<?xml version="1.0" encoding="UTF-8" ?>
<oai_dc:dc schemaLocation="http://www.openarchives.org/OAI/2.0/oai_dc/ http://www.openarchives.org/OAI/2.0/oai_dc.xsd">
<dc:title>A light method for data generation: a combination of Markov Chains and Word Embeddings.</dc:title>
<dc:title>Un método ligero de generación de datos: combinación entre Cadenas de Markov y Word Embeddings.</dc:title>
<dc:creator>Martínez García, Eva</dc:creator>
<dc:creator>Nogales Moyano, Alberto</dc:creator>
<dc:creator>Morales Escudero, Javier</dc:creator>
<dc:creator>García Tejedor, Álvaro José</dc:creator>
<dc:subject>Generation</dc:subject>
<dc:subject>Hybrid</dc:subject>
<dc:subject>Markov Chains</dc:subject>
<dc:subject>Embeddings</dc:subject>
<dc:subject>Similarity</dc:subject>
<dc:description>Most of the current state-of-the-art Natural Language Processing (NLP) techniques are highly data-dependent. A significant amount of data is required for their training, and in some scenarios data is scarce. We present a hybrid method to generate new sentences for augmenting the training data. Our approach takes advantage of the combination of Markov Chains and word embeddings to produce high-quality data similar to an initial dataset. In contrast to other neural-based generative methods, it does not need a high amount of training data. Results show how our approach can generate useful data for NLP tools. In particular, we validate our approach by building Transformer-based Language Models using data from three different domains in the context of enriching general purpose chatbots.</dc:description>
<dc:description>post-print</dc:description>
<dc:description>1,74 MB</dc:description>
<dc:date>2021-06-16T08:19:29Z</dc:date>
<dc:date>2021-06-16T08:19:29Z</dc:date>
<dc:date>2020</dc:date>
<dc:type>article</dc:type>
<dc:identifier>1135-5948</dc:identifier>
<dc:identifier>http://hdl.handle.net/10641/2327</dc:identifier>
<dc:identifier>10.26342/2020-64-10</dc:identifier>
<dc:language>eng</dc:language>
<dc:relation>http://journal.sepln.org/sepln/ojs/ojs/index.php/pln/article/view/6199</dc:relation>
<dc:rights>Atribución-NoComercial-SinDerivadas 3.0 España</dc:rights>
<dc:rights>http://creativecommons.org/licenses/by-nc-nd/3.0/es/</dc:rights>
<dc:rights>openAccess</dc:rights>
<dc:publisher>Procesamiento del Lenguaje Natural</dc:publisher>
</oai_dc:dc>
<?xml version="1.0" encoding="UTF-8" ?>
<d:DIDL schemaLocation="urn:mpeg:mpeg21:2002:02-DIDL-NS http://standards.iso.org/ittf/PubliclyAvailableStandards/MPEG-21_schema_files/did/didl.xsd">
<d:DIDLInfo>
<dcterms:created schemaLocation="http://purl.org/dc/terms/ http://dublincore.org/schemas/xmls/qdc/dcterms.xsd">2021-06-16T08:19:29Z</dcterms:created>
</d:DIDLInfo>
<d:Item id="hdl_10641_2327">
<d:Descriptor>
<d:Statement mimeType="application/xml; charset=utf-8">
<dii:Identifier schemaLocation="urn:mpeg:mpeg21:2002:01-DII-NS http://standards.iso.org/ittf/PubliclyAvailableStandards/MPEG-21_schema_files/dii/dii.xsd">urn:hdl:10641/2327</dii:Identifier>
</d:Statement>
</d:Descriptor>
<d:Descriptor>
<d:Statement mimeType="application/xml; charset=utf-8">
<oai_dc:dc schemaLocation="http://www.openarchives.org/OAI/2.0/oai_dc/ http://www.openarchives.org/OAI/2.0/oai_dc.xsd">
<dc:title>A light method for data generation: a combination of Markov Chains and Word Embeddings.</dc:title>
<dc:creator>Martínez García, Eva</dc:creator>
<dc:creator>Nogales Moyano, Alberto</dc:creator>
<dc:creator>Morales Escudero, Javier</dc:creator>
<dc:creator>García Tejedor, Álvaro José</dc:creator>
<dc:subject>Generation</dc:subject>
<dc:subject>Hybrid</dc:subject>
<dc:subject>Markov Chains</dc:subject>
<dc:subject>Embeddings</dc:subject>
<dc:subject>Similarity</dc:subject>
<dc:description>Most of the current state-of-the-art Natural Language Processing (NLP) techniques are highly data-dependent. A significant amount of data is required for their training, and in some scenarios data is scarce. We present a hybrid method to generate new sentences for augmenting the training data. Our approach takes advantage of the combination of Markov Chains and word embeddings to produce high-quality data similar to an initial dataset. In contrast to other neural-based generative methods, it does not need a high amount of training data. Results show how our approach can generate useful data for NLP tools. In particular, we validate our approach by building Transformer-based Language Models using data from three different domains in the context of enriching general purpose chatbots.</dc:description>
<dc:date>2021-06-16T08:19:29Z</dc:date>
<dc:date>2021-06-16T08:19:29Z</dc:date>
<dc:date>2020</dc:date>
<dc:type>article</dc:type>
<dc:identifier>1135-5948</dc:identifier>
<dc:identifier>http://hdl.handle.net/10641/2327</dc:identifier>
<dc:identifier>10.26342/2020-64-10</dc:identifier>
<dc:language>eng</dc:language>
<dc:relation>http://journal.sepln.org/sepln/ojs/ojs/index.php/pln/article/view/6199</dc:relation>
<dc:rights>http://creativecommons.org/licenses/by-nc-nd/3.0/es/</dc:rights>
<dc:rights>openAccess</dc:rights>
<dc:rights>Atribución-NoComercial-SinDerivadas 3.0 España</dc:rights>
<dc:publisher>Procesamiento del Lenguaje Natural</dc:publisher>
</oai_dc:dc>
</d:Statement>
</d:Descriptor>
<d:Component id="10641_2327_1">
</d:Component>
</d:Item>
</d:DIDL>
<?xml version="1.0" encoding="UTF-8" ?>
<dim:dim schemaLocation="http://www.dspace.org/xmlns/dspace/dim http://www.dspace.org/schema/dim.xsd">
<dim:field authority="e4a4adb9-fa58-4a27-b114-f07bbf623ff7" confidence="600" element="contributor" mdschema="dc" qualifier="author">Martínez García, Eva</dim:field>
<dim:field authority="209" confidence="600" element="contributor" mdschema="dc" qualifier="author">Nogales Moyano, Alberto</dim:field>
<dim:field authority="3c20c2c8-86d0-4953-8a3a-7290cdb9a0ba" confidence="600" element="contributor" mdschema="dc" qualifier="author">Morales Escudero, Javier</dim:field>
<dim:field authority="75" confidence="600" element="contributor" mdschema="dc" qualifier="author">García Tejedor, Álvaro José</dim:field>
<dim:field element="date" mdschema="dc" qualifier="accessioned">2021-06-16T08:19:29Z</dim:field>
<dim:field element="date" mdschema="dc" qualifier="available">2021-06-16T08:19:29Z</dim:field>
<dim:field element="date" mdschema="dc" qualifier="issued">2020</dim:field>
<dim:field element="identifier" lang="spa" mdschema="dc" qualifier="issn">1135-5948</dim:field>
<dim:field element="identifier" mdschema="dc" qualifier="uri">http://hdl.handle.net/10641/2327</dim:field>
<dim:field element="identifier" lang="spa" mdschema="dc" qualifier="doi">10.26342/2020-64-10</dim:field>
<dim:field element="description" lang="spa" mdschema="dc" qualifier="abstract">Most of the current state-of-the-art Natural Language Processing (NLP) techniques are highly data-dependent. A significant amount of data is required for their training, and in some scenarios data is scarce. We present a hybrid method to generate new sentences for augmenting the training data. Our approach takes advantage of the combination of Markov Chains and word embeddings to produce high-quality data similar to an initial dataset. In contrast to other neural-based generative methods, it does not need a high amount of training data. Results show how our approach can generate useful data for NLP tools. In particular, we validate our approach by building Transformer-based Language Models using data from three different domains in the context of enriching general purpose chatbots.</dim:field>
<dim:field element="description" lang="spa" mdschema="dc" qualifier="version">post-print</dim:field>
<dim:field element="description" lang="spa" mdschema="dc" qualifier="extent">1,74 MB</dim:field>
<dim:field element="language" lang="spa" mdschema="dc" qualifier="iso">eng</dim:field>
<dim:field element="publisher" lang="spa" mdschema="dc">Procesamiento del Lenguaje Natural</dim:field>
<dim:field element="rights" lang="*" mdschema="dc">Atribución-NoComercial-SinDerivadas 3.0 España</dim:field>
<dim:field element="rights" lang="*" mdschema="dc" qualifier="uri">http://creativecommons.org/licenses/by-nc-nd/3.0/es/</dim:field>
<dim:field element="rights" lang="spa" mdschema="dc" qualifier="accessRights">openAccess</dim:field>
<dim:field element="subject" lang="spa" mdschema="dc">Generation</dim:field>
<dim:field element="subject" lang="spa" mdschema="dc">Hybrid</dim:field>
<dim:field element="subject" lang="spa" mdschema="dc">Markov Chains</dim:field>
<dim:field element="subject" lang="spa" mdschema="dc">Embeddings</dim:field>
<dim:field element="subject" lang="spa" mdschema="dc">Similarity</dim:field>
<dim:field element="title" lang="spa" mdschema="dc">A light method for data generation: a combination of Markov Chains and Word Embeddings.</dim:field>
<dim:field element="title" lang="spa" mdschema="dc" qualifier="alternative">Un método ligero de generación de datos: combinación entre Cadenas de Markov y Word Embeddings.</dim:field>
<dim:field element="type" lang="spa" mdschema="dc">article</dim:field>
<dim:field element="relation" lang="spa" mdschema="dc" qualifier="publisherversion">http://journal.sepln.org/sepln/ojs/ojs/index.php/pln/article/view/6199</dim:field>
</dim:dim>
<?xml version="1.0" encoding="UTF-8" ?>
<thesis schemaLocation="http://www.ndltd.org/standards/metadata/etdms/1.0/ http://www.ndltd.org/standards/metadata/etdms/1.0/etdms.xsd">
<title>A light method for data generation: a combination of Markov Chains and Word Embeddings.</title>
<creator>Martínez García, Eva</creator>
<creator>Nogales Moyano, Alberto</creator>
<creator>Morales Escudero, Javier</creator>
<creator>García Tejedor, Álvaro José</creator>
<subject>Generation</subject>
<subject>Hybrid</subject>
<subject>Markov Chains</subject>
<subject>Embeddings</subject>
<subject>Similarity</subject>
<description>Most of the current state-of-the-art Natural Language Processing (NLP) techniques are highly data-dependent. A significant amount of data is required for their training, and in some scenarios data is scarce. We present a hybrid method to generate new sentences for augmenting the training data. Our approach takes advantage of the combination of Markov Chains and word embeddings to produce high-quality data similar to an initial dataset. In contrast to other neural-based generative methods, it does not need a high amount of training data. Results show how our approach can generate useful data for NLP tools. In particular, we validate our approach by building Transformer-based Language Models using data from three different domains in the context of enriching general purpose chatbots.</description>
<date>2021-06-16</date>
<date>2021-06-16</date>
<date>2020</date>
<type>article</type>
<identifier>1135-5948</identifier>
<identifier>http://hdl.handle.net/10641/2327</identifier>
<identifier>10.26342/2020-64-10</identifier>
<language>eng</language>
<relation>http://journal.sepln.org/sepln/ojs/ojs/index.php/pln/article/view/6199</relation>
<rights>http://creativecommons.org/licenses/by-nc-nd/3.0/es/</rights>
<rights>openAccess</rights>
<rights>Atribución-NoComercial-SinDerivadas 3.0 España</rights>
<publisher>Procesamiento del Lenguaje Natural</publisher>
</thesis>
<?xml version="1.0" encoding="UTF-8" ?>
<record schemaLocation="http://www.loc.gov/MARC21/slim http://www.loc.gov/standards/marcxml/schema/MARC21slim.xsd">
<leader>00925njm 22002777a 4500</leader>
<datafield ind1=" " ind2=" " tag="042">
<subfield code="a">dc</subfield>
</datafield>
<datafield ind1=" " ind2=" " tag="720">
<subfield code="a">Martínez García, Eva</subfield>
<subfield code="e">author</subfield>
</datafield>
<datafield ind1=" " ind2=" " tag="720">
<subfield code="a">Nogales Moyano, Alberto</subfield>
<subfield code="e">author</subfield>
</datafield>
<datafield ind1=" " ind2=" " tag="720">
<subfield code="a">Morales Escudero, Javier</subfield>
<subfield code="e">author</subfield>
</datafield>
<datafield ind1=" " ind2=" " tag="720">
<subfield code="a">García Tejedor, Álvaro José</subfield>
<subfield code="e">author</subfield>
</datafield>
<datafield ind1=" " ind2=" " tag="260">
<subfield code="c">2020</subfield>
</datafield>
<datafield ind1=" " ind2=" " tag="520">
<subfield code="a">Most of the current state-of-the-art Natural Language Processing (NLP) techniques are highly data-dependent. A significant amount of data is required for their training, and in some scenarios data is scarce. We present a hybrid method to generate new sentences for augmenting the training data. Our approach takes advantage of the combination of Markov Chains and word embeddings to produce high-quality data similar to an initial dataset. In contrast to other neural-based generative methods, it does not need a high amount of training data. Results show how our approach can generate useful data for NLP tools. In particular, we validate our approach by building Transformer-based Language Models using data from three different domains in the context of enriching general purpose chatbots.</subfield>
</datafield>
<datafield ind1="8" ind2=" " tag="024">
<subfield code="a">1135-5948</subfield>
</datafield>
<datafield ind1="8" ind2=" " tag="024">
<subfield code="a">http://hdl.handle.net/10641/2327</subfield>
</datafield>
<datafield ind1="8" ind2=" " tag="024">
<subfield code="a">10.26342/2020-64-10</subfield>
</datafield>
<datafield ind1=" " ind2=" " tag="653">
<subfield code="a">Generation</subfield>
</datafield>
<datafield ind1=" " ind2=" " tag="653">
<subfield code="a">Hybrid</subfield>
</datafield>
<datafield ind1=" " ind2=" " tag="653">
<subfield code="a">Markov Chains</subfield>
</datafield>
<datafield ind1=" " ind2=" " tag="653">
<subfield code="a">Embeddings</subfield>
</datafield>
<datafield ind1=" " ind2=" " tag="653">
<subfield code="a">Similarity</subfield>
</datafield>
<datafield ind1="0" ind2="0" tag="245">
<subfield code="a">A light method for data generation: a combination of Markov Chains and Word Embeddings.</subfield>
</datafield>
</record>
<?xml version="1.0" encoding="UTF-8" ?>
<mets ID=" DSpace_ITEM_10641-2327" OBJID=" hdl:10641/2327" PROFILE="DSpace METS SIP Profile 1.0" TYPE="DSpace ITEM" schemaLocation="http://www.loc.gov/METS/ http://www.loc.gov/standards/mets/mets.xsd">
<metsHdr CREATEDATE="2022-09-20T09:27:37Z">
<agent ROLE="CUSTODIAN" TYPE="ORGANIZATION">
<name>DDFV</name>
</agent>
</metsHdr>
<dmdSec ID="DMD_10641_2327">
<mdWrap MDTYPE="MODS">
<xmlData schemaLocation="http://www.loc.gov/mods/v3 http://www.loc.gov/standards/mods/v3/mods-3-1.xsd">
<mods:mods schemaLocation="http://www.loc.gov/mods/v3 http://www.loc.gov/standards/mods/v3/mods-3-1.xsd">
<mods:name>
<mods:role>
<mods:roleTerm type="text">author</mods:roleTerm>
</mods:role>
<mods:namePart>Martínez García, Eva</mods:namePart>
</mods:name>
<mods:name>
<mods:role>
<mods:roleTerm type="text">author</mods:roleTerm>
</mods:role>
<mods:namePart>Nogales Moyano, Alberto</mods:namePart>
</mods:name>
<mods:name>
<mods:role>
<mods:roleTerm type="text">author</mods:roleTerm>
</mods:role>
<mods:namePart>Morales Escudero, Javier</mods:namePart>
</mods:name>
<mods:name>
<mods:role>
<mods:roleTerm type="text">author</mods:roleTerm>
</mods:role>
<mods:namePart>García Tejedor, Álvaro José</mods:namePart>
</mods:name>
<mods:extension>
<mods:dateAccessioned encoding="iso8601">2021-06-16T08:19:29Z</mods:dateAccessioned>
</mods:extension>
<mods:extension>
<mods:dateAvailable encoding="iso8601">2021-06-16T08:19:29Z</mods:dateAvailable>
</mods:extension>
<mods:originInfo>
<mods:dateIssued encoding="iso8601">2020</mods:dateIssued>
</mods:originInfo>
<mods:identifier type="issn">1135-5948</mods:identifier>
<mods:identifier type="uri">http://hdl.handle.net/10641/2327</mods:identifier>
<mods:identifier type="doi">10.26342/2020-64-10</mods:identifier>
<mods:abstract>Most of the current state-of-the-art Natural Language Processing (NLP) techniques are highly data-dependent. A significant amount of data is required for their training, and in some scenarios data is scarce. We present a hybrid method to generate new sentences for augmenting the training data. Our approach takes advantage of the combination of Markov Chains and word embeddings to produce high-quality data similar to an initial dataset. In contrast to other neural-based generative methods, it does not need a high amount of training data. Results show how our approach can generate useful data for NLP tools. In particular, we validate our approach by building Transformer-based Language Models using data from three different domains in the context of enriching general purpose chatbots.</mods:abstract>
<mods:language>
<mods:languageTerm authority="rfc3066">eng</mods:languageTerm>
</mods:language>
<mods:accessCondition type="useAndReproduction">Atribución-NoComercial-SinDerivadas 3.0 España</mods:accessCondition>
<mods:subject>
<mods:topic>Generation</mods:topic>
</mods:subject>
<mods:subject>
<mods:topic>Hybrid</mods:topic>
</mods:subject>
<mods:subject>
<mods:topic>Markov Chains</mods:topic>
</mods:subject>
<mods:subject>
<mods:topic>Embeddings</mods:topic>
</mods:subject>
<mods:subject>
<mods:topic>Similarity</mods:topic>
</mods:subject>
<mods:titleInfo>
<mods:title>A light method for data generation: a combination of Markov Chains and Word Embeddings.</mods:title>
</mods:titleInfo>
<mods:genre>article</mods:genre>
</mods:mods>
</xmlData>
</mdWrap>
</dmdSec>
<amdSec ID="TMD_10641_2327">
<rightsMD ID="RIG_10641_2327">
<mdWrap MDTYPE="OTHER" MIMETYPE="text/plain" OTHERMDTYPE="DSpaceDepositLicense">
<binData>LSBFbCByZXBvc2l0b3JpbyBpbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIEZyYW5jaXNjbyBkZSBWaXRvcmlhIGRlIE1hZHJpZCAoRERGViksIHBvbmUgYSBkaXNwb3NpY2nDs24gZGUgbG9zIHVzdWFyaW9zIGxhIHBsYXRhZm9ybWEgZGlnaXRhbCBhYmllcnRhIHkgZGUgYWNjZXNvIGxpYnJlIGRlIGxhIHByb2R1Y2Npw7NuIGNpZW50w61maWNhIGRlIGxhIGluc3RpdHVjacOzbi4KCi0gQSB0YWxlcyBmaW5lcywgbG9zIGF1dG9yZXMgZGVjbGFyYW4gcXVlIHNvbiB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCBkZSBsYSBvYnJhIHkgcXVlIMOpc3RhIGVzIG9yaWdpbmFsLgoKLSBNZWRpYW50ZSBsYSBhY2VwdGFjacOzbiBkZSBlc3RhIGxpY2VuY2lhLCBlbCBhdXRvciwgY29tbyB0aXR1bGFyIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciwgYXV0b3JpemEgeSBjZWRlIGEgbGEgVW5pdmVyc2lkYWQgRnJhbmNpc2NvIGRlIFZpdG9yaWEsIGRlIGZvcm1hIGdyYXR1aXRhIHkgbm8gZXhjbHVzaXZhLCBwb3IgZWwgbcOheGltbyBwbGF6byBsZWdhbCB5IGNvbiDDoW1iaXRvIHVuaXZlcnNhbCwgbG9zIGRlcmVjaG9zIGRlIHJlcHJvZHVjY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EsIGluY2x1aWRvIGVsIGRlcmVjaG8gZGUgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVsZWN0csOzbmljYSwgeSBsYSB0cmFuc2Zvcm1hY2nDs24gZGUgZm9ybWF0byBzb2JyZSBsYSBvYnJhIGluZGljYWRhLCBzaSBmdWVyYSBlbCBjYXNvLgoKLSBFbiBlbCBjYXNvIGRlIGNlc2nDs24gZGUgZGVyZWNob3MgZGUgZXhwbG90YWNpw7NuIGEgdGVyY2Vyb3MsIGRlY2xhcmEgcXVlIGN1ZW50YSBjb24gbGEgYXV0b3JpemFjacOzbiBkZSBkaWNob3MgdGl0dWxhcmVzIHkgcXVlIGhhIG9idGVuaWRvIGVsIHBlcm1pc28gc2luIHJlc3RyaWNjaW9uZXMgZGVsIHByb3BpZXRhcmlvIGRlbCBjb3B5cmlnaHQgcGFyYSBvdG9yZ2FyIGEgbGEgaW5zdGl0dWNpw7NuIGxvcyBkZXJlY2hvcyByZXF1ZXJpZG9zIHBhcmEgZXN0YSBsaWNlbmNpYSB5IHF1ZSBkaWNobyBwcm9waWV0YXJpbyBjb25vY2UgZWwgdGV4dG8gbyBlbCBjb250ZW5pZG8gZGUgbGEgb2JyYS4KCi0gU2kgZnVlcmEgdW5hIG9icmEgcGF0cm9jaW5hZGEgcG9yIGFsZ3VuYSBpbnN0aXR1Y2nDs24gZGlzdGludGEgYSBsYSBVbml2ZXJzaWRhZCBGcmFuY2lzY28gZGUgVml0b3JpYSwgZGVjbGFyYSBxdWUgZW4gY2FzbyBuZWNlc2FyaW8sIGN1ZW50YSBjb24gbG9zIHBlcm1pc29zIHBlcnRpbmVudGVzLCBkZSBsYSBpbnN0aXR1Y2nDs24gbyBlbnRpZGFkLCBxdWUgbGUgcGVybWl0YW4gbGEgZGlmdXNpw7NuIGRlIGRpY2hhIG9icmEuCgotIExhIFVuaXZlcnNpZGFkIEZyYW5jaXNjbyBkZSBWaXRvcmlhIG5vIHRpZW5lIGxhIHRpdHVsYXJpZGFkIGRlIGxvcyBkZXJlY2hvcyBzb2JyZSBsYSBvYnJhLCBxdWUgY29ycmVzcG9uZGVuIGFsIGF1dG9yLCBwZXJvIHNpbiBlbWJhcmdvIMOpc3RhIGxpY2VuY2lhIGRhIGRlcmVjaG8gYSByZXByb2R1Y2lybGEgZW4gdW4gc29wb3J0ZSBkaWdpdGFsLCBkaXN0cmlidWlyIGEgbG9zIHVzdWFyaW9zIGNvcGlhcyBlbGVjdHLDs25pY2FzIGRlIGxhIG9icmEgZW4gZm9ybWF0byBkaWdpdGFsLCBjb211bmljYWNpw7NuIHDDumJsaWNhIHkgc3UgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGEgdHJhdsOpcyBkZSB1biBhcmNoaXZvIGFiaWVydG8gaW5zdGl0dWNpb25hbC4KCi0gTGEgb2JyYSBzZSBwb25kcsOhIGEgZGlzcG9zaWNpw7NuIGRlIGxvcyB1c3VhcmlvcyBwYXJhIHF1ZSBoYWdhbiBkZSBlbGxhIHVuIHVzbyBqdXN0byB5IHJlc3BldHVvc28gY29uIGxvcyBkZXJlY2hvcyBkZSBhdXRvciwgc2VhIGNvbiBmaW5lcyBkZSBlc3R1ZGlvLCBpbnZlc3RpZ2FjacOzbiBvIGN1YWxxdWllciBvdHJvIGZpbiBsw61jaXRvLCB5IGRlIGFjdWVyZG8gYSBsYXMgY29uZGljaW9uZXMgZXN0YWJsZWNpZGFzIGVuIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMsIGRlIG1vZG8gcXVlIGxhcyBvYnJhcyBwdWVkYW4gc2VyIGRpc3RyaWJ1aWRhcywgY29waWFkYXMgeSBleGhpYmlkYXMgc2llbXByZSBxdWUgc2UgY2l0ZSBsYSBhdXRvcsOtYSB5IG5vIHNlIG9idGVuZ2EgYmVuZWZpY2lvIGNvbWVyY2lhbC4gUG9yIHRhbnRvLCBsYSBVbml2ZXJzaWRhZCBubyBhc3VtaXLDoSByZXNwb25zYWJpbGlkYWQgYWxndW5hIHBvciBsYSBmb3JtYSBlZmVjdGl2YSBlbiBxdWUgbG9zIHVzdWFyaW9zIHV0aWxpY2VuIGVsIG1hdGVyaWFsIHB1ZXN0byBhIHN1IGRpc3Bvc2ljacOzbi4KCi0gRWwgYXV0b3IgcG9kcsOhIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBsYSBvYnJhIGRlbCByZXBvc2l0b3JpbyBwb3IgY2F1c2EganVzdGlmaWNhZGEuIAoK</binData>
</mdWrap>
</rightsMD>
</amdSec>
<amdSec ID="FO_10641_2327_1">
<techMD ID="TECH_O_10641_2327_1">
<mdWrap MDTYPE="PREMIS">
<xmlData schemaLocation="http://www.loc.gov/standards/premis http://www.loc.gov/standards/premis/PREMIS-v1-0.xsd">
<premis:premis>
<premis:object>
<premis:objectIdentifier>
<premis:objectIdentifierType>URL</premis:objectIdentifierType>
<premis:objectIdentifierValue>http://ddfv.ufv.es/bitstream/10641/2327/1/6199-5608-1-PB.pdf</premis:objectIdentifierValue>
</premis:objectIdentifier>
<premis:objectCategory>File</premis:objectCategory>
<premis:objectCharacteristics>
<premis:fixity>
<premis:messageDigestAlgorithm>MD5</premis:messageDigestAlgorithm>
<premis:messageDigest>81f55f83adefa95b0a46222d72223778</premis:messageDigest>
</premis:fixity>
<premis:size>1831204</premis:size>
<premis:format>
<premis:formatDesignation>
<premis:formatName>application/pdf</premis:formatName>
</premis:formatDesignation>
</premis:format>
</premis:objectCharacteristics>
<premis:originalName>6199-5608-1-PB.pdf</premis:originalName>
</premis:object>
</premis:premis>
</xmlData>
</mdWrap>
</techMD>
</amdSec>
<amdSec ID="FT_10641_2327_4">
<techMD ID="TECH_T_10641_2327_4">
<mdWrap MDTYPE="PREMIS">
<xmlData schemaLocation="http://www.loc.gov/standards/premis http://www.loc.gov/standards/premis/PREMIS-v1-0.xsd">
<premis:premis>
<premis:object>
<premis:objectIdentifier>
<premis:objectIdentifierType>URL</premis:objectIdentifierType>
<premis:objectIdentifierValue>http://ddfv.ufv.es/bitstream/10641/2327/4/6199-5608-1-PB.pdf.txt</premis:objectIdentifierValue>
</premis:objectIdentifier>
<premis:objectCategory>File</premis:objectCategory>
<premis:objectCharacteristics>
<premis:fixity>
<premis:messageDigestAlgorithm>MD5</premis:messageDigestAlgorithm>
<premis:messageDigest>47b47b4ab230e10b1abda13a3bf7be5e</premis:messageDigest>
</premis:fixity>
<premis:size>30680</premis:size>
<premis:format>
<premis:formatDesignation>
<premis:formatName>text/plain</premis:formatName>
</premis:formatDesignation>
</premis:format>
</premis:objectCharacteristics>
<premis:originalName>6199-5608-1-PB.pdf.txt</premis:originalName>
</premis:object>
</premis:premis>
</xmlData>
</mdWrap>
</techMD>
</amdSec>
<fileSec>
<fileGrp USE="ORIGINAL">
<file ADMID="FO_10641_2327_1" CHECKSUM="81f55f83adefa95b0a46222d72223778" CHECKSUMTYPE="MD5" GROUPID="GROUP_BITSTREAM_10641_2327_1" ID="BITSTREAM_ORIGINAL_10641_2327_1" MIMETYPE="application/pdf" SEQ="1" SIZE="1831204">
</file>
</fileGrp>
<fileGrp USE="TEXT">
<file ADMID="FT_10641_2327_4" CHECKSUM="47b47b4ab230e10b1abda13a3bf7be5e" CHECKSUMTYPE="MD5" GROUPID="GROUP_BITSTREAM_10641_2327_4" ID="BITSTREAM_TEXT_10641_2327_4" MIMETYPE="text/plain" SEQ="4" SIZE="30680">
</file>
</fileGrp>
</fileSec>
<structMap LABEL="DSpace Object" TYPE="LOGICAL">
<div ADMID="DMD_10641_2327" TYPE="DSpace Object Contents">
<div TYPE="DSpace BITSTREAM">
</div>
</div>
</structMap>
</mets>
<?xml version="1.0" encoding="UTF-8" ?>
<mods:mods schemaLocation="http://www.loc.gov/mods/v3 http://www.loc.gov/standards/mods/v3/mods-3-1.xsd">
<mods:name>
<mods:namePart>Martínez García, Eva</mods:namePart>
</mods:name>
<mods:name>
<mods:namePart>Nogales Moyano, Alberto</mods:namePart>
</mods:name>
<mods:name>
<mods:namePart>Morales Escudero, Javier</mods:namePart>
</mods:name>
<mods:name>
<mods:namePart>García Tejedor, Álvaro José</mods:namePart>
</mods:name>
<mods:extension>
<mods:dateAvailable encoding="iso8601">2021-06-16T08:19:29Z</mods:dateAvailable>
</mods:extension>
<mods:extension>
<mods:dateAccessioned encoding="iso8601">2021-06-16T08:19:29Z</mods:dateAccessioned>
</mods:extension>
<mods:originInfo>
<mods:dateIssued encoding="iso8601">2020</mods:dateIssued>
</mods:originInfo>
<mods:identifier type="issn">1135-5948</mods:identifier>
<mods:identifier type="uri">http://hdl.handle.net/10641/2327</mods:identifier>
<mods:identifier type="doi">10.26342/2020-64-10</mods:identifier>
<mods:abstract>Most of the current state-of-the-art Natural Language Processing (NLP) techniques are highly data-dependent. A significant amount of data is required for their training, and in some scenarios data is scarce. We present a hybrid method to generate new sentences for augmenting the training data. Our approach takes advantage of the combination of Markov Chains and word embeddings to produce high-quality data similar to an initial dataset. In contrast to other neural-based generative methods, it does not need a high amount of training data. Results show how our approach can generate useful data for NLP tools. In particular, we validate our approach by building Transformer-based Language Models using data from three different domains in the context of enriching general purpose chatbots.</mods:abstract>
<mods:language>
<mods:languageTerm>eng</mods:languageTerm>
</mods:language>
<mods:accessCondition type="useAndReproduction">http://creativecommons.org/licenses/by-nc-nd/3.0/es/</mods:accessCondition>
<mods:accessCondition type="useAndReproduction">openAccess</mods:accessCondition>
<mods:accessCondition type="useAndReproduction">Atribución-NoComercial-SinDerivadas 3.0 España</mods:accessCondition>
<mods:subject>
<mods:topic>Generation</mods:topic>
</mods:subject>
<mods:subject>
<mods:topic>Hybrid</mods:topic>
</mods:subject>
<mods:subject>
<mods:topic>Markov Chains</mods:topic>
</mods:subject>
<mods:subject>
<mods:topic>Embeddings</mods:topic>
</mods:subject>
<mods:subject>
<mods:topic>Similarity</mods:topic>
</mods:subject>
<mods:titleInfo>
<mods:title>A light method for data generation: a combination of Markov Chains and Word Embeddings.</mods:title>
</mods:titleInfo>
<mods:genre>article</mods:genre>
</mods:mods>
<?xml version="1.0" encoding="UTF-8" ?>
<atom:entry schemaLocation="http://www.w3.org/2005/Atom http://www.kbcafe.com/rss/atom.xsd.xml">
<atom:id>http://hdl.handle.net/10641/2327/ore.xml</atom:id>
<atom:published>2021-06-16T08:19:29Z</atom:published>
<atom:updated>2021-06-16T08:19:29Z</atom:updated>
<atom:source>
<atom:generator>DDFV</atom:generator>
</atom:source>
<atom:title>A light method for data generation: a combination of Markov Chains and Word Embeddings.</atom:title>
<atom:author>
<atom:name>Martínez García, Eva</atom:name>
</atom:author>
<atom:author>
<atom:name>Nogales Moyano, Alberto</atom:name>
</atom:author>
<atom:author>
<atom:name>Morales Escudero, Javier</atom:name>
</atom:author>
<atom:author>
<atom:name>García Tejedor, Álvaro José</atom:name>
</atom:author>
<oreatom:triples>
<rdf:Description about="http://hdl.handle.net/10641/2327/ore.xml#atom">
<dcterms:modified>2021-06-16T08:19:29Z</dcterms:modified>
</rdf:Description>
<rdf:Description about="http://ddfv.ufv.es/bitstream/10641/2327/1/6199-5608-1-PB.pdf">
<dcterms:description>ORIGINAL</dcterms:description>
</rdf:Description>
<rdf:Description about="http://ddfv.ufv.es/bitstream/10641/2327/2/license_rdf">
<dcterms:description>CC-LICENSE</dcterms:description>
</rdf:Description>
<rdf:Description about="http://ddfv.ufv.es/bitstream/10641/2327/3/license.txt">
<dcterms:description>LICENSE</dcterms:description>
</rdf:Description>
<rdf:Description about="http://ddfv.ufv.es/bitstream/10641/2327/4/6199-5608-1-PB.pdf.txt">
<dcterms:description>TEXT</dcterms:description>
</rdf:Description>
<rdf:Description about="http://ddfv.ufv.es/bitstream/10641/2327/5/6199-5608-1-PB.pdf.jpg">
<dcterms:description>THUMBNAIL</dcterms:description>
</rdf:Description>
</oreatom:triples>
</atom:entry>
<?xml version="1.0" encoding="UTF-8" ?>
<qdc:qualifieddc schemaLocation="http://purl.org/dc/elements/1.1/ http://dublincore.org/schemas/xmls/qdc/2006/01/06/dc.xsd http://purl.org/dc/terms/ http://dublincore.org/schemas/xmls/qdc/2006/01/06/dcterms.xsd http://dspace.org/qualifieddc/ http://www.ukoln.ac.uk/metadata/dcmi/xmlschema/qualifieddc.xsd">
<dc:title>A light method for data generation: a combination of Markov Chains and Word Embeddings.</dc:title>
<dc:creator>Martínez García, Eva</dc:creator>
<dc:creator>Nogales Moyano, Alberto</dc:creator>
<dc:creator>Morales Escudero, Javier</dc:creator>
<dc:creator>García Tejedor, Álvaro José</dc:creator>
<dc:subject>Generation</dc:subject>
<dc:subject>Hybrid</dc:subject>
<dc:subject>Markov Chains</dc:subject>
<dc:subject>Embeddings</dc:subject>
<dc:subject>Similarity</dc:subject>
<dcterms:abstract>Most of the current state-of-the-art Natural Language Processing (NLP) techniques are highly data-dependent. A significant amount of data is required for their training, and in some scenarios data is scarce. We present a hybrid method to generate new sentences for augmenting the training data. Our approach takes advantage of the combination of Markov Chains and word embeddings to produce high-quality data similar to an initial dataset. In contrast to other neural-based generative methods, it does not need a high amount of training data. Results show how our approach can generate useful data for NLP tools. In particular, we validate our approach by building Transformer-based Language Models using data from three different domains in the context of enriching general purpose chatbots.</dcterms:abstract>
<dcterms:dateAccepted>2021-06-16T08:19:29Z</dcterms:dateAccepted>
<dcterms:available>2021-06-16T08:19:29Z</dcterms:available>
<dcterms:created>2021-06-16T08:19:29Z</dcterms:created>
<dcterms:issued>2020</dcterms:issued>
<dc:type>article</dc:type>
<dc:identifier>1135-5948</dc:identifier>
<dc:identifier>http://hdl.handle.net/10641/2327</dc:identifier>
<dc:identifier>10.26342/2020-64-10</dc:identifier>
<dc:language>eng</dc:language>
<dc:relation>http://journal.sepln.org/sepln/ojs/ojs/index.php/pln/article/view/6199</dc:relation>
<dc:rights>http://creativecommons.org/licenses/by-nc-nd/3.0/es/</dc:rights>
<dc:rights>openAccess</dc:rights>
<dc:rights>Atribución-NoComercial-SinDerivadas 3.0 España</dc:rights>
<dc:publisher>Procesamiento del Lenguaje Natural</dc:publisher>
</qdc:qualifieddc>
<?xml version="1.0" encoding="UTF-8" ?>
<rdf:RDF schemaLocation="http://www.openarchives.org/OAI/2.0/rdf/ http://www.openarchives.org/OAI/2.0/rdf.xsd">
<ow:Publication about="oai:ddfv.ufv.es:10641/2327">
<dc:title>A light method for data generation: a combination of Markov Chains and Word Embeddings.</dc:title>
<dc:creator>Martínez García, Eva</dc:creator>
<dc:creator>Nogales Moyano, Alberto</dc:creator>
<dc:creator>Morales Escudero, Javier</dc:creator>
<dc:creator>García Tejedor, Álvaro José</dc:creator>
<dc:subject>Generation</dc:subject>
<dc:subject>Hybrid</dc:subject>
<dc:subject>Markov Chains</dc:subject>
<dc:subject>Embeddings</dc:subject>
<dc:subject>Similarity</dc:subject>
<dc:description>Most of the current state-of-the-art Natural Language Processing (NLP) techniques are highly data-dependent. A significant amount of data is required for their training, and in some scenarios data is scarce. We present a hybrid method to generate new sentences for augmenting the training data. Our approach takes advantage of the combination of Markov Chains and word embeddings to produce high-quality data similar to an initial dataset. In contrast to other neural-based generative methods, it does not need a high amount of training data. Results show how our approach can generate useful data for NLP tools. In particular, we validate our approach by building Transformer-based Language Models using data from three different domains in the context of enriching general purpose chatbots.</dc:description>
<dc:date>2021-06-16T08:19:29Z</dc:date>
<dc:date>2021-06-16T08:19:29Z</dc:date>
<dc:date>2020</dc:date>
<dc:type>article</dc:type>
<dc:identifier>1135-5948</dc:identifier>
<dc:identifier>http://hdl.handle.net/10641/2327</dc:identifier>
<dc:identifier>10.26342/2020-64-10</dc:identifier>
<dc:language>eng</dc:language>
<dc:relation>http://journal.sepln.org/sepln/ojs/ojs/index.php/pln/article/view/6199</dc:relation>
<dc:rights>http://creativecommons.org/licenses/by-nc-nd/3.0/es/</dc:rights>
<dc:rights>openAccess</dc:rights>
<dc:rights>Atribución-NoComercial-SinDerivadas 3.0 España</dc:rights>
<dc:publisher>Procesamiento del Lenguaje Natural</dc:publisher>
</ow:Publication>
</rdf:RDF>
<?xml version="1.0" encoding="UTF-8" ?>
<metadata schemaLocation="http://www.lyncode.com/xoai http://www.lyncode.com/xsd/xoai.xsd">
<element name="dc">
<element name="contributor">
<element name="author">
<element name="none">
<field name="value">Martínez García, Eva</field>
<field name="authority">e4a4adb9-fa58-4a27-b114-f07bbf623ff7</field>
<field name="confidence">600</field>
<field name="value">Nogales Moyano, Alberto</field>
<field name="authority">209</field>
<field name="confidence">600</field>
<field name="value">Morales Escudero, Javier</field>
<field name="authority">3c20c2c8-86d0-4953-8a3a-7290cdb9a0ba</field>
<field name="confidence">600</field>
<field name="value">García Tejedor, Álvaro José</field>
<field name="authority">75</field>
<field name="confidence">600</field>
</element>
</element>
</element>
<element name="date">
<element name="accessioned">
<element name="none">
<field name="value">2021-06-16T08:19:29Z</field>
</element>
</element>
<element name="available">
<element name="none">
<field name="value">2021-06-16T08:19:29Z</field>
</element>
</element>
<element name="issued">
<element name="none">
<field name="value">2020</field>
</element>
</element>
</element>
<element name="identifier">
<element name="issn">
<element name="spa">
<field name="value">1135-5948</field>
</element>
</element>
<element name="uri">
<element name="none">
<field name="value">http://hdl.handle.net/10641/2327</field>
</element>
</element>
<element name="doi">
<element name="spa">
<field name="value">10.26342/2020-64-10</field>
</element>
</element>
</element>
<element name="description">
<element name="abstract">
<element name="spa">
<field name="value">Most of the current state-of-the-art Natural Language Processing (NLP) techniques are highly data-dependent. A significant amount of data is required for their training, and in some scenarios data is scarce. We present a hybrid method to generate new sentences for augmenting the training data. Our approach takes advantage of the combination of Markov Chains and word embeddings to produce high-quality data similar to an initial dataset. In contrast to other neural-based generative methods, it does not need a high amount of training data. Results show how our approach can generate useful data for NLP tools. In particular, we validate our approach by building Transformer-based Language Models using data from three different domains in the context of enriching general purpose chatbots.</field>
</element>
</element>
<element name="version">
<element name="spa">
<field name="value">post-print</field>
</element>
</element>
<element name="extent">
<element name="spa">
<field name="value">1,74 MB</field>
</element>
</element>
</element>
<element name="language">
<element name="iso">
<element name="spa">
<field name="value">eng</field>
</element>
</element>
</element>
<element name="publisher">
<element name="spa">
<field name="value">Procesamiento del Lenguaje Natural</field>
</element>
</element>
<element name="rights">
<element name="*">
<field name="value">Atribución-NoComercial-SinDerivadas 3.0 España</field>
</element>
<element name="uri">
<element name="*">
<field name="value">http://creativecommons.org/licenses/by-nc-nd/3.0/es/</field>
</element>
</element>
<element name="accessRights">
<element name="spa">
<field name="value">openAccess</field>
</element>
</element>
</element>
<element name="subject">
<element name="spa">
<field name="value">Generation</field>
<field name="value">Hybrid</field>
<field name="value">Markov Chains</field>
<field name="value">Embeddings</field>
<field name="value">Similarity</field>
</element>
</element>
<element name="title">
<element name="spa">
<field name="value">A light method for data generation: a combination of Markov Chains and Word Embeddings.</field>
</element>
<element name="alternative">
<element name="spa">
<field name="value">Un método ligero de generación de datos: combinación entre Cadenas de Markov y Word Embeddings.</field>
</element>
</element>
</element>
<element name="type">
<element name="spa">
<field name="value">article</field>
</element>
</element>
<element name="relation">
<element name="publisherversion">
<element name="spa">
<field name="value">http://journal.sepln.org/sepln/ojs/ojs/index.php/pln/article/view/6199</field>
</element>
</element>
</element>
</element>
<element name="bundles">
<element name="bundle">
<field name="name">ORIGINAL</field>
<element name="bitstreams">
<element name="bitstream">
<field name="name">6199-5608-1-PB.pdf</field>
<field name="originalName">6199-5608-1-PB.pdf</field>
<field name="format">application/pdf</field>
<field name="size">1831204</field>
<field name="url">http://ddfv.ufv.es/bitstream/10641/2327/1/6199-5608-1-PB.pdf</field>
<field name="checksum">81f55f83adefa95b0a46222d72223778</field>
<field name="checksumAlgorithm">MD5</field>
<field name="sid">1</field>
</element>
</element>
</element>
<element name="bundle">
<field name="name">CC-LICENSE</field>
<element name="bitstreams">
<element name="bitstream">
<field name="name">license_rdf</field>
<field name="originalName">license_rdf</field>
<field name="format">application/rdf+xml; charset=utf-8</field>
<field name="size">811</field>
<field name="url">http://ddfv.ufv.es/bitstream/10641/2327/2/license_rdf</field>
<field name="checksum">4d01a8abc68801ab758ec8c2c04918c3</field>
<field name="checksumAlgorithm">MD5</field>
<field name="sid">2</field>
</element>
</element>
</element>
<element name="bundle">
<field name="name">LICENSE</field>
<element name="bitstreams">
<element name="bitstream">
<field name="name">license.txt</field>
<field name="originalName">license.txt</field>
<field name="format">text/plain; charset=utf-8</field>
<field name="size">2418</field>
<field name="url">http://ddfv.ufv.es/bitstream/10641/2327/3/license.txt</field>
<field name="checksum">8b6e3a0bc6a1ca51936267b0e6e4740c</field>
<field name="checksumAlgorithm">MD5</field>
<field name="sid">3</field>
</element>
</element>
</element>
<element name="bundle">
<field name="name">TEXT</field>
<element name="bitstreams">
<element name="bitstream">
<field name="name">6199-5608-1-PB.pdf.txt</field>
<field name="originalName">6199-5608-1-PB.pdf.txt</field>
<field name="description">Extracted text</field>
<field name="format">text/plain</field>
<field name="size">30680</field>
<field name="url">http://ddfv.ufv.es/bitstream/10641/2327/4/6199-5608-1-PB.pdf.txt</field>
<field name="checksum">47b47b4ab230e10b1abda13a3bf7be5e</field>
<field name="checksumAlgorithm">MD5</field>
<field name="sid">4</field>
</element>
</element>
</element>
<element name="bundle">
<field name="name">THUMBNAIL</field>
<element name="bitstreams">
<element name="bitstream">
<field name="name">6199-5608-1-PB.pdf.jpg</field>
<field name="originalName">6199-5608-1-PB.pdf.jpg</field>
<field name="description">Generated Thumbnail</field>
<field name="format">image/jpeg</field>
<field name="size">1595</field>
<field name="url">http://ddfv.ufv.es/bitstream/10641/2327/5/6199-5608-1-PB.pdf.jpg</field>
<field name="checksum">edb12135decccbd5135dbda40a8589ad</field>
<field name="checksumAlgorithm">MD5</field>
<field name="sid">5</field>
</element>
</element>
</element>
</element>
<element name="others">
<field name="handle">10641/2327</field>
<field name="identifier">oai:ddfv.ufv.es:10641/2327</field>
<field name="lastModifyDate">2022-01-27 09:59:54.429</field>
</element>
<element name="repository">
<field name="name">DDFV</field>
<field name="mail">dspace@ufv.es</field>
</element>
<element name="license">
<field name="bin">LSBFbCByZXBvc2l0b3JpbyBpbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIEZyYW5jaXNjbyBkZSBWaXRvcmlhIGRlIE1hZHJpZCAoRERGViksIHBvbmUgYSBkaXNwb3NpY2nDs24gZGUgbG9zIHVzdWFyaW9zIGxhIHBsYXRhZm9ybWEgZGlnaXRhbCBhYmllcnRhIHkgZGUgYWNjZXNvIGxpYnJlIGRlIGxhIHByb2R1Y2Npw7NuIGNpZW50w61maWNhIGRlIGxhIGluc3RpdHVjacOzbi4KCi0gQSB0YWxlcyBmaW5lcywgbG9zIGF1dG9yZXMgZGVjbGFyYW4gcXVlIHNvbiB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCBkZSBsYSBvYnJhIHkgcXVlIMOpc3RhIGVzIG9yaWdpbmFsLgoKLSBNZWRpYW50ZSBsYSBhY2VwdGFjacOzbiBkZSBlc3RhIGxpY2VuY2lhLCBlbCBhdXRvciwgY29tbyB0aXR1bGFyIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciwgYXV0b3JpemEgeSBjZWRlIGEgbGEgVW5pdmVyc2lkYWQgRnJhbmNpc2NvIGRlIFZpdG9yaWEsIGRlIGZvcm1hIGdyYXR1aXRhIHkgbm8gZXhjbHVzaXZhLCBwb3IgZWwgbcOheGltbyBwbGF6byBsZWdhbCB5IGNvbiDDoW1iaXRvIHVuaXZlcnNhbCwgbG9zIGRlcmVjaG9zIGRlIHJlcHJvZHVjY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EsIGluY2x1aWRvIGVsIGRlcmVjaG8gZGUgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVsZWN0csOzbmljYSwgeSBsYSB0cmFuc2Zvcm1hY2nDs24gZGUgZm9ybWF0byBzb2JyZSBsYSBvYnJhIGluZGljYWRhLCBzaSBmdWVyYSBlbCBjYXNvLgoKLSBFbiBlbCBjYXNvIGRlIGNlc2nDs24gZGUgZGVyZWNob3MgZGUgZXhwbG90YWNpw7NuIGEgdGVyY2Vyb3MsIGRlY2xhcmEgcXVlIGN1ZW50YSBjb24gbGEgYXV0b3JpemFjacOzbiBkZSBkaWNob3MgdGl0dWxhcmVzIHkgcXVlIGhhIG9idGVuaWRvIGVsIHBlcm1pc28gc2luIHJlc3RyaWNjaW9uZXMgZGVsIHByb3BpZXRhcmlvIGRlbCBjb3B5cmlnaHQgcGFyYSBvdG9yZ2FyIGEgbGEgaW5zdGl0dWNpw7NuIGxvcyBkZXJlY2hvcyByZXF1ZXJpZG9zIHBhcmEgZXN0YSBsaWNlbmNpYSB5IHF1ZSBkaWNobyBwcm9waWV0YXJpbyBjb25vY2UgZWwgdGV4dG8gbyBlbCBjb250ZW5pZG8gZGUgbGEgb2JyYS4KCi0gU2kgZnVlcmEgdW5hIG9icmEgcGF0cm9jaW5hZGEgcG9yIGFsZ3VuYSBpbnN0aXR1Y2nDs24gZGlzdGludGEgYSBsYSBVbml2ZXJzaWRhZCBGcmFuY2lzY28gZGUgVml0b3JpYSwgZGVjbGFyYSBxdWUgZW4gY2FzbyBuZWNlc2FyaW8sIGN1ZW50YSBjb24gbG9zIHBlcm1pc29zIHBlcnRpbmVudGVzLCBkZSBsYSBpbnN0aXR1Y2nDs24gbyBlbnRpZGFkLCBxdWUgbGUgcGVybWl0YW4gbGEgZGlmdXNpw7NuIGRlIGRpY2hhIG9icmEuCgotIExhIFVuaXZlcnNpZGFkIEZyYW5jaXNjbyBkZSBWaXRvcmlhIG5vIHRpZW5lIGxhIHRpdHVsYXJpZGFkIGRlIGxvcyBkZXJlY2hvcyBzb2JyZSBsYSBvYnJhLCBxdWUgY29ycmVzcG9uZGVuIGFsIGF1dG9yLCBwZXJvIHNpbiBlbWJhcmdvIMOpc3RhIGxpY2VuY2lhIGRhIGRlcmVjaG8gYSByZXByb2R1Y2lybGEgZW4gdW4gc29wb3J0ZSBkaWdpdGFsLCBkaXN0cmlidWlyIGEgbG9zIHVzdWFyaW9zIGNvcGlhcyBlbGVjdHLDs25pY2FzIGRlIGxhIG9icmEgZW4gZm9ybWF0byBkaWdpdGFsLCBjb211bmljYWNpw7NuIHDDumJsaWNhIHkgc3UgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGEgdHJhdsOpcyBkZSB1biBhcmNoaXZvIGFiaWVydG8gaW5zdGl0dWNpb25hbC4KCi0gTGEgb2JyYSBzZSBwb25kcsOhIGEgZGlzcG9zaWNpw7NuIGRlIGxvcyB1c3VhcmlvcyBwYXJhIHF1ZSBoYWdhbiBkZSBlbGxhIHVuIHVzbyBqdXN0byB5IHJlc3BldHVvc28gY29uIGxvcyBkZXJlY2hvcyBkZSBhdXRvciwgc2VhIGNvbiBmaW5lcyBkZSBlc3R1ZGlvLCBpbnZlc3RpZ2FjacOzbiBvIGN1YWxxdWllciBvdHJvIGZpbiBsw61jaXRvLCB5IGRlIGFjdWVyZG8gYSBsYXMgY29uZGljaW9uZXMgZXN0YWJsZWNpZGFzIGVuIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMsIGRlIG1vZG8gcXVlIGxhcyBvYnJhcyBwdWVkYW4gc2VyIGRpc3RyaWJ1aWRhcywgY29waWFkYXMgeSBleGhpYmlkYXMgc2llbXByZSBxdWUgc2UgY2l0ZSBsYSBhdXRvcsOtYSB5IG5vIHNlIG9idGVuZ2EgYmVuZWZpY2lvIGNvbWVyY2lhbC4gUG9yIHRhbnRvLCBsYSBVbml2ZXJzaWRhZCBubyBhc3VtaXLDoSByZXNwb25zYWJpbGlkYWQgYWxndW5hIHBvciBsYSBmb3JtYSBlZmVjdGl2YSBlbiBxdWUgbG9zIHVzdWFyaW9zIHV0aWxpY2VuIGVsIG1hdGVyaWFsIHB1ZXN0byBhIHN1IGRpc3Bvc2ljacOzbi4KCi0gRWwgYXV0b3IgcG9kcsOhIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBsYSBvYnJhIGRlbCByZXBvc2l0b3JpbyBwb3IgY2F1c2EganVzdGlmaWNhZGEuIAoK</field>
</element>
</metadata>