-SinDerivadas 3.0 España</dc:rights>

            16. <dc:publisher>Scientific Reports</dc:publisher>

            </oai_dc:dc>

          </d:Statement>

        </d:Descriptor>

      3. <d:Component id="10641_3274_1">

        1. <d:Resource mimeType="application/pdf" ref="http://ddfv.ufv.es/bitstream/10641/3274/1/s41598-022-08623-0.pdf" />

        </d:Component>

      </d:Item>

    </d:DIDL>

dim

Deskargatu XML

    <?xml version="1.0" encoding="UTF-8" ?>

  1. <dim:dim schemaLocation="http://www.dspace.org/xmlns/dspace/dim http://www.dspace.org/schema/dim.xsd">

    1. <dim:field authority="208" confidence="600" element="contributor" mdschema="dc" qualifier="author">Díaz Palencia, José Luis</dim:field>

    2. <dim:field element="date" mdschema="dc" qualifier="accessioned">2023-02-24T13:18:48Z</dim:field>

    3. <dim:field element="date" mdschema="dc" qualifier="available">2023-02-24T13:18:48Z</dim:field>

    4. <dim:field element="date" mdschema="dc" qualifier="issued">2022</dim:field>

    5. <dim:field element="identifier" lang="spa" mdschema="dc" qualifier="issn">2045-2322</dim:field>

    6. <dim:field element="identifier" mdschema="dc" qualifier="uri">https://hdl.handle.net/10641/3274</dim:field>

    7. <dim:field element="identifier" lang="spa" mdschema="dc" qualifier="doi">10.1038/s41598-022-08623-0</dim:field>

    8. <dim:field element="description" lang="spa" mdschema="dc" qualifier="abstract">The presented analysis has the aim of introducing general properties of solutions to an Extended Darcy–Forchheimer flow. The Extended Darcy–Forchheimer set of equations are introduced based on mathematical principles. Firstly, the diffusion is formulated with a non-homogeneous operator, and is supported by the addition of a non-linear advection together with a non-uniform reaction term. The involved analysis is given in generalized Hilbert–Sobolev spaces to account for regularity, existence and uniqueness of solutions supported by the semi-group theory. Afterwards, oscillating patterns of Travelling wave solutions are analyzed inspired by a set of Lemmas focused on solutions instability. Based on this, the Geometric Perturbation Theory provides linearized flows for which the eigenvalues are provided in an homotopy representation, and hence, any exponential bundles of solutions by direct linear combination. In addition, a numerical exploration is developed to find exact Travelling waves profiles and to study zones where solutions are positive. It is shown that, in general, solutions are oscillating in the proximity of the null critical state. In addition, an inner region (inner as a contrast to an outer region where solutions oscillate) of positive solutions is shown to hold locally in time.</dim:field>

    9. <dim:field element="description" lang="spa" mdschema="dc" qualifier="version">post-print</dim:field>

    10. <dim:field element="description" lang="spa" mdschema="dc" qualifier="extent">2749 KB</dim:field>

    11. <dim:field element="language" lang="spa" mdschema="dc" qualifier="iso">eng</dim:field>

    12. <dim:field element="publisher" lang="spa" mdschema="dc">Scientific Reports</dim:field>

    13. <dim:field element="rights" lang="*" mdschema="dc">Atribución-NoComercial-SinDerivadas 3.0 España</dim:field>

    14. <dim:field element="rights" lang="*" mdschema="dc" qualifier="uri">http://creativecommons.org/licenses/by-nc-nd/3.0/es/</dim:field>

    15. <dim:field element="rights" lang="spa" mdschema="dc" qualifier="accessRights">openAccess</dim:field>

    16. <dim:field element="title" lang="spa" mdschema="dc">A mathematical analysis of an extended MHD Darcy–Forchheimer type fluid.</dim:field>

    17. <dim:field element="type" lang="spa" mdschema="dc">article</dim:field>

    18. <dim:field element="relation" lang="spa" mdschema="dc" qualifier="publisherversion">https://www.nature.com/articles/s41598-022-08623-0</dim:field>

    </dim:dim>

etdms

Deskargatu XML

    <?xml version="1.0" encoding="UTF-8" ?>

  1. <thesis schemaLocation="http://www.ndltd.org/standards/metadata/etdms/1.0/ http://www.ndltd.org/standards/metadata/etdms/1.0/etdms.xsd">

    1. <title>A mathematical analysis of an extended MHD Darcy–Forchheimer type fluid.</title>

    2. <creator>Díaz Palencia, José Luis</creator>

    3. <description>The presented analysis has the aim of introducing general properties of solutions to an Extended Darcy–Forchheimer flow. The Extended Darcy–Forchheimer set of equations are introduced based on mathematical principles. Firstly, the diffusion is formulated with a non-homogeneous operator, and is supported by the addition of a non-linear advection together with a non-uniform reaction term. The involved analysis is given in generalized Hilbert–Sobolev spaces to account for regularity, existence and uniqueness of solutions supported by the semi-group theory. Afterwards, oscillating patterns of Travelling wave solutions are analyzed inspired by a set of Lemmas focused on solutions instability. Based on this, the Geometric Perturbation Theory provides linearized flows for which the eigenvalues are provided in an homotopy representation, and hence, any exponential bundles of solutions by direct linear combination. In addition, a numerical exploration is developed to find exact Travelling waves profiles and to study zones where solutions are positive. It is shown that, in general, solutions are oscillating in the proximity of the null critical state. In addition, an inner region (inner as a contrast to an outer region where solutions oscillate) of positive solutions is shown to hold locally in time.</description>

    4. <date>2023-02-24</date>

    5. <date>2023-02-24</date>

    6. <date>2022</date>

    7. <type>article</type>

    8. <identifier>2045-2322</identifier>

    9. <identifier>https://hdl.handle.net/10641/3274</identifier>

    10. <identifier>10.1038/s41598-022-08623-0</identifier>

    11. <language>eng</language>

    12. <relation>https://www.nature.com/articles/s41598-022-08623-0</relation>

    13. <rights>http://creativecommons.org/licenses/by-nc-nd/3.0/es/</rights>

    14. <rights>openAccess</rights>

    15. <rights>Atribución-NoComercial-SinDerivadas 3.0 España</rights>

    16. <publisher>Scientific Reports</publisher>

    </thesis>

marc

Deskargatu XML

    <?xml version="1.0" encoding="UTF-8" ?>

  1. <record schemaLocation="http://www.loc.gov/MARC21/slim http://www.loc.gov/standards/marcxml/schema/MARC21slim.xsd">

    1. <leader>00925njm 22002777a 4500</leader>

    2. <datafield ind1=" " ind2=" " tag="042">

      1. <subfield code="a">dc</subfield>

      </datafield>

    3. <datafield ind1=" " ind2=" " tag="720">

      1. <subfield code="a">Díaz Palencia, José Luis</subfield>

      2. <subfield code="e">author</subfield>

      </datafield>

    4. <datafield ind1=" " ind2=" " tag="260">

      1. <subfield code="c">2022</subfield>

      </datafield>

    5. <datafield ind1=" " ind2=" " tag="520">

      1. <subfield code="a">The presented analysis has the aim of introducing general properties of solutions to an Extended Darcy–Forchheimer flow. The Extended Darcy–Forchheimer set of equations are introduced based on mathematical principles. Firstly, the diffusion is formulated with a non-homogeneous operator, and is supported by the addition of a non-linear advection together with a non-uniform reaction term. The involved analysis is given in generalized Hilbert–Sobolev spaces to account for regularity, existence and uniqueness of solutions supported by the semi-group theory. Afterwards, oscillating patterns of Travelling wave solutions are analyzed inspired by a set of Lemmas focused on solutions instability. Based on this, the Geometric Perturbation Theory provides linearized flows for which the eigenvalues are provided in an homotopy representation, and hence, any exponential bundles of solutions by direct linear combination. In addition, a numerical exploration is developed to find exact Travelling waves profiles and to study zones where solutions are positive. It is shown that, in general, solutions are oscillating in the proximity of the null critical state. In addition, an inner region (inner as a contrast to an outer region where solutions oscillate) of positive solutions is shown to hold locally in time.</subfield>

      </datafield>

    6. <datafield ind1="8" ind2=" " tag="024">

      1. <subfield code="a">2045-2322</subfield>

      </datafield>

    7. <datafield ind1="8" ind2=" " tag="024">

      1. <subfield code="a">https://hdl.handle.net/10641/3274</subfield>

      </datafield>

    8. <datafield ind1="8" ind2=" " tag="024">

      1. <subfield code="a">10.1038/s41598-022-08623-0</subfield>

      </datafield>

    9. <datafield ind1="0" ind2="0" tag="245">

      1. <subfield code="a">A mathematical analysis of an extended MHD Darcy–Forchheimer type fluid.</subfield>

      </datafield>

    </record>

mets

Deskargatu XML

    <?xml version="1.0" encoding="UTF-8" ?>

  1. <mets ID=" DSpace_ITEM_10641-3274" OBJID=" hdl:10641/3274" PROFILE="DSpace METS SIP Profile 1.0" TYPE="DSpace ITEM" schemaLocation="http://www.loc.gov/METS/ http://www.loc.gov/standards/mets/mets.xsd">

    1. <metsHdr CREATEDATE="2023-04-18T04:35:14Z">

      1. <agent ROLE="CUSTODIAN" TYPE="ORGANIZATION">

        1. <name>DDFV</name>

        </agent>

      </metsHdr>

    2. <dmdSec ID="DMD_10641_3274">

      1. <mdWrap MDTYPE="MODS">

        1. <xmlData schemaLocation="http://www.loc.gov/mods/v3 http://www.loc.gov/standards/mods/v3/mods-3-1.xsd">

          1. <mods:mods schemaLocation="http://www.loc.gov/mods/v3 http://www.loc.gov/standards/mods/v3/mods-3-1.xsd">

            1. <mods:name>

              1. <mods:role>

                1. <mods:roleTerm type="text">author</mods:roleTerm>

                </mods:role>

              2. <mods:namePart>Díaz Palencia, José Luis</mods:namePart>

              </mods:name>

            2. <mods:extension>

              1. <mods:dateAccessioned encoding="iso8601">2023-02-24T13:18:48Z</mods:dateAccessioned>

              </mods:extension>

            3. <mods:extension>

              1. <mods:dateAvailable encoding="iso8601">2023-02-24T13:18:48Z</mods:dateAvailable>

              </mods:extension>

            4. <mods:originInfo>

              1. <mods:dateIssued encoding="iso8601">2022</mods:dateIssued>

              </mods:originInfo>

            5. <mods:identifier type="issn">2045-2322</mods:identifier>

            6. <mods:identifier type="uri">https://hdl.handle.net/10641/3274</mods:identifier>

            7. <mods:identifier type="doi">10.1038/s41598-022-08623-0</mods:identifier>

            8. <mods:abstract>The presented analysis has the aim of introducing general properties of solutions to an Extended Darcy–Forchheimer flow. The Extended Darcy–Forchheimer set of equations are introduced based on mathematical principles. Firstly, the diffusion is formulated with a non-homogeneous operator, and is supported by the addition of a non-linear advection together with a non-uniform reaction term. The involved analysis is given in generalized Hilbert–Sobolev spaces to account for regularity, existence and uniqueness of solutions supported by the semi-group theory. Afterwards, oscillating patterns of Travelling wave solutions are analyzed inspired by a set of Lemmas focused on solutions instability. Based on this, the Geometric Perturbation Theory provides linearized flows for which the eigenvalues are provided in an homotopy representation, and hence, any exponential bundles of solutions by direct linear combination. In addition, a numerical exploration is developed to find exact Travelling waves profiles and to study zones where solutions are positive. It is shown that, in general, solutions are oscillating in the proximity of the null critical state. In addition, an inner region (inner as a contrast to an outer region where solutions oscillate) of positive solutions is shown to hold locally in time.</mods:abstract>

            9. <mods:language>

              1. <mods:languageTerm authority="rfc3066">eng</mods:languageTerm>

              </mods:language>

            10. <mods:accessCondition type="useAndReproduction">Atribución-NoComercial-SinDerivadas 3.0 España</mods:accessCondition>

            11. <mods:titleInfo>

              1. <mods:title>A mathematical analysis of an extended MHD Darcy–Forchheimer type fluid.</mods:title>

              </mods:titleInfo>

            12. <mods:genre>article</mods:genre>

            </mods:mods>

          </xmlData>

        </mdWrap>

      </dmdSec>

    3. <amdSec ID="TMD_10641_3274">

      1. <rightsMD ID="RIG_10641_3274">

        1. <mdWrap MDTYPE="OTHER" MIMETYPE="text/plain" OTHERMDTYPE="DSpaceDepositLicense">

          1. <binData>LSBFbCByZXBvc2l0b3JpbyBpbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIEZyYW5jaXNjbyBkZSBWaXRvcmlhIGRlIE1hZHJpZCAoRERGViksIHBvbmUgYSBkaXNwb3NpY2nDs24gZGUgbG9zIHVzdWFyaW9zIGxhIHBsYXRhZm9ybWEgZGlnaXRhbCBhYmllcnRhIHkgZGUgYWNjZXNvIGxpYnJlIGRlIGxhIHByb2R1Y2Npw7NuIGNpZW50w61maWNhIGRlIGxhIGluc3RpdHVjacOzbi4KCi0gQSB0YWxlcyBmaW5lcywgbG9zIGF1dG9yZXMgZGVjbGFyYW4gcXVlIHNvbiB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCBkZSBsYSBvYnJhIHkgcXVlIMOpc3RhIGVzIG9yaWdpbmFsLgoKLSBNZWRpYW50ZSBsYSBhY2VwdGFjacOzbiBkZSBlc3RhIGxpY2VuY2lhLCBlbCBhdXRvciwgY29tbyB0aXR1bGFyIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciwgYXV0b3JpemEgeSBjZWRlIGEgbGEgVW5pdmVyc2lkYWQgRnJhbmNpc2NvIGRlIFZpdG9yaWEsIGRlIGZvcm1hIGdyYXR1aXRhIHkgbm8gZXhjbHVzaXZhLCBwb3IgZWwgbcOheGltbyBwbGF6byBsZWdhbCB5IGNvbiDDoW1iaXRvIHVuaXZlcnNhbCwgbG9zIGRlcmVjaG9zIGRlIHJlcHJvZHVjY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EsIGluY2x1aWRvIGVsIGRlcmVjaG8gZGUgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVsZWN0csOzbmljYSwgeSBsYSB0cmFuc2Zvcm1hY2nDs24gZGUgZm9ybWF0byBzb2JyZSBsYSBvYnJhIGluZGljYWRhLCBzaSBmdWVyYSBlbCBjYXNvLgoKLSBFbiBlbCBjYXNvIGRlIGNlc2nDs24gZGUgZGVyZWNob3MgZGUgZXhwbG90YWNpw7NuIGEgdGVyY2Vyb3MsIGRlY2xhcmEgcXVlIGN1ZW50YSBjb24gbGEgYXV0b3JpemFjacOzbiBkZSBkaWNob3MgdGl0dWxhcmVzIHkgcXVlIGhhIG9idGVuaWRvIGVsIHBlcm1pc28gc2luIHJlc3RyaWNjaW9uZXMgZGVsIHByb3BpZXRhcmlvIGRlbCBjb3B5cmlnaHQgcGFyYSBvdG9yZ2FyIGEgbGEgaW5zdGl0dWNpw7NuIGxvcyBkZXJlY2hvcyByZXF1ZXJpZG9zIHBhcmEgZXN0YSBsaWNlbmNpYSB5IHF1ZSBkaWNobyBwcm9waWV0YXJpbyBjb25vY2UgZWwgdGV4dG8gbyBlbCBjb250ZW5pZG8gZGUgbGEgb2JyYS4KCi0gU2kgZnVlcmEgdW5hIG9icmEgcGF0cm9jaW5hZGEgcG9yIGFsZ3VuYSBpbnN0aXR1Y2nDs24gZGlzdGludGEgYSBsYSBVbml2ZXJzaWRhZCBGcmFuY2lzY28gZGUgVml0b3JpYSwgZGVjbGFyYSBxdWUgZW4gY2FzbyBuZWNlc2FyaW8sIGN1ZW50YSBjb24gbG9zIHBlcm1pc29zIHBlcnRpbmVudGVzLCBkZSBsYSBpbnN0aXR1Y2nDs24gbyBlbnRpZGFkLCBxdWUgbGUgcGVybWl0YW4gbGEgZGlmdXNpw7NuIGRlIGRpY2hhIG9icmEuCgotIExhIFVuaXZlcnNpZGFkIEZyYW5jaXNjbyBkZSBWaXRvcmlhIG5vIHRpZW5lIGxhIHRpdHVsYXJpZGFkIGRlIGxvcyBkZXJlY2hvcyBzb2JyZSBsYSBvYnJhLCBxdWUgY29ycmVzcG9uZGVuIGFsIGF1dG9yLCBwZXJvIHNpbiBlbWJhcmdvIMOpc3RhIGxpY2VuY2lhIGRhIGRlcmVjaG8gYSByZXByb2R1Y2lybGEgZW4gdW4gc29wb3J0ZSBkaWdpdGFsLCBkaXN0cmlidWlyIGEgbG9zIHVzdWFyaW9zIGNvcGlhcyBlbGVjdHLDs25pY2FzIGRlIGxhIG9icmEgZW4gZm9ybWF0byBkaWdpdGFsLCBjb211bmljYWNpw7NuIHDDumJsaWNhIHkgc3UgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGEgdHJhdsOpcyBkZSB1biBhcmNoaXZvIGFiaWVydG8gaW5zdGl0dWNpb25hbC4KCi0gTGEgb2JyYSBzZSBwb25kcsOhIGEgZGlzcG9zaWNpw7NuIGRlIGxvcyB1c3VhcmlvcyBwYXJhIHF1ZSBoYWdhbiBkZSBlbGxhIHVuIHVzbyBqdXN0byB5IHJlc3BldHVvc28gY29uIGxvcyBkZXJlY2hvcyBkZSBhdXRvciwgc2VhIGNvbiBmaW5lcyBkZSBlc3R1ZGlvLCBpbnZlc3RpZ2FjacOzbiBvIGN1YWxxdWllciBvdHJvIGZpbiBsw61jaXRvLCB5IGRlIGFjdWVyZG8gYSBsYXMgY29uZGljaW9uZXMgZXN0YWJsZWNpZGFzIGVuIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMsIGRlIG1vZG8gcXVlIGxhcyBvYnJhcyBwdWVkYW4gc2VyIGRpc3RyaWJ1aWRhcywgY29waWFkYXMgeSBleGhpYmlkYXMgc2llbXByZSBxdWUgc2UgY2l0ZSBsYSBhdXRvcsOtYSB5IG5vIHNlIG9idGVuZ2EgYmVuZWZpY2lvIGNvbWVyY2lhbC4gUG9yIHRhbnRvLCBsYSBVbml2ZXJzaWRhZCBubyBhc3VtaXLDoSByZXNwb25zYWJpbGlkYWQgYWxndW5hIHBvciBsYSBmb3JtYSBlZmVjdGl2YSBlbiBxdWUgbG9zIHVzdWFyaW9zIHV0aWxpY2VuIGVsIG1hdGVyaWFsIHB1ZXN0byBhIHN1IGRpc3Bvc2ljacOzbi4KCi0gRWwgYXV0b3IgcG9kcsOhIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBsYSBvYnJhIGRlbCByZXBvc2l0b3JpbyBwb3IgY2F1c2EganVzdGlmaWNhZGEuIAoK</binData>

          </mdWrap>

        </rightsMD>

      </amdSec>

    4. <amdSec ID="FO_10641_3274_1">

      1. <techMD ID="TECH_O_10641_3274_1">

        1. <mdWrap MDTYPE="PREMIS">

          1. <xmlData schemaLocation="http://www.loc.gov/standards/premis http://www.loc.gov/standards/premis/PREMIS-v1-0.xsd">

            1. <premis:premis>

              1. <premis:object>

                1. <premis:objectIdentifier>

                  1. <premis:objectIdentifierType>URL</premis:objectIdentifierType>

                  2. <premis:objectIdentifierValue>http://ddfv.ufv.es/bitstream/10641/3274/1/s41598-022-08623-0.pdf</premis:objectIdentifierValue>

                  </premis:objectIdentifier>

                2. <premis:objectCategory>File</premis:objectCategory>

                3. <premis:objectCharacteristics>

                  1. <premis:fixity>

                    1. <premis:messageDigestAlgorithm>MD5</premis:messageDigestAlgorithm>

                    2. <premis:messageDigest>1def23748cda4d8aebc17d3bfefb5201</premis:messageDigest>

                    </premis:fixity>

                  2. <premis:size>2814694</premis:size>

                  3. <premis:format>

                    1. <premis:formatDesignation>

                      1. <premis:formatName>application/pdf</premis:formatName>

                      </premis:formatDesignation>

                    </premis:format>

                  </premis:objectCharacteristics>

                4. <premis:originalName>s41598-022-08623-0.pdf</premis:originalName>

                </premis:object>

              </premis:premis>

            </xmlData>

          </mdWrap>

        </techMD>

      </amdSec>

    5. <amdSec ID="FT_10641_3274_4">

      1. <techMD ID="TECH_T_10641_3274_4">

        1. <mdWrap MDTYPE="PREMIS">

          1. <xmlData schemaLocation="http://www.loc.gov/standards/premis http://www.loc.gov/standards/premis/PREMIS-v1-0.xsd">

            1. <premis:premis>

              1. <premis:object>

                1. <premis:objectIdentifier>

                  1. <premis:objectIdentifierType>URL</premis:objectIdentifierType>

                  2. <premis:objectIdentifierValue>http://ddfv.ufv.es/bitstream/10641/3274/4/s41598-022-08623-0.pdf.txt</premis:objectIdentifierValue>

                  </premis:objectIdentifier>

                2. <premis:objectCategory>File</premis:objectCategory>

                3. <premis:objectCharacteristics>

                  1. <premis:fixity>

                    1. <premis:messageDigestAlgorithm>MD5</premis:messageDigestAlgorithm>

                    2. <premis:messageDigest>5cb31b4450831b347a7b4fd7a4e746c4</premis:messageDigest>

                    </premis:fixity>

                  2. <premis:size>50776</premis:size>

                  3. <premis:format>

                    1. <premis:formatDesignation>

                      1. <premis:formatName>text/plain</premis:formatName>

                      </premis:formatDesignation>

                    </premis:format>

                  </premis:objectCharacteristics>

                4. <premis:originalName>s41598-022-08623-0.pdf.txt</premis:originalName>

                </premis:object>

              </premis:premis>

            </xmlData>

          </mdWrap>

        </techMD>

      </amdSec>

    6. <fileSec>

      1. <fileGrp USE="ORIGINAL">

        1. <file ADMID="FO_10641_3274_1" CHECKSUM="1def23748cda4d8aebc17d3bfefb5201" CHECKSUMTYPE="MD5" GROUPID="GROUP_BITSTREAM_10641_3274_1" ID="BITSTREAM_ORIGINAL_10641_3274_1" MIMETYPE="application/pdf" SEQ="1" SIZE="2814694">

          1. <FLocat LOCTYPE="URL" href="http://ddfv.ufv.es/bitstream/10641/3274/1/s41598-022-08623-0.pdf" type="simple" />

          </file>

        </fileGrp>

      2. <fileGrp USE="TEXT">

        1. <file ADMID="FT_10641_3274_4" CHECKSUM="5cb31b4450831b347a7b4fd7a4e746c4" CHECKSUMTYPE="MD5" GROUPID="GROUP_BITSTREAM_10641_3274_4" ID="BITSTREAM_TEXT_10641_3274_4" MIMETYPE="text/plain" SEQ="4" SIZE="50776">

          1. <FLocat LOCTYPE="URL" href="http://ddfv.ufv.es/bitstream/10641/3274/4/s41598-022-08623-0.pdf.txt" type="simple" />

          </file>

        </fileGrp>

      </fileSec>

    7. <structMap LABEL="DSpace Object" TYPE="LOGICAL">

      1. <div ADMID="DMD_10641_3274" TYPE="DSpace Object Contents">

        1. <div TYPE="DSpace BITSTREAM">

          1. <fptr FILEID="BITSTREAM_ORIGINAL_10641_3274_1" />

          </div>

        </div>

      </structMap>

    </mets>

mods

Deskargatu XML

    <?xml version="1.0" encoding="UTF-8" ?>

  1. <mods:mods schemaLocation="http://www.loc.gov/mods/v3 http://www.loc.gov/standards/mods/v3/mods-3-1.xsd">

    1. <mods:name>

      1. <mods:namePart>Díaz Palencia, José Luis</mods:namePart>

      </mods:name>

    2. <mods:extension>

      1. <mods:dateAvailable encoding="iso8601">2023-02-24T13:18:48Z</mods:dateAvailable>

      </mods:extension>

    3. <mods:extension>

      1. <mods:dateAccessioned encoding="iso8601">2023-02-24T13:18:48Z</mods:dateAccessioned>

      </mods:extension>

    4. <mods:originInfo>

      1. <mods:dateIssued encoding="iso8601">2022</mods:dateIssued>

      </mods:originInfo>

    5. <mods:identifier type="issn">2045-2322</mods:identifier>

    6. <mods:identifier type="uri">https://hdl.handle.net/10641/3274</mods:identifier>

    7. <mods:identifier type="doi">10.1038/s41598-022-08623-0</mods:identifier>

    8. <mods:abstract>The presented analysis has the aim of introducing general properties of solutions to an Extended Darcy–Forchheimer flow. The Extended Darcy–Forchheimer set of equations are introduced based on mathematical principles. Firstly, the diffusion is formulated with a non-homogeneous operator, and is supported by the addition of a non-linear advection together with a non-uniform reaction term. The involved analysis is given in generalized Hilbert–Sobolev spaces to account for regularity, existence and uniqueness of solutions supported by the semi-group theory. Afterwards, oscillating patterns of Travelling wave solutions are analyzed inspired by a set of Lemmas focused on solutions instability. Based on this, the Geometric Perturbation Theory provides linearized flows for which the eigenvalues are provided in an homotopy representation, and hence, any exponential bundles of solutions by direct linear combination. In addition, a numerical exploration is developed to find exact Travelling waves profiles and to study zones where solutions are positive. It is shown that, in general, solutions are oscillating in the proximity of the null critical state. In addition, an inner region (inner as a contrast to an outer region where solutions oscillate) of positive solutions is shown to hold locally in time.</mods:abstract>

    9. <mods:language>

      1. <mods:languageTerm>eng</mods:languageTerm>

      </mods:language>

    10. <mods:accessCondition type="useAndReproduction">http://creativecommons.org/licenses/by-nc-nd/3.0/es/</mods:accessCondition>

    11. <mods:accessCondition type="useAndReproduction">openAccess</mods:accessCondition>

    12. <mods:accessCondition type="useAndReproduction">Atribución-NoComercial-SinDerivadas 3.0 España</mods:accessCondition>

    13. <mods:titleInfo>

      1. <mods:title>A mathematical analysis of an extended MHD Darcy–Forchheimer type fluid.</mods:title>

      </mods:titleInfo>

    14. <mods:genre>article</mods:genre>

    </mods:mods>

ore

Deskargatu XML

    <?xml version="1.0" encoding="UTF-8" ?>

  1. <atom:entry schemaLocation="http://www.w3.org/2005/Atom http://www.kbcafe.com/rss/atom.xsd.xml">

    1. <atom:id>https://hdl.handle.net/10641/3274/ore.xml</atom:id>

    2. <atom:link href="https://hdl.handle.net/10641/3274" rel="alternate" />
    3. <atom:link href="https://hdl.handle.net/10641/3274/ore.xml" rel="http://www.openarchives.org/ore/terms/describes" />
    4. <atom:link href="https://hdl.handle.net/10641/3274/ore.xml#atom" rel="self" type="application/atom+xml" />
    5. <atom:published>2023-02-24T13:18:48Z</atom:published>

    6. <atom:updated>2023-02-24T13:18:48Z</atom:updated>

    7. <atom:source>

      1. <atom:generator>DDFV</atom:generator>

      </atom:source>

    8. <atom:title>A mathematical analysis of an extended MHD Darcy–Forchheimer type fluid.</atom:title>

    9. <atom:author>

      1. <atom:name>Díaz Palencia, José Luis</atom:name>

      </atom:author>

    10. <atom:category label="Aggregation" scheme="http://www.openarchives.org/ore/terms/" term="http://www.openarchives.org/ore/terms/Aggregation" />
    11. <atom:category scheme="http://www.openarchives.org/ore/atom/modified" term="2023-02-24T13:18:48Z" />
    12. <atom:category label="DSpace Item" scheme="http://www.dspace.org/objectModel/" term="DSpaceItem" />
    13. <atom:link href="http://ddfv.ufv.es/bitstream/10641/3274/1/s41598-022-08623-0.pdf" length="2814694" rel="http://www.openarchives.org/ore/terms/aggregates" title="s41598-022-08623-0.pdf" type="application/pdf" />
    14. <oreatom:triples>

      1. <rdf:Description about="https://hdl.handle.net/10641/3274/ore.xml#atom">

        1. <rdf:type resource="http://www.dspace.org/objectModel/DSpaceItem" />
        2. <dcterms:modified>2023-02-24T13:18:48Z</dcterms:modified>

        </rdf:Description>

      2. <rdf:Description about="http://ddfv.ufv.es/bitstream/10641/3274/1/s41598-022-08623-0.pdf">

        1. <rdf:type resource="http://www.dspace.org/objectModel/DSpaceBitstream" />
        2. <dcterms:description>ORIGINAL</dcterms:description>

        </rdf:Description>

      3. <rdf:Description about="http://ddfv.ufv.es/bitstream/10641/3274/2/license_rdf">

        1. <rdf:type resource="http://www.dspace.org/objectModel/DSpaceBitstream" />
        2. <dcterms:description>CC-LICENSE</dcterms:description>

        </rdf:Description>

      4. <rdf:Description about="http://ddfv.ufv.es/bitstream/10641/3274/3/license.txt">

        1. <rdf:type resource="http://www.dspace.org/objectModel/DSpaceBitstream" />
        2. <dcterms:description>LICENSE</dcterms:description>

        </rdf:Description>

      5. <rdf:Description about="http://ddfv.ufv.es/bitstream/10641/3274/4/s41598-022-08623-0.pdf.txt">

        1. <rdf:type resource="http://www.dspace.org/objectModel/DSpaceBitstream" />
        2. <dcterms:description>TEXT</dcterms:description>

        </rdf:Description>

      6. <rdf:Description about="http://ddfv.ufv.es/bitstream/10641/3274/5/s41598-022-08623-0.pdf.jpg">

        1. <rdf:type resource="http://www.dspace.org/objectModel/DSpaceBitstream" />
        2. <dcterms:description>THUMBNAIL</dcterms:description>

        </rdf:Description>

      </oreatom:triples>

    </atom:entry>

qdc

Deskargatu XML

    <?xml version="1.0" encoding="UTF-8" ?>

  1. <qdc:qualifieddc schemaLocation="http://purl.org/dc/elements/1.1/ http://dublincore.org/schemas/xmls/qdc/2006/01/06/dc.xsd http://purl.org/dc/terms/ http://dublincore.org/schemas/xmls/qdc/2006/01/06/dcterms.xsd http://dspace.org/qualifieddc/ http://www.ukoln.ac.uk/metadata/dcmi/xmlschema/qualifieddc.xsd">

    1. <dc:title>A mathematical analysis of an extended MHD Darcy–Forchheimer type fluid.</dc:title>

    2. <dc:creator>Díaz Palencia, José Luis</dc:creator>

    3. <dcterms:abstract>The presented analysis has the aim of introducing general properties of solutions to an Extended Darcy–Forchheimer flow. The Extended Darcy–Forchheimer set of equations are introduced based on mathematical principles. Firstly, the diffusion is formulated with a non-homogeneous operator, and is supported by the addition of a non-linear advection together with a non-uniform reaction term. The involved analysis is given in generalized Hilbert–Sobolev spaces to account for regularity, existence and uniqueness of solutions supported by the semi-group theory. Afterwards, oscillating patterns of Travelling wave solutions are analyzed inspired by a set of Lemmas focused on solutions instability. Based on this, the Geometric Perturbation Theory provides linearized flows for which the eigenvalues are provided in an homotopy representation, and hence, any exponential bundles of solutions by direct linear combination. In addition, a numerical exploration is developed to find exact Travelling waves profiles and to study zones where solutions are positive. It is shown that, in general, solutions are oscillating in the proximity of the null critical state. In addition, an inner region (inner as a contrast to an outer region where solutions oscillate) of positive solutions is shown to hold locally in time.</dcterms:abstract>

    4. <dcterms:dateAccepted>2023-02-24T13:18:48Z</dcterms:dateAccepted>

    5. <dcterms:available>2023-02-24T13:18:48Z</dcterms:available>

    6. <dcterms:created>2023-02-24T13:18:48Z</dcterms:created>

    7. <dcterms:issued>2022</dcterms:issued>

    8. <dc:type>article</dc:type>

    9. <dc:identifier>2045-2322</dc:identifier>

    10. <dc:identifier>https://hdl.handle.net/10641/3274</dc:identifier>

    11. <dc:identifier>10.1038/s41598-022-08623-0</dc:identifier>

    12. <dc:language>eng</dc:language>

    13. <dc:relation>https://www.nature.com/articles/s41598-022-08623-0</dc:relation>

    14. <dc:rights>http://creativecommons.org/licenses/by-nc-nd/3.0/es/</dc:rights>

    15. <dc:rights>openAccess</dc:rights>

    16. <dc:rights>Atribución-NoComercial-SinDerivadas 3.0 España</dc:rights>

    17. <dc:publisher>Scientific Reports</dc:publisher>

    </qdc:qualifieddc>

rdf

Deskargatu XML

    <?xml version="1.0" encoding="UTF-8" ?>

  1. <rdf:RDF schemaLocation="http://www.openarchives.org/OAI/2.0/rdf/ http://www.openarchives.org/OAI/2.0/rdf.xsd">

    1. <ow:Publication about="oai:ddfv.ufv.es:10641/3274">

      1. <dc:title>A mathematical analysis of an extended MHD Darcy–Forchheimer type fluid.</dc:title>

      2. <dc:creator>Díaz Palencia, José Luis</dc:creator>

      3. <dc:description>The presented analysis has the aim of introducing general properties of solutions to an Extended Darcy–Forchheimer flow. The Extended Darcy–Forchheimer set of equations are introduced based on mathematical principles. Firstly, the diffusion is formulated with a non-homogeneous operator, and is supported by the addition of a non-linear advection together with a non-uniform reaction term. The involved analysis is given in generalized Hilbert–Sobolev spaces to account for regularity, existence and uniqueness of solutions supported by the semi-group theory. Afterwards, oscillating patterns of Travelling wave solutions are analyzed inspired by a set of Lemmas focused on solutions instability. Based on this, the Geometric Perturbation Theory provides linearized flows for which the eigenvalues are provided in an homotopy representation, and hence, any exponential bundles of solutions by direct linear combination. In addition, a numerical exploration is developed to find exact Travelling waves profiles and to study zones where solutions are positive. It is shown that, in general, solutions are oscillating in the proximity of the null critical state. In addition, an inner region (inner as a contrast to an outer region where solutions oscillate) of positive solutions is shown to hold locally in time.</dc:description>

      4. <dc:date>2023-02-24T13:18:48Z</dc:date>

      5. <dc:date>2023-02-24T13:18:48Z</dc:date>

      6. <dc:date>2022</dc:date>

      7. <dc:type>article</dc:type>

      8. <dc:identifier>2045-2322</dc:identifier>

      9. <dc:identifier>https://hdl.handle.net/10641/3274</dc:identifier>

      10. <dc:identifier>10.1038/s41598-022-08623-0</dc:identifier>

      11. <dc:language>eng</dc:language>

      12. <dc:relation>https://www.nature.com/articles/s41598-022-08623-0</dc:relation>

      13. <dc:rights>http://creativecommons.org/licenses/by-nc-nd/3.0/es/</dc:rights>

      14. <dc:rights>openAccess</dc:rights>

      15. <dc:rights>Atribución-NoComercial-SinDerivadas 3.0 España</dc:rights>

      16. <dc:publisher>Scientific Reports</dc:publisher>

      </ow:Publication>

    </rdf:RDF>

xoai

Deskargatu XML

    <?xml version="1.0" encoding="UTF-8" ?>

  1. <metadata schemaLocation="http://www.lyncode.com/xoai http://www.lyncode.com/xsd/xoai.xsd">

    1. <element name="dc">

      1. <element name="contributor">

        1. <element name="author">

          1. <element name="none">

            1. <field name="value">Díaz Palencia, José Luis</field>

            2. <field name="authority">208</field>

            3. <field name="confidence">600</field>

            </element>

          </element>

        </element>

      2. <element name="date">

        1. <element name="accessioned">

          1. <element name="none">

            1. <field name="value">2023-02-24T13:18:48Z</field>

            </element>

          </element>

        2. <element name="available">

          1. <element name="none">

            1. <field name="value">2023-02-24T13:18:48Z</field>

            </element>

          </element>

        3. <element name="issued">

          1. <element name="none">

            1. <field name="value">2022</field>

            </element>

          </element>

        </element>

      3. <element name="identifier">

        1. <element name="issn">

          1. <element name="spa">

            1. <field name="value">2045-2322</field>

            </element>

          </element>

        2. <element name="uri">

          1. <element name="none">

            1. <field name="value">https://hdl.handle.net/10641/3274</field>

            </element>

          </element>

        3. <element name="doi">

          1. <element name="spa">

            1. <field name="value">10.1038/s41598-022-08623-0</field>

            </element>

          </element>

        </element>

      4. <element name="description">

        1. <element name="abstract">

          1. <element name="spa">

            1. <field name="value">The presented analysis has the aim of introducing general properties of solutions to an Extended Darcy–Forchheimer flow. The Extended Darcy–Forchheimer set of equations are introduced based on mathematical principles. Firstly, the diffusion is formulated with a non-homogeneous operator, and is supported by the addition of a non-linear advection together with a non-uniform reaction term. The involved analysis is given in generalized Hilbert–Sobolev spaces to account for regularity, existence and uniqueness of solutions supported by the semi-group theory. Afterwards, oscillating patterns of Travelling wave solutions are analyzed inspired by a set of Lemmas focused on solutions instability. Based on this, the Geometric Perturbation Theory provides linearized flows for which the eigenvalues are provided in an homotopy representation, and hence, any exponential bundles of solutions by direct linear combination. In addition, a numerical exploration is developed to find exact Travelling waves profiles and to study zones where solutions are positive. It is shown that, in general, solutions are oscillating in the proximity of the null critical state. In addition, an inner region (inner as a contrast to an outer region where solutions oscillate) of positive solutions is shown to hold locally in time.</field>

            </element>

          </element>

        2. <element name="version">

          1. <element name="spa">

            1. <field name="value">post-print</field>

            </element>

          </element>

        3. <element name="extent">

          1. <element name="spa">

            1. <field name="value">2749 KB</field>

            </element>

          </element>

        </element>

      5. <element name="language">

        1. <element name="iso">

          1. <element name="spa">

            1. <field name="value">eng</field>

            </element>

          </element>

        </element>

      6. <element name="publisher">

        1. <element name="spa">

          1. <field name="value">Scientific Reports</field>

          </element>

        </element>

      7. <element name="rights">

        1. <element name="*">

          1. <field name="value">Atribución-NoComercial-SinDerivadas 3.0 España</field>

          </element>

        2. <element name="uri">

          1. <element name="*">

            1. <field name="value">http://creativecommons.org/licenses/by-nc-nd/3.0/es/</field>

            </element>

          </element>

        3. <element name="accessRights">

          1. <element name="spa">

            1. <field name="value">openAccess</field>

            </element>

          </element>

        </element>

      8. <element name="title">

        1. <element name="spa">

          1. <field name="value">A mathematical analysis of an extended MHD Darcy–Forchheimer type fluid.</field>

          </element>

        </element>

      9. <element name="type">

        1. <element name="spa">

          1. <field name="value">article</field>

          </element>

        </element>

      10. <element name="relation">

        1. <element name="publisherversion">

          1. <element name="spa">

            1. <field name="value">https://www.nature.com/articles/s41598-022-08623-0</field>

            </element>

          </element>

        </element>

      </element>

    2. <element name="bundles">

      1. <element name="bundle">

        1. <field name="name">ORIGINAL</field>

        2. <element name="bitstreams">

          1. <element name="bitstream">

            1. <field name="name">s41598-022-08623-0.pdf</field>

            2. <field name="originalName">s41598-022-08623-0.pdf</field>

            3. <field name="description" />
            4. <field name="format">application/pdf</field>

            5. <field name="size">2814694</field>

            6. <field name="url">http://ddfv.ufv.es/bitstream/10641/3274/1/s41598-022-08623-0.pdf</field>

            7. <field name="checksum">1def23748cda4d8aebc17d3bfefb5201</field>

            8. <field name="checksumAlgorithm">MD5</field>

            9. <field name="sid">1</field>

            10. <field name="drm">open access</field>

            </element>

          </element>

        </element>

      2. <element name="bundle">

        1. <field name="name">CC-LICENSE</field>

        2. <element name="bitstreams">

          1. <element name="bitstream">

            1. <field name="name">license_rdf</field>

            2. <field name="originalName">license_rdf</field>

            3. <field name="format">application/rdf+xml; charset=utf-8</field>

            4. <field name="size">811</field>

            5. <field name="url">http://ddfv.ufv.es/bitstream/10641/3274/2/license_rdf</field>

            6. <field name="checksum">4d01a8abc68801ab758ec8c2c04918c3</field>

            7. <field name="checksumAlgorithm">MD5</field>

            8. <field name="sid">2</field>

            9. <field name="drm">open access</field>

            </element>

          </element>

        </element>

      3. <element name="bundle">

        1. <field name="name">LICENSE</field>

        2. <element name="bitstreams">

          1. <element name="bitstream">

            1. <field name="name">license.txt</field>

            2. <field name="originalName">license.txt</field>

            3. <field name="format">text/plain; charset=utf-8</field>

            4. <field name="size">2418</field>

            5. <field name="url">http://ddfv.ufv.es/bitstream/10641/3274/3/license.txt</field>

            6. <field name="checksum">8b6e3a0bc6a1ca51936267b0e6e4740c</field>

            7. <field name="checksumAlgorithm">MD5</field>

            8. <field name="sid">3</field>

            9. <field name="drm">open access</field>

            </element>

          </element>

        </element>

      4. <element name="bundle">

        1. <field name="name">TEXT</field>

        2. <element name="bitstreams">

          1. <element name="bitstream">

            1. <field name="name">s41598-022-08623-0.pdf.txt</field>

            2. <field name="originalName">s41598-022-08623-0.pdf.txt</field>

            3. <field name="description">Extracted text</field>

            4. <field name="format">text/plain</field>

            5. <field name="size">50776</field>

            6. <field name="url">http://ddfv.ufv.es/bitstream/10641/3274/4/s41598-022-08623-0.pdf.txt</field>

            7. <field name="checksum">5cb31b4450831b347a7b4fd7a4e746c4</field>

            8. <field name="checksumAlgorithm">MD5</field>

            9. <field name="sid">4</field>

            10. <field name="drm">open access</field>

            </element>

          </element>

        </element>

      5. <element name="bundle">

        1. <field name="name">THUMBNAIL</field>

        2. <element name="bitstreams">

          1. <element name="bitstream">

            1. <field name="name">s41598-022-08623-0.pdf.jpg</field>

            2. <field name="originalName">s41598-022-08623-0.pdf.jpg</field>

            3. <field name="description">Generated Thumbnail</field>

            4. <field name="format">image/jpeg</field>

            5. <field name="size">1811</field>

            6. <field name="url">http://ddfv.ufv.es/bitstream/10641/3274/5/s41598-022-08623-0.pdf.jpg</field>

            7. <field name="checksum">e9b96b24e71694ca3d90b254f21fb4be</field>

            8. <field name="checksumAlgorithm">MD5</field>

            9. <field name="sid">5</field>

            10. <field name="drm">open access</field>

            </element>

          </element>

        </element>

      </element>

    3. <element name="others">

      1. <field name="handle">10641/3274</field>

      2. <field name="identifier">oai:ddfv.ufv.es:10641/3274</field>

      3. <field name="lastModifyDate">2023-02-25 02:00:15.149</field>

      4. <field name="drm">open access</field>

      </element>

    4. <element name="repository">

      1. <field name="name">DDFV</field>

      2. <field name="mail">dspace@ufv.es</field>

      </element>

    5. <element name="license">

      1. <field name="bin">LSBFbCByZXBvc2l0b3JpbyBpbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIEZyYW5jaXNjbyBkZSBWaXRvcmlhIGRlIE1hZHJpZCAoRERGViksIHBvbmUgYSBkaXNwb3NpY2nDs24gZGUgbG9zIHVzdWFyaW9zIGxhIHBsYXRhZm9ybWEgZGlnaXRhbCBhYmllcnRhIHkgZGUgYWNjZXNvIGxpYnJlIGRlIGxhIHByb2R1Y2Npw7NuIGNpZW50w61maWNhIGRlIGxhIGluc3RpdHVjacOzbi4KCi0gQSB0YWxlcyBmaW5lcywgbG9zIGF1dG9yZXMgZGVjbGFyYW4gcXVlIHNvbiB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCBkZSBsYSBvYnJhIHkgcXVlIMOpc3RhIGVzIG9yaWdpbmFsLgoKLSBNZWRpYW50ZSBsYSBhY2VwdGFjacOzbiBkZSBlc3RhIGxpY2VuY2lhLCBlbCBhdXRvciwgY29tbyB0aXR1bGFyIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciwgYXV0b3JpemEgeSBjZWRlIGEgbGEgVW5pdmVyc2lkYWQgRnJhbmNpc2NvIGRlIFZpdG9yaWEsIGRlIGZvcm1hIGdyYXR1aXRhIHkgbm8gZXhjbHVzaXZhLCBwb3IgZWwgbcOheGltbyBwbGF6byBsZWdhbCB5IGNvbiDDoW1iaXRvIHVuaXZlcnNhbCwgbG9zIGRlcmVjaG9zIGRlIHJlcHJvZHVjY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EsIGluY2x1aWRvIGVsIGRlcmVjaG8gZGUgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVsZWN0csOzbmljYSwgeSBsYSB0cmFuc2Zvcm1hY2nDs24gZGUgZm9ybWF0byBzb2JyZSBsYSBvYnJhIGluZGljYWRhLCBzaSBmdWVyYSBlbCBjYXNvLgoKLSBFbiBlbCBjYXNvIGRlIGNlc2nDs24gZGUgZGVyZWNob3MgZGUgZXhwbG90YWNpw7NuIGEgdGVyY2Vyb3MsIGRlY2xhcmEgcXVlIGN1ZW50YSBjb24gbGEgYXV0b3JpemFjacOzbiBkZSBkaWNob3MgdGl0dWxhcmVzIHkgcXVlIGhhIG9idGVuaWRvIGVsIHBlcm1pc28gc2luIHJlc3RyaWNjaW9uZXMgZGVsIHByb3BpZXRhcmlvIGRlbCBjb3B5cmlnaHQgcGFyYSBvdG9yZ2FyIGEgbGEgaW5zdGl0dWNpw7NuIGxvcyBkZXJlY2hvcyByZXF1ZXJpZG9zIHBhcmEgZXN0YSBsaWNlbmNpYSB5IHF1ZSBkaWNobyBwcm9waWV0YXJpbyBjb25vY2UgZWwgdGV4dG8gbyBlbCBjb250ZW5pZG8gZGUgbGEgb2JyYS4KCi0gU2kgZnVlcmEgdW5hIG9icmEgcGF0cm9jaW5hZGEgcG9yIGFsZ3VuYSBpbnN0aXR1Y2nDs24gZGlzdGludGEgYSBsYSBVbml2ZXJzaWRhZCBGcmFuY2lzY28gZGUgVml0b3JpYSwgZGVjbGFyYSBxdWUgZW4gY2FzbyBuZWNlc2FyaW8sIGN1ZW50YSBjb24gbG9zIHBlcm1pc29zIHBlcnRpbmVudGVzLCBkZSBsYSBpbnN0aXR1Y2nDs24gbyBlbnRpZGFkLCBxdWUgbGUgcGVybWl0YW4gbGEgZGlmdXNpw7NuIGRlIGRpY2hhIG9icmEuCgotIExhIFVuaXZlcnNpZGFkIEZyYW5jaXNjbyBkZSBWaXRvcmlhIG5vIHRpZW5lIGxhIHRpdHVsYXJpZGFkIGRlIGxvcyBkZXJlY2hvcyBzb2JyZSBsYSBvYnJhLCBxdWUgY29ycmVzcG9uZGVuIGFsIGF1dG9yLCBwZXJvIHNpbiBlbWJhcmdvIMOpc3RhIGxpY2VuY2lhIGRhIGRlcmVjaG8gYSByZXByb2R1Y2lybGEgZW4gdW4gc29wb3J0ZSBkaWdpdGFsLCBkaXN0cmlidWlyIGEgbG9zIHVzdWFyaW9zIGNvcGlhcyBlbGVjdHLDs25pY2FzIGRlIGxhIG9icmEgZW4gZm9ybWF0byBkaWdpdGFsLCBjb211bmljYWNpw7NuIHDDumJsaWNhIHkgc3UgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGEgdHJhdsOpcyBkZSB1biBhcmNoaXZvIGFiaWVydG8gaW5zdGl0dWNpb25hbC4KCi0gTGEgb2JyYSBzZSBwb25kcsOhIGEgZGlzcG9zaWNpw7NuIGRlIGxvcyB1c3VhcmlvcyBwYXJhIHF1ZSBoYWdhbiBkZSBlbGxhIHVuIHVzbyBqdXN0byB5IHJlc3BldHVvc28gY29uIGxvcyBkZXJlY2hvcyBkZSBhdXRvciwgc2VhIGNvbiBmaW5lcyBkZSBlc3R1ZGlvLCBpbnZlc3RpZ2FjacOzbiBvIGN1YWxxdWllciBvdHJvIGZpbiBsw61jaXRvLCB5IGRlIGFjdWVyZG8gYSBsYXMgY29uZGljaW9uZXMgZXN0YWJsZWNpZGFzIGVuIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMsIGRlIG1vZG8gcXVlIGxhcyBvYnJhcyBwdWVkYW4gc2VyIGRpc3RyaWJ1aWRhcywgY29waWFkYXMgeSBleGhpYmlkYXMgc2llbXByZSBxdWUgc2UgY2l0ZSBsYSBhdXRvcsOtYSB5IG5vIHNlIG9idGVuZ2EgYmVuZWZpY2lvIGNvbWVyY2lhbC4gUG9yIHRhbnRvLCBsYSBVbml2ZXJzaWRhZCBubyBhc3VtaXLDoSByZXNwb25zYWJpbGlkYWQgYWxndW5hIHBvciBsYSBmb3JtYSBlZmVjdGl2YSBlbiBxdWUgbG9zIHVzdWFyaW9zIHV0aWxpY2VuIGVsIG1hdGVyaWFsIHB1ZXN0byBhIHN1IGRpc3Bvc2ljacOzbi4KCi0gRWwgYXV0b3IgcG9kcsOhIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBsYSBvYnJhIGRlbCByZXBvc2l0b3JpbyBwb3IgY2F1c2EganVzdGlmaWNhZGEuIAoK</field>

      </element>

    </metadata>

Hispana

Kultura digitalera sartzeko ataria eta Europeanaren agregatzaile nazionala

Harremanetarako

Sar zaitez gure inprimakira eta lehenbailehen erantzungo dizugu

Harremanetarako

X

Tweets by Hispana_roai

Facebook

HISPANA
© Kultur Ministerioa
  • Ohar legala