<?xml version="1.0" encoding="UTF-8" ?>
<oai_dc:dc schemaLocation="http://www.openarchives.org/OAI/2.0/oai_dc/ http://www.openarchives.org/OAI/2.0/oai_dc.xsd">
<dc:title>ɑʄʄ(1|1)-trivial deformations of ɑʄʄ (2|1)-modules of weighted densities on the superspace ℝ½</dc:title>
<dc:creator>Laraiedh, Ismail</dc:creator>
<dc:contributor>Université de Sfax. Túnez</dc:contributor>
<dc:contributor>Shaqra University. Saudi Arabia</dc:contributor>
<dc:subject>Relative cohomology</dc:subject>
<dc:subject>Trivial deformation</dc:subject>
<dc:subject>Lie superalgebra</dc:subject>
<dc:subject>Symbol</dc:subject>
<dc:subject>Cohomología relativa</dc:subject>
<dc:subject>Deformación trivial</dc:subject>
<dc:subject>Superalgebra de Lie</dc:subject>
<dc:subject>Símbolo</dc:subject>
<dc:subject>1201.09 Álgebra de Lie</dc:subject>
<dc:subject>1204.04 Geometría Diferencial</dc:subject>
<dc:subject>1210.02 Cohomología</dc:subject>
<dc:description>Over the (1|2)-dimensional real superspace, we study ɑʄʄ(1|1)-trivial deformations of the action of the affine Lie superalgebra ɑʄʄ (2|1) on the direct sum of the superspaces of weighted densities. We compute the necessary and sufficient integrability conditions of a given infinitesimal deformation of this action and we prove that any formal deformation is equivalent to its infinitisemal part.</dc:description>
<dc:description>peerReviewed</dc:description>
<dc:date>2020-02-13T12:55:02Z</dc:date>
<dc:date>2020-02-13T12:55:02Z</dc:date>
<dc:date>2019</dc:date>
<dc:type>article</dc:type>
<dc:type>publishedVersion</dc:type>
<dc:identifier>http://hdl.handle.net/10662/10327</dc:identifier>
<dc:identifier>LARAIEDH, I. (2019). ɑʄʄ (1|1)-trivial deformations of ɑʄʄ (2|1)-modules of weighted densities on the superspace ℝ½. Extracta Mathematicae 34 (2), 269-283. E-ISSN 2605-5686</dc:identifier>
<dc:identifier>10.17398/2605-5686.34.2.269</dc:identifier>
<dc:identifier>Extracta Mathematicae</dc:identifier>
<dc:identifier>2</dc:identifier>
<dc:identifier>269</dc:identifier>
<dc:identifier>283</dc:identifier>
<dc:identifier>34</dc:identifier>
<dc:identifier>2605-5686</dc:identifier>
<dc:language>eng</dc:language>
<dc:rights>Attribution-NonCommercial-NoDerivatives 4.0 International</dc:rights>
<dc:rights>http://creativecommons.org/licenses/by-nc-nd/4.0/</dc:rights>
<dc:rights>openAccess</dc:rights>
<dc:format>15 p.</dc:format>
<dc:format>application/pdf</dc:format>
<dc:format>application/pdf</dc:format>
<dc:publisher>Universidad de Extremadura</dc:publisher>
</oai_dc:dc>
<?xml version="1.0" encoding="UTF-8" ?>
<d:DIDL schemaLocation="urn:mpeg:mpeg21:2002:02-DIDL-NS http://standards.iso.org/ittf/PubliclyAvailableStandards/MPEG-21_schema_files/did/didl.xsd">
<d:DIDLInfo>
<dcterms:created schemaLocation="http://purl.org/dc/terms/ http://dublincore.org/schemas/xmls/qdc/dcterms.xsd">2020-02-13T12:55:02Z</dcterms:created>
</d:DIDLInfo>
<d:Item id="hdl_10662_10327">
<d:Descriptor>
<d:Statement mimeType="application/xml; charset=utf-8">
<dii:Identifier schemaLocation="urn:mpeg:mpeg21:2002:01-DII-NS http://standards.iso.org/ittf/PubliclyAvailableStandards/MPEG-21_schema_files/dii/dii.xsd">urn:hdl:10662/10327</dii:Identifier>
</d:Statement>
</d:Descriptor>
<d:Descriptor>
<d:Statement mimeType="application/xml; charset=utf-8">
<oai_dc:dc schemaLocation="http://www.openarchives.org/OAI/2.0/oai_dc/ http://www.openarchives.org/OAI/2.0/oai_dc.xsd">
<dc:title>ɑʄʄ(1|1)-trivial deformations of ɑʄʄ (2|1)-modules of weighted densities on the superspace ℝ½</dc:title>
<dc:creator>Laraiedh, Ismail</dc:creator>
<dc:contributor>Université de Sfax. Túnez</dc:contributor>
<dc:contributor>Shaqra University. Saudi Arabia</dc:contributor>
<dc:subject>Relative cohomology</dc:subject>
<dc:subject>Trivial deformation</dc:subject>
<dc:subject>Lie superalgebra</dc:subject>
<dc:subject>Symbol</dc:subject>
<dc:subject>Cohomología relativa</dc:subject>
<dc:subject>Deformación trivial</dc:subject>
<dc:subject>Superalgebra de Lie</dc:subject>
<dc:subject>Símbolo</dc:subject>
<dc:description>Over the (1|2)-dimensional real superspace, we study ɑʄʄ(1|1)-trivial deformations of the action of the affine Lie superalgebra ɑʄʄ (2|1) on the direct sum of the superspaces of weighted densities. We compute the necessary and sufficient integrability conditions of a given infinitesimal deformation of this action and we prove that any formal deformation is equivalent to its infinitisemal part.</dc:description>
<dc:date>2020-02-13T12:55:02Z</dc:date>
<dc:date>2020-02-13T12:55:02Z</dc:date>
<dc:date>2019</dc:date>
<dc:type>article</dc:type>
<dc:identifier>http://hdl.handle.net/10662/10327</dc:identifier>
<dc:identifier>LARAIEDH, I. (2019). ɑʄʄ (1|1)-trivial deformations of ɑʄʄ (2|1)-modules of weighted densities on the superspace ℝ½. Extracta Mathematicae 34 (2), 269-283. E-ISSN 2605-5686</dc:identifier>
<dc:identifier>10.17398/2605-5686.34.2.269</dc:identifier>
<dc:identifier>Extracta Mathematicae</dc:identifier>
<dc:identifier>2</dc:identifier>
<dc:identifier>269</dc:identifier>
<dc:identifier>283</dc:identifier>
<dc:identifier>34</dc:identifier>
<dc:identifier>2605-5686</dc:identifier>
<dc:language>eng</dc:language>
<dc:rights>http://creativecommons.org/licenses/by-nc-nd/4.0/</dc:rights>
<dc:rights>openAccess</dc:rights>
<dc:rights>Attribution-NonCommercial-NoDerivatives 4.0 International</dc:rights>
<dc:publisher>Universidad de Extremadura</dc:publisher>
</oai_dc:dc>
</d:Statement>
</d:Descriptor>
<d:Component id="10662_10327_1">
</d:Component>
</d:Item>
</d:DIDL>
<?xml version="1.0" encoding="UTF-8" ?>
<dim:dim schemaLocation="http://www.dspace.org/xmlns/dspace/dim http://www.dspace.org/schema/dim.xsd">
<dim:field authority="6837c9d0-c602-4621-a633-9f961134df25" confidence="-1" element="contributor" mdschema="dc" qualifier="author">Laraiedh, Ismail</dim:field>
<dim:field element="contributor" lang="fr_FR" mdschema="dc" qualifier="affiliation">Université de Sfax. Túnez</dim:field>
<dim:field element="contributor" lang="en_US" mdschema="dc" qualifier="affiliation">Shaqra University. Saudi Arabia</dim:field>
<dim:field element="date" mdschema="dc" qualifier="accessioned">2020-02-13T12:55:02Z</dim:field>
<dim:field element="date" mdschema="dc" qualifier="available">2020-02-13T12:55:02Z</dim:field>
<dim:field element="date" mdschema="dc" qualifier="issued">2019</dim:field>
<dim:field element="identifier" mdschema="dc" qualifier="uri">http://hdl.handle.net/10662/10327</dim:field>
<dim:field element="identifier" lang="es_ES" mdschema="dc" qualifier="bibliographicCitation">LARAIEDH, I. (2019). ɑʄʄ (1|1)-trivial deformations of ɑʄʄ (2|1)-modules of weighted densities on the superspace ℝ½. Extracta Mathematicae 34 (2), 269-283. E-ISSN 2605-5686</dim:field>
<dim:field element="identifier" mdschema="dc" qualifier="doi">10.17398/2605-5686.34.2.269</dim:field>
<dim:field element="identifier" lang="es_ES" mdschema="dc" qualifier="publicationtitle">Extracta Mathematicae</dim:field>
<dim:field element="identifier" lang="es_ES" mdschema="dc" qualifier="publicationissue">2</dim:field>
<dim:field element="identifier" lang="es_ES" mdschema="dc" qualifier="publicationfirstpage">269</dim:field>
<dim:field element="identifier" lang="es_ES" mdschema="dc" qualifier="publicationlastpage">283</dim:field>
<dim:field element="identifier" lang="es_ES" mdschema="dc" qualifier="publicationvolume">34</dim:field>
<dim:field element="identifier" mdschema="dc" qualifier="e-issn">2605-5686</dim:field>
<dim:field element="description" lang="es_ES" mdschema="dc" qualifier="abstract">Over the (1|2)-dimensional real superspace, we study ɑʄʄ(1|1)-trivial deformations of the action of the affine Lie superalgebra ɑʄʄ (2|1) on the direct sum of the superspaces of weighted densities. We compute the necessary and sufficient integrability conditions of a given infinitesimal deformation of this action and we prove that any formal deformation is equivalent to its infinitisemal part.</dim:field>
<dim:field element="description" lang="es_ES" mdschema="dc" qualifier="version">peerReviewed</dim:field>
<dim:field element="format" lang="es_ES" mdschema="dc" qualifier="extent">15 p.</dim:field>
<dim:field element="format" lang="en_US" mdschema="dc" qualifier="mimetype">application/pdf</dim:field>
<dim:field element="language" lang="es_ES" mdschema="dc" qualifier="iso">eng</dim:field>
<dim:field element="publisher" lang="es_ES" mdschema="dc">Universidad de Extremadura</dim:field>
<dim:field element="rights" lang="*" mdschema="dc">Attribution-NonCommercial-NoDerivatives 4.0 International</dim:field>
<dim:field element="rights" lang="*" mdschema="dc" qualifier="uri">http://creativecommons.org/licenses/by-nc-nd/4.0/</dim:field>
<dim:field element="rights" lang="es_ES" mdschema="dc" qualifier="accessRights">openAccess</dim:field>
<dim:field element="subject" lang="es_ES" mdschema="dc">Relative cohomology</dim:field>
<dim:field element="subject" lang="es_ES" mdschema="dc">Trivial deformation</dim:field>
<dim:field element="subject" lang="es_ES" mdschema="dc">Lie superalgebra</dim:field>
<dim:field element="subject" lang="es_ES" mdschema="dc">Symbol</dim:field>
<dim:field element="subject" lang="es_ES" mdschema="dc">Cohomología relativa</dim:field>
<dim:field element="subject" lang="es_ES" mdschema="dc">Deformación trivial</dim:field>
<dim:field element="subject" lang="es_ES" mdschema="dc">Superalgebra de Lie</dim:field>
<dim:field element="subject" lang="es_ES" mdschema="dc">Símbolo</dim:field>
<dim:field element="subject" lang="es_ES" mdschema="dc" qualifier="unesco">1201.09 Álgebra de Lie</dim:field>
<dim:field element="subject" lang="es_ES" mdschema="dc" qualifier="unesco">1204.04 Geometría Diferencial</dim:field>
<dim:field element="subject" lang="es_ES" mdschema="dc" qualifier="unesco">1210.02 Cohomología</dim:field>
<dim:field element="title" lang="es_ES" mdschema="dc">ɑʄʄ(1|1)-trivial deformations of ɑʄʄ (2|1)-modules of weighted densities on the superspace ℝ½</dim:field>
<dim:field element="type" lang="es_ES" mdschema="dc">article</dim:field>
<dim:field element="type" lang="es_ES" mdschema="dc" qualifier="version">publishedVersion</dim:field>
<dim:field element="type" lang="en_US" mdschema="europeana">TEXT</dim:field>
<dim:field element="dataProvider" lang="es_ES" mdschema="europeana">Universidad de Extremadura. España</dim:field>
</dim:dim>
<?xml version="1.0" encoding="UTF-8" ?>
<rdf:RDF schemaLocation="http://www.w3.org/1999/02/22-rdf-syntax-ns# http://www.europeana.eu/schemas/edm/EDM.xsd">
<edm:ProvidedCHO about="http://hdl.handle.net/10662/10327">
<dc:contributor>Université de Sfax. Túnez</dc:contributor>
<dc:contributor>Shaqra University. Saudi Arabia</dc:contributor>
<dc:creator>Laraiedh, Ismail</dc:creator>
<dc:date>2019</dc:date>
<dc:description>Over the (1|2)-dimensional real superspace, we study ɑʄʄ(1|1)-trivial deformations of the action of the affine Lie superalgebra ɑʄʄ (2|1) on the direct sum of the superspaces of weighted densities. We compute the necessary and sufficient integrability conditions of a given infinitesimal deformation of this action and we prove that any formal deformation is equivalent to its infinitisemal part.</dc:description>
<dc:identifier>http://hdl.handle.net/10662/10327</dc:identifier>
<dc:language>eng</dc:language>
<dc:publisher>Universidad de Extremadura</dc:publisher>
<dc:subject>Relative cohomology</dc:subject>
<dc:subject>Trivial deformation</dc:subject>
<dc:subject>Lie superalgebra</dc:subject>
<dc:subject>Symbol</dc:subject>
<dc:subject>Cohomología relativa</dc:subject>
<dc:subject>Deformación trivial</dc:subject>
<dc:subject>Superalgebra de Lie</dc:subject>
<dc:subject>Símbolo</dc:subject>
<dc:title>ɑʄʄ(1|1)-trivial deformations of ɑʄʄ (2|1)-modules of weighted densities on the superspace ℝ½</dc:title>
<dc:type>article</dc:type>
<edm:type>TEXT</edm:type>
</edm:ProvidedCHO>
<ore:Aggregation about="http://hdl.handle.net/10662/10327#aggregation">
<edm:dataProvider>Dehesa</edm:dataProvider>
<edm:provider>Hispana</edm:provider>
</ore:Aggregation>
<edm:WebResource about="https://dehesa.unex.es:8443/bitstream/10662/10327/1/2605-5686_34_2_269.pdf">
</edm:WebResource>
</rdf:RDF>
<?xml version="1.0" encoding="UTF-8" ?>
<europeana:record schemaLocation="http://www.europeana.eu/schemas/ese/ http://www.europeana.eu/schemas/ese/ESE-V3.4.xsd">
<dc:title>ɑʄʄ(1|1)-trivial deformations of ɑʄʄ (2|1)-modules of weighted densities on the superspace ℝ½</dc:title>
<dc:creator>Laraiedh, Ismail</dc:creator>
<dc:contributor>Université de Sfax. Túnez</dc:contributor>
<dc:contributor>Shaqra University. Saudi Arabia</dc:contributor>
<dc:subject>Relative cohomology</dc:subject>
<dc:subject>Trivial deformation</dc:subject>
<dc:subject>Lie superalgebra</dc:subject>
<dc:subject>Symbol</dc:subject>
<dc:subject>Cohomología relativa</dc:subject>
<dc:subject>Deformación trivial</dc:subject>
<dc:subject>Superalgebra de Lie</dc:subject>
<dc:subject>Símbolo</dc:subject>
<dc:subject>1201.09 Álgebra de Lie</dc:subject>
<dc:subject>1204.04 Geometría Diferencial</dc:subject>
<dc:subject>1210.02 Cohomología</dc:subject>
<dc:description>Over the (1|2)-dimensional real superspace, we study ɑʄʄ(1|1)-trivial deformations of the action of the affine Lie superalgebra ɑʄʄ (2|1) on the direct sum of the superspaces of weighted densities. We compute the necessary and sufficient integrability conditions of a given infinitesimal deformation of this action and we prove that any formal deformation is equivalent to its infinitisemal part.</dc:description>
<dc:description>peerReviewed</dc:description>
<dc:date>2020-02-13T12:55:02Z</dc:date>
<dc:date>2020-02-13T12:55:02Z</dc:date>
<dc:date>2019</dc:date>
<dc:type>article</dc:type>
<dc:type>publishedVersion</dc:type>
<dc:identifier>http://hdl.handle.net/10662/10327</dc:identifier>
<dc:identifier>LARAIEDH, I. (2019). ɑʄʄ (1|1)-trivial deformations of ɑʄʄ (2|1)-modules of weighted densities on the superspace ℝ½. Extracta Mathematicae 34 (2), 269-283. E-ISSN 2605-5686</dc:identifier>
<dc:identifier>10.17398/2605-5686.34.2.269</dc:identifier>
<dc:identifier>Extracta Mathematicae</dc:identifier>
<dc:identifier>2</dc:identifier>
<dc:identifier>269</dc:identifier>
<dc:identifier>283</dc:identifier>
<dc:identifier>34</dc:identifier>
<dc:identifier>2605-5686</dc:identifier>
<dc:language>eng</dc:language>
<dc:rights>Attribution-NonCommercial-NoDerivatives 4.0 International</dc:rights>
<dc:rights>http://creativecommons.org/licenses/by-nc-nd/4.0/</dc:rights>
<dc:rights>openAccess</dc:rights>
<dc:format>15 p.</dc:format>
<dc:format>application/pdf</dc:format>
<dc:publisher>Universidad de Extremadura</dc:publisher>
<europeana:object>https://dehesa.unex.es:8443/bitstream/10662/10327/5/2605-5686_34_2_269.pdf.jpg</europeana:object>
<europeana:provider>Hispana</europeana:provider>
<europeana:type>TEXT</europeana:type>
<europeana:rights>http://creativecommons.org/licenses/by-nc-nd/4.0/</europeana:rights>
<europeana:dataProvider>Universidad de Extremadura</europeana:dataProvider>
<europeana:isShownAt>http://hdl.handle.net/10662/10327</europeana:isShownAt>
</europeana:record>
<?xml version="1.0" encoding="UTF-8" ?>
<thesis schemaLocation="http://www.ndltd.org/standards/metadata/etdms/1.0/ http://www.ndltd.org/standards/metadata/etdms/1.0/etdms.xsd">
<title>ɑʄʄ(1|1)-trivial deformations of ɑʄʄ (2|1)-modules of weighted densities on the superspace ℝ½</title>
<creator>Laraiedh, Ismail</creator>
<contributor>Université de Sfax. Túnez</contributor>
<contributor>Shaqra University. Saudi Arabia</contributor>
<subject>Relative cohomology</subject>
<subject>Trivial deformation</subject>
<subject>Lie superalgebra</subject>
<subject>Symbol</subject>
<subject>Cohomología relativa</subject>
<subject>Deformación trivial</subject>
<subject>Superalgebra de Lie</subject>
<subject>Símbolo</subject>
<description>Over the (1|2)-dimensional real superspace, we study ɑʄʄ(1|1)-trivial deformations of the action of the affine Lie superalgebra ɑʄʄ (2|1) on the direct sum of the superspaces of weighted densities. We compute the necessary and sufficient integrability conditions of a given infinitesimal deformation of this action and we prove that any formal deformation is equivalent to its infinitisemal part.</description>
<date>2020-02-13</date>
<date>2020-02-13</date>
<date>2019</date>
<type>article</type>
<identifier>http://hdl.handle.net/10662/10327</identifier>
<identifier>LARAIEDH, I. (2019). ɑʄʄ (1|1)-trivial deformations of ɑʄʄ (2|1)-modules of weighted densities on the superspace ℝ½. Extracta Mathematicae 34 (2), 269-283. E-ISSN 2605-5686</identifier>
<identifier>10.17398/2605-5686.34.2.269</identifier>
<identifier>Extracta Mathematicae</identifier>
<identifier>2</identifier>
<identifier>269</identifier>
<identifier>283</identifier>
<identifier>34</identifier>
<identifier>2605-5686</identifier>
<language>eng</language>
<rights>http://creativecommons.org/licenses/by-nc-nd/4.0/</rights>
<rights>openAccess</rights>
<rights>Attribution-NonCommercial-NoDerivatives 4.0 International</rights>
<publisher>Universidad de Extremadura</publisher>
</thesis>
<?xml version="1.0" encoding="UTF-8" ?>
<record schemaLocation="http://www.loc.gov/MARC21/slim http://www.loc.gov/standards/marcxml/schema/MARC21slim.xsd">
<leader>00925njm 22002777a 4500</leader>
<datafield ind1=" " ind2=" " tag="042">
<subfield code="a">dc</subfield>
</datafield>
<datafield ind1=" " ind2=" " tag="720">
<subfield code="a">Laraiedh, Ismail</subfield>
<subfield code="e">author</subfield>
</datafield>
<datafield ind1=" " ind2=" " tag="260">
<subfield code="c">2019</subfield>
</datafield>
<datafield ind1=" " ind2=" " tag="520">
<subfield code="a">Over the (1|2)-dimensional real superspace, we study ɑʄʄ(1|1)-trivial deformations of the action of the affine Lie superalgebra ɑʄʄ (2|1) on the direct sum of the superspaces of weighted densities. We compute the necessary and sufficient integrability conditions of a given infinitesimal deformation of this action and we prove that any formal deformation is equivalent to its infinitisemal part.</subfield>
</datafield>
<datafield ind1="8" ind2=" " tag="024">
<subfield code="a">http://hdl.handle.net/10662/10327</subfield>
</datafield>
<datafield ind1="8" ind2=" " tag="024">
<subfield code="a">LARAIEDH, I. (2019). ɑʄʄ (1|1)-trivial deformations of ɑʄʄ (2|1)-modules of weighted densities on the superspace ℝ½. Extracta Mathematicae 34 (2), 269-283. E-ISSN 2605-5686</subfield>
</datafield>
<datafield ind1="8" ind2=" " tag="024">
<subfield code="a">10.17398/2605-5686.34.2.269</subfield>
</datafield>
<datafield ind1="8" ind2=" " tag="024">
<subfield code="a">Extracta Mathematicae</subfield>
</datafield>
<datafield ind1="8" ind2=" " tag="024">
<subfield code="a">2</subfield>
</datafield>
<datafield ind1="8" ind2=" " tag="024">
<subfield code="a">269</subfield>
</datafield>
<datafield ind1="8" ind2=" " tag="024">
<subfield code="a">283</subfield>
</datafield>
<datafield ind1="8" ind2=" " tag="024">
<subfield code="a">34</subfield>
</datafield>
<datafield ind1="8" ind2=" " tag="024">
<subfield code="a">2605-5686</subfield>
</datafield>
<datafield ind1=" " ind2=" " tag="653">
<subfield code="a">Relative cohomology</subfield>
</datafield>
<datafield ind1=" " ind2=" " tag="653">
<subfield code="a">Trivial deformation</subfield>
</datafield>
<datafield ind1=" " ind2=" " tag="653">
<subfield code="a">Lie superalgebra</subfield>
</datafield>
<datafield ind1=" " ind2=" " tag="653">
<subfield code="a">Symbol</subfield>
</datafield>
<datafield ind1=" " ind2=" " tag="653">
<subfield code="a">Cohomología relativa</subfield>
</datafield>
<datafield ind1=" " ind2=" " tag="653">
<subfield code="a">Deformación trivial</subfield>
</datafield>
<datafield ind1=" " ind2=" " tag="653">
<subfield code="a">Superalgebra de Lie</subfield>
</datafield>
<datafield ind1=" " ind2=" " tag="653">
<subfield code="a">Símbolo</subfield>
</datafield>
<datafield ind1="0" ind2="0" tag="245">
<subfield code="a">ɑʄʄ(1|1)-trivial deformations of ɑʄʄ (2|1)-modules of weighted densities on the superspace ℝ½</subfield>
</datafield>
</record>
<?xml version="1.0" encoding="UTF-8" ?>
<mets ID=" DSpace_ITEM_10662-10327" OBJID=" hdl:10662/10327" PROFILE="DSpace METS SIP Profile 1.0" TYPE="DSpace ITEM" schemaLocation="http://www.loc.gov/METS/ http://www.loc.gov/standards/mets/mets.xsd">
<metsHdr CREATEDATE="2022-10-21T23:11:31Z">
<agent ROLE="CUSTODIAN" TYPE="ORGANIZATION">
<name>Dehesa. Repositorio Institucional de la Universidad de Extremadura</name>
</agent>
</metsHdr>
<dmdSec ID="DMD_10662_10327">
<mdWrap MDTYPE="MODS">
<xmlData schemaLocation="http://www.loc.gov/mods/v3 http://www.loc.gov/standards/mods/v3/mods-3-1.xsd">
<mods:mods schemaLocation="http://www.loc.gov/mods/v3 http://www.loc.gov/standards/mods/v3/mods-3-1.xsd">
<mods:name>
<mods:role>
<mods:roleTerm type="text">author</mods:roleTerm>
</mods:role>
<mods:namePart>Laraiedh, Ismail</mods:namePart>
</mods:name>
<mods:name>
<mods:role>
<mods:roleTerm type="text">affiliation</mods:roleTerm>
</mods:role>
<mods:namePart>Université de Sfax. Túnez</mods:namePart>
</mods:name>
<mods:name>
<mods:role>
<mods:roleTerm type="text">affiliation</mods:roleTerm>
</mods:role>
<mods:namePart>Shaqra University. Saudi Arabia</mods:namePart>
</mods:name>
<mods:extension>
<mods:dateAccessioned encoding="iso8601">2020-02-13T12:55:02Z</mods:dateAccessioned>
</mods:extension>
<mods:extension>
<mods:dateAvailable encoding="iso8601">2020-02-13T12:55:02Z</mods:dateAvailable>
</mods:extension>
<mods:originInfo>
<mods:dateIssued encoding="iso8601">2019</mods:dateIssued>
</mods:originInfo>
<mods:identifier type="uri">http://hdl.handle.net/10662/10327</mods:identifier>
<mods:identifier type="bibliographicCitation">LARAIEDH, I. (2019). ɑʄʄ (1|1)-trivial deformations of ɑʄʄ (2|1)-modules of weighted densities on the superspace ℝ½. Extracta Mathematicae 34 (2), 269-283. E-ISSN 2605-5686</mods:identifier>
<mods:identifier type="doi">10.17398/2605-5686.34.2.269</mods:identifier>
<mods:identifier type="publicationtitle">Extracta Mathematicae</mods:identifier>
<mods:identifier type="publicationissue">2</mods:identifier>
<mods:identifier type="publicationfirstpage">269</mods:identifier>
<mods:identifier type="publicationlastpage">283</mods:identifier>
<mods:identifier type="publicationvolume">34</mods:identifier>
<mods:identifier type="e-issn">2605-5686</mods:identifier>
<mods:abstract>Over the (1|2)-dimensional real superspace, we study ɑʄʄ(1|1)-trivial deformations of the action of the affine Lie superalgebra ɑʄʄ (2|1) on the direct sum of the superspaces of weighted densities. We compute the necessary and sufficient integrability conditions of a given infinitesimal deformation of this action and we prove that any formal deformation is equivalent to its infinitisemal part.</mods:abstract>
<mods:language>
<mods:languageTerm authority="rfc3066">eng</mods:languageTerm>
</mods:language>
<mods:accessCondition type="useAndReproduction">Attribution-NonCommercial-NoDerivatives 4.0 International</mods:accessCondition>
<mods:subject>
<mods:topic>Relative cohomology</mods:topic>
</mods:subject>
<mods:subject>
<mods:topic>Trivial deformation</mods:topic>
</mods:subject>
<mods:subject>
<mods:topic>Lie superalgebra</mods:topic>
</mods:subject>
<mods:subject>
<mods:topic>Symbol</mods:topic>
</mods:subject>
<mods:subject>
<mods:topic>Cohomología relativa</mods:topic>
</mods:subject>
<mods:subject>
<mods:topic>Deformación trivial</mods:topic>
</mods:subject>
<mods:subject>
<mods:topic>Superalgebra de Lie</mods:topic>
</mods:subject>
<mods:subject>
<mods:topic>Símbolo</mods:topic>
</mods:subject>
<mods:titleInfo>
<mods:title>ɑʄʄ(1|1)-trivial deformations of ɑʄʄ (2|1)-modules of weighted densities on the superspace ℝ½</mods:title>
</mods:titleInfo>
<mods:genre>article</mods:genre>
</mods:mods>
</xmlData>
</mdWrap>
</dmdSec>
<amdSec ID="TMD_10662_10327">
<rightsMD ID="RIG_10662_10327">
<mdWrap MDTYPE="OTHER" MIMETYPE="text/plain" OTHERMDTYPE="DSpaceDepositLicense">
<binData>TElDRU5DSUEgREUgRElTVFJJQlVDSU9OIEVYQ0xVU0lWQSBERUwgUkVQT1NJVE9SSU8gSU5TVElUVUNJT05BTCBERSBMQSBVTklWRVJTSURBRCBERSBFWFRSRU1BRFVSQQoKCjEuIEFjZXB0YW5kbyBlc3RhIGxpY2VuY2lhLCB1c3RlZCAoZWwgYXV0b3IvZXMgbyBlbCBwcm9waWV0YXJpby9zIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvcikgZ2FyYW50aXphIGEgbGEgVW5pdmVyc2lkYWQgZGUgRXh0cmVtYWR1cmEgZWwgZGVyZWNobyBubyBleGNsdXNpdm8gZGUgYXJjaGl2YXIsIHJlcHJvZHVjaXIsIGNvbnZlcnRpciAoY29tbyBzZSBkZWZpbmUgbWkgdHJhYmFqbyksIGNvbXVuaWNhciB5L28gZGlzdHJpYnVpciBzdSBkb2N1bWVudG8gbXVuZGlhbG1lbnRlIGVuIGZvcm1hdG8gZWxlY3Ryw7NuaWNvLgogICAgCjIuIFRhbWJpw6luIGVzdMOhIGRlIGFjdWVyZG8gY29uIHF1ZSBsYSBVbml2ZXJzaWRhZCBkZSBFeHRyZW1hZHVyYSBwdWVkYSBjb25zZXJ2YXIgbcOhcyBkZSB1bmEgY29waWEgZGUgZXN0ZSBkb2N1bWVudG8geSwgc2luIGFsdGVyYXIgc3UgY29udGVuaWRvLCBjb252ZXJ0aXJsbyBhIGN1YWxxdWllciBmb3JtYXRvIGRlIGZpY2hlcm8sIG1lZGlvIG8gc29wb3J0ZSwgcGFyYSBwcm9ww7NzaXRvcyBkZSBzZWd1cmlkYWQsIHByZXNlcnZhY2nDs24geSBhY2Nlc28uCiAgICAKICAgIDMuIERlY2xhcmEgcXVlIGVsIGRvY3VtZW50byBlcyB1biB0cmFiYWpvIG9yaWdpbmFsIHN1eW8geS9vIHF1ZSB0aWVuZSBlbCBkZXJlY2hvIHBhcmEgb3RvcmdhciBsb3MgZGVyZWNob3MgY29udGVuaWRvcyBlbiBlc3RhIGxpY2VuY2lhLiBUYW1iacOpbiBkZWNsYXJhIHF1ZSBzdSBkb2N1bWVudG8gbm8gaW5mcmluZ2UsIGVuIHRhbnRvIGVuIGN1YW50byBsZSBzZWEgcG9zaWJsZSBzYWJlciwgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGRlIG5pbmd1bmEgb3RyYSBwZXJzb25hIG8gZW50aWRhZC4KICAgIAogICAgNC4gU2kgZWwgZG9jdW1lbnRvIGNvbnRpZW5lIG1hdGVyaWFsZXMgZGUgbG9zIGN1YWxlcyBubyB0aWVuZSBsb3MgZGVyZWNob3MgZGUgYXV0b3IsIGRlY2xhcmEgcXVlIGhhIG9idGVuaWRvIGVsIHBlcm1pc28gc2luIHJlc3RyaWNjacOzbiBkZWwgcHJvcGlldGFyaW8gZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHBhcmEgb3RvcmdhciBhIGxhIFVuaXZlcnNpZGFkIGRlIEV4dHJlbWFkdXJhIGxvcyBkZXJlY2hvcyByZXF1ZXJpZG9zIHBvciBlc3RhIGxpY2VuY2lhLCB5IHF1ZSBlc2UgbWF0ZXJpYWwgY3V5b3MgZGVyZWNob3Mgc29uIGRlIHRlcmNlcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIHkgcmVjb25vY2lkbyBlbiBlbCB0ZXh0byBvIGNvbnRlbmlkbyBkZWwgZG9jdW1lbnRvIGVudHJlZ2Fkby4KICAgIAogICAgNS4gU2kgZWwgZG9jdW1lbnRvIHNlIGJhc2EgZW4gdW5hIG9icmEgcXVlIGhhIHNpZG8gcGF0cm9jaW5hZGEgbyBhcG95YWRhIHBvciB1bmEgYWdlbmNpYSB1IG9yZ2FuaXphY2nDs24gZGlmZXJlbnRlIGRlIGxhIFVuaXZlcnNpZGFkIGRlIEV4dHJlbWFkdXJhLCBzZSBwcmVzdXBvbmUgcXVlIHNlIGhhIGN1bXBsaWRvIGNvbiBjdWFscXVpZXIgZGVyZWNobyBkZSByZXZpc2nDs24gb3RyYXMgb2JsaWdhY2lvbmVzIHJlcXVlcmlkYXMgcG9yIGVzdGUgY29udHJhdG8gbyBhY3VlcmRvLgogICAgCiAgICA2LiBMYSBVbml2ZXJzaWRhZCBkZSBFeHRyZW1hZHVyYSBpZGVudGlmaWNhcsOhIGNsYXJhbWVudGUgc3UvcyBub21icmUvcyBjb21vIGVsL2xvcyBhdXRvci9lcyBvIHByb3BpZXRhcmlvL3MgZGUgbG9zIGRlcmVjaG9zIGRlbCBkb2N1bWVudG8sIHkgbm8gaGFyw6EgbmluZ3VuYSBhbHRlcmFjacOzbiBkZSBzdSBkb2N1bWVudG8gZGlmZXJlbnRlIGEgbGFzIHBlcm1pdGlkYXMgZW4gZXN0YSBsaWNlbmNpYS4K</binData>
</mdWrap>
</rightsMD>
</amdSec>
<amdSec ID="FO_10662_10327_1">
<techMD ID="TECH_O_10662_10327_1">
<mdWrap MDTYPE="PREMIS">
<xmlData schemaLocation="http://www.loc.gov/standards/premis http://www.loc.gov/standards/premis/PREMIS-v1-0.xsd">
<premis:premis>
<premis:object>
<premis:objectIdentifier>
<premis:objectIdentifierType>URL</premis:objectIdentifierType>
<premis:objectIdentifierValue>https://dehesa.unex.es:8443/bitstream/10662/10327/1/2605-5686_34_2_269.pdf</premis:objectIdentifierValue>
</premis:objectIdentifier>
<premis:objectCategory>File</premis:objectCategory>
<premis:objectCharacteristics>
<premis:fixity>
<premis:messageDigestAlgorithm>MD5</premis:messageDigestAlgorithm>
<premis:messageDigest>62b59f60ce20aa2868e805c7e611e12d</premis:messageDigest>
</premis:fixity>
<premis:size>396315</premis:size>
<premis:format>
<premis:formatDesignation>
<premis:formatName>application/pdf</premis:formatName>
</premis:formatDesignation>
</premis:format>
</premis:objectCharacteristics>
<premis:originalName>2605-5686_34_2_269.pdf</premis:originalName>
</premis:object>
</premis:premis>
</xmlData>
</mdWrap>
</techMD>
</amdSec>
<amdSec ID="FT_10662_10327_4">
<techMD ID="TECH_T_10662_10327_4">
<mdWrap MDTYPE="PREMIS">
<xmlData schemaLocation="http://www.loc.gov/standards/premis http://www.loc.gov/standards/premis/PREMIS-v1-0.xsd">
<premis:premis>
<premis:object>
<premis:objectIdentifier>
<premis:objectIdentifierType>URL</premis:objectIdentifierType>
<premis:objectIdentifierValue>https://dehesa.unex.es:8443/bitstream/10662/10327/4/2605-5686_34_2_269.pdf.txt</premis:objectIdentifierValue>
</premis:objectIdentifier>
<premis:objectCategory>File</premis:objectCategory>
<premis:objectCharacteristics>
<premis:fixity>
<premis:messageDigestAlgorithm>MD5</premis:messageDigestAlgorithm>
<premis:messageDigest>60880128d8a706288b37a90dd492510d</premis:messageDigest>
</premis:fixity>
<premis:size>26410</premis:size>
<premis:format>
<premis:formatDesignation>
<premis:formatName>text/plain</premis:formatName>
</premis:formatDesignation>
</premis:format>
</premis:objectCharacteristics>
<premis:originalName>2605-5686_34_2_269.pdf.txt</premis:originalName>
</premis:object>
</premis:premis>
</xmlData>
</mdWrap>
</techMD>
</amdSec>
<fileSec>
<fileGrp USE="ORIGINAL">
<file ADMID="FO_10662_10327_1" CHECKSUM="62b59f60ce20aa2868e805c7e611e12d" CHECKSUMTYPE="MD5" GROUPID="GROUP_BITSTREAM_10662_10327_1" ID="BITSTREAM_ORIGINAL_10662_10327_1" MIMETYPE="application/pdf" SEQ="1" SIZE="396315">
</file>
</fileGrp>
<fileGrp USE="TEXT">
<file ADMID="FT_10662_10327_4" CHECKSUM="60880128d8a706288b37a90dd492510d" CHECKSUMTYPE="MD5" GROUPID="GROUP_BITSTREAM_10662_10327_4" ID="BITSTREAM_TEXT_10662_10327_4" MIMETYPE="text/plain" SEQ="4" SIZE="26410">
</file>
</fileGrp>
</fileSec>
<structMap LABEL="DSpace Object" TYPE="LOGICAL">
<div ADMID="DMD_10662_10327" TYPE="DSpace Object Contents">
<div TYPE="DSpace BITSTREAM">
</div>
</div>
</structMap>
</mets>
<?xml version="1.0" encoding="UTF-8" ?>
<mods:mods schemaLocation="http://www.loc.gov/mods/v3 http://www.loc.gov/standards/mods/v3/mods-3-1.xsd">
<mods:name>
<mods:namePart>Laraiedh, Ismail</mods:namePart>
</mods:name>
<mods:extension>
<mods:dateAvailable encoding="iso8601">2020-02-13T12:55:02Z</mods:dateAvailable>
</mods:extension>
<mods:extension>
<mods:dateAccessioned encoding="iso8601">2020-02-13T12:55:02Z</mods:dateAccessioned>
</mods:extension>
<mods:originInfo>
<mods:dateIssued encoding="iso8601">2019</mods:dateIssued>
</mods:originInfo>
<mods:identifier type="uri">http://hdl.handle.net/10662/10327</mods:identifier>
<mods:identifier type="bibliographicCitation">LARAIEDH, I. (2019). ɑʄʄ (1|1)-trivial deformations of ɑʄʄ (2|1)-modules of weighted densities on the superspace ℝ½. Extracta Mathematicae 34 (2), 269-283. E-ISSN 2605-5686</mods:identifier>
<mods:identifier type="doi">10.17398/2605-5686.34.2.269</mods:identifier>
<mods:identifier type="publicationtitle">Extracta Mathematicae</mods:identifier>
<mods:identifier type="publicationissue">2</mods:identifier>
<mods:identifier type="publicationfirstpage">269</mods:identifier>
<mods:identifier type="publicationlastpage">283</mods:identifier>
<mods:identifier type="publicationvolume">34</mods:identifier>
<mods:identifier type="e-issn">2605-5686</mods:identifier>
<mods:abstract>Over the (1|2)-dimensional real superspace, we study ɑʄʄ(1|1)-trivial deformations of the action of the affine Lie superalgebra ɑʄʄ (2|1) on the direct sum of the superspaces of weighted densities. We compute the necessary and sufficient integrability conditions of a given infinitesimal deformation of this action and we prove that any formal deformation is equivalent to its infinitisemal part.</mods:abstract>
<mods:language>
<mods:languageTerm>eng</mods:languageTerm>
</mods:language>
<mods:accessCondition type="useAndReproduction">http://creativecommons.org/licenses/by-nc-nd/4.0/</mods:accessCondition>
<mods:accessCondition type="useAndReproduction">openAccess</mods:accessCondition>
<mods:accessCondition type="useAndReproduction">Attribution-NonCommercial-NoDerivatives 4.0 International</mods:accessCondition>
<mods:subject>
<mods:topic>Relative cohomology</mods:topic>
</mods:subject>
<mods:subject>
<mods:topic>Trivial deformation</mods:topic>
</mods:subject>
<mods:subject>
<mods:topic>Lie superalgebra</mods:topic>
</mods:subject>
<mods:subject>
<mods:topic>Symbol</mods:topic>
</mods:subject>
<mods:subject>
<mods:topic>Cohomología relativa</mods:topic>
</mods:subject>
<mods:subject>
<mods:topic>Deformación trivial</mods:topic>
</mods:subject>
<mods:subject>
<mods:topic>Superalgebra de Lie</mods:topic>
</mods:subject>
<mods:subject>
<mods:topic>Símbolo</mods:topic>
</mods:subject>
<mods:titleInfo>
<mods:title>ɑʄʄ(1|1)-trivial deformations of ɑʄʄ (2|1)-modules of weighted densities on the superspace ℝ½</mods:title>
</mods:titleInfo>
<mods:genre>article</mods:genre>
</mods:mods>
<?xml version="1.0" encoding="UTF-8" ?>
<atom:entry schemaLocation="http://www.w3.org/2005/Atom http://www.kbcafe.com/rss/atom.xsd.xml">
<atom:id>http://hdl.handle.net/10662/10327/ore.xml</atom:id>
<atom:published>2020-02-13T12:55:02Z</atom:published>
<atom:updated>2020-02-13T12:55:02Z</atom:updated>
<atom:source>
<atom:generator>Dehesa. Repositorio Institucional de la Universidad de Extremadura</atom:generator>
</atom:source>
<atom:title>ɑʄʄ(1|1)-trivial deformations of ɑʄʄ (2|1)-modules of weighted densities on the superspace ℝ½</atom:title>
<atom:author>
<atom:name>Laraiedh, Ismail</atom:name>
</atom:author>
<oreatom:triples>
<rdf:Description about="http://hdl.handle.net/10662/10327/ore.xml#atom">
<dcterms:modified>2020-02-13T12:55:02Z</dcterms:modified>
</rdf:Description>
<rdf:Description about="https://dehesa.unex.es:8443/bitstream/10662/10327/1/2605-5686_34_2_269.pdf">
<dcterms:description>ORIGINAL</dcterms:description>
</rdf:Description>
<rdf:Description about="https://dehesa.unex.es:8443/bitstream/10662/10327/2/license_rdf">
<dcterms:description>CC-LICENSE</dcterms:description>
</rdf:Description>
<rdf:Description about="https://dehesa.unex.es:8443/bitstream/10662/10327/3/license.txt">
<dcterms:description>LICENSE</dcterms:description>
</rdf:Description>
<rdf:Description about="https://dehesa.unex.es:8443/bitstream/10662/10327/4/2605-5686_34_2_269.pdf.txt">
<dcterms:description>TEXT</dcterms:description>
</rdf:Description>
<rdf:Description about="https://dehesa.unex.es:8443/bitstream/10662/10327/5/2605-5686_34_2_269.pdf.jpg">
<dcterms:description>THUMBNAIL</dcterms:description>
</rdf:Description>
</oreatom:triples>
</atom:entry>
<?xml version="1.0" encoding="UTF-8" ?>
<qdc:qualifieddc schemaLocation="http://purl.org/dc/elements/1.1/ http://dublincore.org/schemas/xmls/qdc/2006/01/06/dc.xsd http://purl.org/dc/terms/ http://dublincore.org/schemas/xmls/qdc/2006/01/06/dcterms.xsd http://dspace.org/qualifieddc/ http://www.ukoln.ac.uk/metadata/dcmi/xmlschema/qualifieddc.xsd">
<dc:title>ɑʄʄ(1|1)-trivial deformations of ɑʄʄ (2|1)-modules of weighted densities on the superspace ℝ½</dc:title>
<dc:creator>Laraiedh, Ismail</dc:creator>
<dc:contributor>Université de Sfax. Túnez</dc:contributor>
<dc:contributor>Shaqra University. Saudi Arabia</dc:contributor>
<dc:subject>Relative cohomology</dc:subject>
<dc:subject>Trivial deformation</dc:subject>
<dc:subject>Lie superalgebra</dc:subject>
<dc:subject>Symbol</dc:subject>
<dc:subject>Cohomología relativa</dc:subject>
<dc:subject>Deformación trivial</dc:subject>
<dc:subject>Superalgebra de Lie</dc:subject>
<dc:subject>Símbolo</dc:subject>
<dcterms:abstract>Over the (1|2)-dimensional real superspace, we study ɑʄʄ(1|1)-trivial deformations of the action of the affine Lie superalgebra ɑʄʄ (2|1) on the direct sum of the superspaces of weighted densities. We compute the necessary and sufficient integrability conditions of a given infinitesimal deformation of this action and we prove that any formal deformation is equivalent to its infinitisemal part.</dcterms:abstract>
<dcterms:dateAccepted>2020-02-13T12:55:02Z</dcterms:dateAccepted>
<dcterms:available>2020-02-13T12:55:02Z</dcterms:available>
<dcterms:created>2020-02-13T12:55:02Z</dcterms:created>
<dcterms:issued>2019</dcterms:issued>
<dc:type>article</dc:type>
<dc:identifier>http://hdl.handle.net/10662/10327</dc:identifier>
<dc:identifier>LARAIEDH, I. (2019). ɑʄʄ (1|1)-trivial deformations of ɑʄʄ (2|1)-modules of weighted densities on the superspace ℝ½. Extracta Mathematicae 34 (2), 269-283. E-ISSN 2605-5686</dc:identifier>
<dc:identifier>10.17398/2605-5686.34.2.269</dc:identifier>
<dc:identifier>Extracta Mathematicae</dc:identifier>
<dc:identifier>2</dc:identifier>
<dc:identifier>269</dc:identifier>
<dc:identifier>283</dc:identifier>
<dc:identifier>34</dc:identifier>
<dc:identifier>2605-5686</dc:identifier>
<dc:language>eng</dc:language>
<dc:rights>http://creativecommons.org/licenses/by-nc-nd/4.0/</dc:rights>
<dc:rights>openAccess</dc:rights>
<dc:rights>Attribution-NonCommercial-NoDerivatives 4.0 International</dc:rights>
<dc:publisher>Universidad de Extremadura</dc:publisher>
</qdc:qualifieddc>
<?xml version="1.0" encoding="UTF-8" ?>
<rdf:RDF schemaLocation="http://www.openarchives.org/OAI/2.0/rdf/ http://www.openarchives.org/OAI/2.0/rdf.xsd">
<ow:Publication about="oai:dehesa.unex.es:10662/10327">
<dc:title>ɑʄʄ(1|1)-trivial deformations of ɑʄʄ (2|1)-modules of weighted densities on the superspace ℝ½</dc:title>
<dc:creator>Laraiedh, Ismail</dc:creator>
<dc:contributor>Université de Sfax. Túnez</dc:contributor>
<dc:contributor>Shaqra University. Saudi Arabia</dc:contributor>
<dc:subject>Relative cohomology</dc:subject>
<dc:subject>Trivial deformation</dc:subject>
<dc:subject>Lie superalgebra</dc:subject>
<dc:subject>Symbol</dc:subject>
<dc:subject>Cohomología relativa</dc:subject>
<dc:subject>Deformación trivial</dc:subject>
<dc:subject>Superalgebra de Lie</dc:subject>
<dc:subject>Símbolo</dc:subject>
<dc:description>Over the (1|2)-dimensional real superspace, we study ɑʄʄ(1|1)-trivial deformations of the action of the affine Lie superalgebra ɑʄʄ (2|1) on the direct sum of the superspaces of weighted densities. We compute the necessary and sufficient integrability conditions of a given infinitesimal deformation of this action and we prove that any formal deformation is equivalent to its infinitisemal part.</dc:description>
<dc:date>2020-02-13T12:55:02Z</dc:date>
<dc:date>2020-02-13T12:55:02Z</dc:date>
<dc:date>2019</dc:date>
<dc:type>article</dc:type>
<dc:identifier>http://hdl.handle.net/10662/10327</dc:identifier>
<dc:identifier>LARAIEDH, I. (2019). ɑʄʄ (1|1)-trivial deformations of ɑʄʄ (2|1)-modules of weighted densities on the superspace ℝ½. Extracta Mathematicae 34 (2), 269-283. E-ISSN 2605-5686</dc:identifier>
<dc:identifier>10.17398/2605-5686.34.2.269</dc:identifier>
<dc:identifier>Extracta Mathematicae</dc:identifier>
<dc:identifier>2</dc:identifier>
<dc:identifier>269</dc:identifier>
<dc:identifier>283</dc:identifier>
<dc:identifier>34</dc:identifier>
<dc:identifier>2605-5686</dc:identifier>
<dc:language>eng</dc:language>
<dc:rights>http://creativecommons.org/licenses/by-nc-nd/4.0/</dc:rights>
<dc:rights>openAccess</dc:rights>
<dc:rights>Attribution-NonCommercial-NoDerivatives 4.0 International</dc:rights>
<dc:publisher>Universidad de Extremadura</dc:publisher>
</ow:Publication>
</rdf:RDF>
<?xml version="1.0" encoding="UTF-8" ?>
<metadata schemaLocation="http://www.lyncode.com/xoai http://www.lyncode.com/xsd/xoai.xsd">
<element name="dc">
<element name="contributor">
<element name="author">
<element name="none">
<field name="value">Laraiedh, Ismail</field>
<field name="authority">6837c9d0-c602-4621-a633-9f961134df25</field>
<field name="confidence">-1</field>
</element>
</element>
<element name="affiliation">
<element name="fr_FR">
<field name="value">Université de Sfax. Túnez</field>
</element>
<element name="en_US">
<field name="value">Shaqra University. Saudi Arabia</field>
</element>
</element>
</element>
<element name="date">
<element name="accessioned">
<element name="none">
<field name="value">2020-02-13T12:55:02Z</field>
</element>
</element>
<element name="available">
<element name="none">
<field name="value">2020-02-13T12:55:02Z</field>
</element>
</element>
<element name="issued">
<element name="none">
<field name="value">2019</field>
</element>
</element>
</element>
<element name="identifier">
<element name="uri">
<element name="none">
<field name="value">http://hdl.handle.net/10662/10327</field>
</element>
</element>
<element name="bibliographicCitation">
<element name="es_ES">
<field name="value">LARAIEDH, I. (2019). ɑʄʄ (1|1)-trivial deformations of ɑʄʄ (2|1)-modules of weighted densities on the superspace ℝ½. Extracta Mathematicae 34 (2), 269-283. E-ISSN 2605-5686</field>
</element>
</element>
<element name="doi">
<element name="none">
<field name="value">10.17398/2605-5686.34.2.269</field>
</element>
</element>
<element name="publicationtitle">
<element name="es_ES">
<field name="value">Extracta Mathematicae</field>
</element>
</element>
<element name="publicationissue">
<element name="es_ES">
<field name="value">2</field>
</element>
</element>
<element name="publicationfirstpage">
<element name="es_ES">
<field name="value">269</field>
</element>
</element>
<element name="publicationlastpage">
<element name="es_ES">
<field name="value">283</field>
</element>
</element>
<element name="publicationvolume">
<element name="es_ES">
<field name="value">34</field>
</element>
</element>
<element name="e-issn">
<element name="none">
<field name="value">2605-5686</field>
</element>
</element>
</element>
<element name="description">
<element name="abstract">
<element name="es_ES">
<field name="value">Over the (1|2)-dimensional real superspace, we study ɑʄʄ(1|1)-trivial deformations of the action of the affine Lie superalgebra ɑʄʄ (2|1) on the direct sum of the superspaces of weighted densities. We compute the necessary and sufficient integrability conditions of a given infinitesimal deformation of this action and we prove that any formal deformation is equivalent to its infinitisemal part.</field>
</element>
</element>
<element name="version">
<element name="es_ES">
<field name="value">peerReviewed</field>
</element>
</element>
</element>
<element name="format">
<element name="extent">
<element name="es_ES">
<field name="value">15 p.</field>
</element>
</element>
<element name="mimetype">
<element name="en_US">
<field name="value">application/pdf</field>
</element>
</element>
</element>
<element name="language">
<element name="iso">
<element name="es_ES">
<field name="value">eng</field>
</element>
</element>
</element>
<element name="publisher">
<element name="es_ES">
<field name="value">Universidad de Extremadura</field>
</element>
</element>
<element name="rights">
<element name="*">
<field name="value">Attribution-NonCommercial-NoDerivatives 4.0 International</field>
</element>
<element name="uri">
<element name="*">
<field name="value">http://creativecommons.org/licenses/by-nc-nd/4.0/</field>
</element>
</element>
<element name="accessRights">
<element name="es_ES">
<field name="value">openAccess</field>
</element>
</element>
</element>
<element name="subject">
<element name="es_ES">
<field name="value">Relative cohomology</field>
<field name="value">Trivial deformation</field>
<field name="value">Lie superalgebra</field>
<field name="value">Symbol</field>
<field name="value">Cohomología relativa</field>
<field name="value">Deformación trivial</field>
<field name="value">Superalgebra de Lie</field>
<field name="value">Símbolo</field>
</element>
<element name="unesco">
<element name="es_ES">
<field name="value">1201.09 Álgebra de Lie</field>
<field name="value">1204.04 Geometría Diferencial</field>
<field name="value">1210.02 Cohomología</field>
</element>
</element>
</element>
<element name="title">
<element name="es_ES">
<field name="value">ɑʄʄ(1|1)-trivial deformations of ɑʄʄ (2|1)-modules of weighted densities on the superspace ℝ½</field>
</element>
</element>
<element name="type">
<element name="es_ES">
<field name="value">article</field>
</element>
<element name="version">
<element name="es_ES">
<field name="value">publishedVersion</field>
</element>
</element>
</element>
</element>
<element name="europeana">
<element name="type">
<element name="en_US">
<field name="value">TEXT</field>
</element>
</element>
<element name="dataProvider">
<element name="es_ES">
<field name="value">Universidad de Extremadura. España</field>
</element>
</element>
</element>
<element name="bundles">
<element name="bundle">
<field name="name">ORIGINAL</field>
<element name="bitstreams">
<element name="bitstream">
<field name="name">2605-5686_34_2_269.pdf</field>
<field name="originalName">2605-5686_34_2_269.pdf</field>
<field name="format">application/pdf</field>
<field name="size">396315</field>
<field name="url">https://dehesa.unex.es:8443/bitstream/10662/10327/1/2605-5686_34_2_269.pdf</field>
<field name="checksum">62b59f60ce20aa2868e805c7e611e12d</field>
<field name="checksumAlgorithm">MD5</field>
<field name="sid">1</field>
</element>
</element>
</element>
<element name="bundle">
<field name="name">CC-LICENSE</field>
<element name="bitstreams">
<element name="bitstream">
<field name="name">license_rdf</field>
<field name="originalName">license_rdf</field>
<field name="format">application/rdf+xml; charset=utf-8</field>
<field name="size">804</field>
<field name="url">https://dehesa.unex.es:8443/bitstream/10662/10327/2/license_rdf</field>
<field name="checksum">c1efe8e24d7281448e873be30ea326ff</field>
<field name="checksumAlgorithm">MD5</field>
<field name="sid">2</field>
</element>
</element>
</element>
<element name="bundle">
<field name="name">LICENSE</field>
<element name="bitstreams">
<element name="bitstream">
<field name="name">license.txt</field>
<field name="originalName">license.txt</field>
<field name="format">text/plain; charset=utf-8</field>
<field name="size">1899</field>
<field name="url">https://dehesa.unex.es:8443/bitstream/10662/10327/3/license.txt</field>
<field name="checksum">ebbbfafb28110256fea649de2016da1e</field>
<field name="checksumAlgorithm">MD5</field>
<field name="sid">3</field>
</element>
</element>
</element>
<element name="bundle">
<field name="name">TEXT</field>
<element name="bitstreams">
<element name="bitstream">
<field name="name">2605-5686_34_2_269.pdf.txt</field>
<field name="originalName">2605-5686_34_2_269.pdf.txt</field>
<field name="description">Extracted text</field>
<field name="format">text/plain</field>
<field name="size">26410</field>
<field name="url">https://dehesa.unex.es:8443/bitstream/10662/10327/4/2605-5686_34_2_269.pdf.txt</field>
<field name="checksum">60880128d8a706288b37a90dd492510d</field>
<field name="checksumAlgorithm">MD5</field>
<field name="sid">4</field>
</element>
</element>
</element>
<element name="bundle">
<field name="name">THUMBNAIL</field>
<element name="bitstreams">
<element name="bitstream">
<field name="name">2605-5686_34_2_269.pdf.jpg</field>
<field name="originalName">2605-5686_34_2_269.pdf.jpg</field>
<field name="description">Generated Thumbnail</field>
<field name="format">image/jpeg</field>
<field name="size">1442</field>
<field name="url">https://dehesa.unex.es:8443/bitstream/10662/10327/5/2605-5686_34_2_269.pdf.jpg</field>
<field name="checksum">6507691b22ed45103b1a8b1203b70ebe</field>
<field name="checksumAlgorithm">MD5</field>
<field name="sid">5</field>
</element>
</element>
</element>
</element>
<element name="others">
<field name="handle">10662/10327</field>
<field name="identifier">oai:dehesa.unex.es:10662/10327</field>
<field name="lastModifyDate">2021-06-16 12:39:37.068</field>
</element>
<element name="repository">
<field name="name">Dehesa. Repositorio Institucional de la Universidad de Extremadura</field>
<field name="mail">dehesa@unex.es</field>
</element>
<element name="license">
<field name="bin">TElDRU5DSUEgREUgRElTVFJJQlVDSU9OIEVYQ0xVU0lWQSBERUwgUkVQT1NJVE9SSU8gSU5TVElUVUNJT05BTCBERSBMQSBVTklWRVJTSURBRCBERSBFWFRSRU1BRFVSQQoKCjEuIEFjZXB0YW5kbyBlc3RhIGxpY2VuY2lhLCB1c3RlZCAoZWwgYXV0b3IvZXMgbyBlbCBwcm9waWV0YXJpby9zIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvcikgZ2FyYW50aXphIGEgbGEgVW5pdmVyc2lkYWQgZGUgRXh0cmVtYWR1cmEgZWwgZGVyZWNobyBubyBleGNsdXNpdm8gZGUgYXJjaGl2YXIsIHJlcHJvZHVjaXIsIGNvbnZlcnRpciAoY29tbyBzZSBkZWZpbmUgbWkgdHJhYmFqbyksIGNvbXVuaWNhciB5L28gZGlzdHJpYnVpciBzdSBkb2N1bWVudG8gbXVuZGlhbG1lbnRlIGVuIGZvcm1hdG8gZWxlY3Ryw7NuaWNvLgogICAgCjIuIFRhbWJpw6luIGVzdMOhIGRlIGFjdWVyZG8gY29uIHF1ZSBsYSBVbml2ZXJzaWRhZCBkZSBFeHRyZW1hZHVyYSBwdWVkYSBjb25zZXJ2YXIgbcOhcyBkZSB1bmEgY29waWEgZGUgZXN0ZSBkb2N1bWVudG8geSwgc2luIGFsdGVyYXIgc3UgY29udGVuaWRvLCBjb252ZXJ0aXJsbyBhIGN1YWxxdWllciBmb3JtYXRvIGRlIGZpY2hlcm8sIG1lZGlvIG8gc29wb3J0ZSwgcGFyYSBwcm9ww7NzaXRvcyBkZSBzZWd1cmlkYWQsIHByZXNlcnZhY2nDs24geSBhY2Nlc28uCiAgICAKICAgIDMuIERlY2xhcmEgcXVlIGVsIGRvY3VtZW50byBlcyB1biB0cmFiYWpvIG9yaWdpbmFsIHN1eW8geS9vIHF1ZSB0aWVuZSBlbCBkZXJlY2hvIHBhcmEgb3RvcmdhciBsb3MgZGVyZWNob3MgY29udGVuaWRvcyBlbiBlc3RhIGxpY2VuY2lhLiBUYW1iacOpbiBkZWNsYXJhIHF1ZSBzdSBkb2N1bWVudG8gbm8gaW5mcmluZ2UsIGVuIHRhbnRvIGVuIGN1YW50byBsZSBzZWEgcG9zaWJsZSBzYWJlciwgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGRlIG5pbmd1bmEgb3RyYSBwZXJzb25hIG8gZW50aWRhZC4KICAgIAogICAgNC4gU2kgZWwgZG9jdW1lbnRvIGNvbnRpZW5lIG1hdGVyaWFsZXMgZGUgbG9zIGN1YWxlcyBubyB0aWVuZSBsb3MgZGVyZWNob3MgZGUgYXV0b3IsIGRlY2xhcmEgcXVlIGhhIG9idGVuaWRvIGVsIHBlcm1pc28gc2luIHJlc3RyaWNjacOzbiBkZWwgcHJvcGlldGFyaW8gZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHBhcmEgb3RvcmdhciBhIGxhIFVuaXZlcnNpZGFkIGRlIEV4dHJlbWFkdXJhIGxvcyBkZXJlY2hvcyByZXF1ZXJpZG9zIHBvciBlc3RhIGxpY2VuY2lhLCB5IHF1ZSBlc2UgbWF0ZXJpYWwgY3V5b3MgZGVyZWNob3Mgc29uIGRlIHRlcmNlcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIHkgcmVjb25vY2lkbyBlbiBlbCB0ZXh0byBvIGNvbnRlbmlkbyBkZWwgZG9jdW1lbnRvIGVudHJlZ2Fkby4KICAgIAogICAgNS4gU2kgZWwgZG9jdW1lbnRvIHNlIGJhc2EgZW4gdW5hIG9icmEgcXVlIGhhIHNpZG8gcGF0cm9jaW5hZGEgbyBhcG95YWRhIHBvciB1bmEgYWdlbmNpYSB1IG9yZ2FuaXphY2nDs24gZGlmZXJlbnRlIGRlIGxhIFVuaXZlcnNpZGFkIGRlIEV4dHJlbWFkdXJhLCBzZSBwcmVzdXBvbmUgcXVlIHNlIGhhIGN1bXBsaWRvIGNvbiBjdWFscXVpZXIgZGVyZWNobyBkZSByZXZpc2nDs24gb3RyYXMgb2JsaWdhY2lvbmVzIHJlcXVlcmlkYXMgcG9yIGVzdGUgY29udHJhdG8gbyBhY3VlcmRvLgogICAgCiAgICA2LiBMYSBVbml2ZXJzaWRhZCBkZSBFeHRyZW1hZHVyYSBpZGVudGlmaWNhcsOhIGNsYXJhbWVudGUgc3UvcyBub21icmUvcyBjb21vIGVsL2xvcyBhdXRvci9lcyBvIHByb3BpZXRhcmlvL3MgZGUgbG9zIGRlcmVjaG9zIGRlbCBkb2N1bWVudG8sIHkgbm8gaGFyw6EgbmluZ3VuYSBhbHRlcmFjacOzbiBkZSBzdSBkb2N1bWVudG8gZGlmZXJlbnRlIGEgbGFzIHBlcm1pdGlkYXMgZW4gZXN0YSBsaWNlbmNpYS4K</field>
</element>
</metadata>