A modular approach to sphingolipid analogs mediated by aziridines: Synthesis and biological studies
<?xml version="1.0" encoding="UTF-8" ?>
<oai_dc:dc schemaLocation="http://www.openarchives.org/OAI/2.0/oai_dc/ http://www.openarchives.org/OAI/2.0/oai_dc.xsd">
<dc:title>A modular approach to sphingolipid analogs mediated by aziridines: Synthesis and biological studies</dc:title>
<dc:creator>Alcaide López, Anna</dc:creator>
<dc:contributor>Llebaria Soldevila, Amadeu</dc:contributor>
<dc:contributor>Delgado Cirilo, Antonio</dc:contributor>
<dc:contributor>Universitat de Barcelona. Departament de Farmacologia i Química Terapèutica</dc:contributor>
<dc:subject>Síntesi de fàrmacs</dc:subject>
<dc:subject>Síntesis de fármacos</dc:subject>
<dc:subject>Drug synthesis</dc:subject>
<dc:subject>Sphingolipids</dc:subject>
<dc:subject>Esfingolípidos (SL)</dc:subject>
<dc:subject>Esfingolípids</dc:subject>
<dc:subject>Aziridinas</dc:subject>
<dc:subject>Aziridines</dc:subject>
<dc:subject>Ciències de la Salut</dc:subject>
<dc:subject>615</dc:subject>
<dc:description>Sphingolipids are essential biomolecules for the physiological cell function. In addition to its structural role in cell membranes, these lipids have also crucial functions in signal transduction and cell regulation. As a consequence of the important biological roles of sphingolipids, the synthesis of their analogs and the development of chemical inhibitors of sphingolipid enzymes are the object of current interest. Furthermore, it has been reported that slight modifications on the natural C1 (phyto)sphingosine scaffold or variations in its chain lengths can potentially alter the role and bioactivity of sphingolipid analogs. On the other hand, cyclitols are an important group of compounds due to their remarkable biological activities as well as their synthetic usefulness in the synthesis of other natural compounds or pharmaceuticals. Specially, the development of carbohydrate mimetics prompted primarily by their properties as glycosidase inhibitors, has led to a wide variety of novel structures by themselves or when considering them as key synthetic precursors of more complex molecules such as glycosphingolipids. For the above‐mentioned reasons, we developed a synthetic methodology towards sphingolipid analogs based on the regioselective ring‐opening reactions of N‐acylaziridines with different nucleophiles such as thiols or beta‐glycosil thiols, amines, phosphate derivatives or phosphorothioate derivatives. This approach is a short and flexible route for the synthesis of a variety of (phyto)sphingolipid analogs from aziridine derivatives and this method leads to molecules with different groups bonded to the C‐1 position of the sphingoid backbone from common intermediate aziridines by changing the nucleophile in the ring‐opening reaction step. Moreover, the diversity of compounds obtained is extended by introducing different N‐acyl groups at the nitrogen aziridine. Once, the desired sphingolipid analogs were obtained, a representative selection of them was tested in enzyme assays to identify inhibitors of mammalian sphingolipid metabolism enzymes, such as sphingomyelin synthase (SMS) and glucosylceramide synthase (GCS). Some of the tested analogs were potent inhibitors of GCS and none of them inhibited SMS at concentrations relevant for activity. In general, the inhibitory activity was higher for phytosphingosine analogs than their corresponding sphingosine analogs and the presence of the double bond between C4 and C5 of the sphingosine backbone in analogs was important for their bioactivity, since the dihydroceramide analogs were less active. In addition, a collection of (phyto)sphingolipid analogs were tested in an assay to identify inhibitors against yeast inositol phosphorylceramide synthase (IPCS). Generally, the inhibitory activities were lower than the inhibitions against GCS. However, one analog depicted selectivity against baker’s yeast IPCS since no inhibition of mammalian SMS and GCS was observed. For that reason, this analog showed potential properties as antifungal agent. Some (phyto)sphingolipid analogs were also tested as antigens for CD1d‐restricted iNKT cells and some of them were active, although this activity was lower when comparing with the endogenous glycolipid beta‐glucosylceramide. In particular, the most active compound was a nonglycosidic phytoceramide analog, but some glycosphingolipid analogs were also active in the activation of iNKT cells. However, these compounds were considered weak antigens. Finally, in order to obtain glycolipid analogs a synthetic methodology to obtain enantio‐ and diastereomerically pure galacto‐configured aziridines based on olefin aziridination reactions was examined. This consists in the use of nitrene precursors and a galactose related cyclohexene. The results obtained with this method showed potential for the preparation of the aziridine compounds.</dc:description>
<dc:description>Los esfingolípidos (SL) son biomoléculas esenciales para las funciones fisiológicas de las células. El metabolismo anómalo o la expresión de SL específicos o glicoesfingolípidos (GSL) es el origen de diferentes enfermedades como las esfingolipidosis, causadas por la presencia de mutaciones en las enzimas que intervienen en la biosíntesis de SL o GSL. Debido a la importancia biológica de los SL, el desarrollo de inhibidores químicos de las enzimas que intervienen en el metabolismo de los SL de mamíferos y hongos, es un tema de gran interés científico. Por otro lado, cabe remarcar que los ciclitoles son un tipo de compuestos muy interesantes debido a su remarcable actividad biológica y a su utilidad como precursores sintéticos de moléculas más complejas como los GSL. Teniendo en cuenta las consideraciones comentadas anteriormente, se ha desarrollado una nueva metodología sintética para la obtención de análogos de SLs basada en las reacciones de apertura de Nacilaziridinas con diferentes nucleófilos como tioles, beta‐glicosil tioles, aminas, fosfatos y fosforotioatos. Esta aproximación es una ruta corta y flexible para la obtención de análogos lipídicos con diversidad estructural. Una selección representativa de los compuestos sintetizados se ensayó frente a la inhibición de enzimas del metabolismo de los mamíferos tales como la esfingomielin sintasa (SMS) y la glucosilceramida sintasa (GCS), y enzimas del metabolismo de los hongos como la inositol fosforilceramida sintasa (IPCS). Algunos de estos análogos resultaron ser inhibidores potentes de la GCS pero ninguno de ellos fue inhibidor de la SMS. Mientras que la inhibición frente a la IPCS en levaduras fue más baja en comparación con la inhibición de la GCS. A pesar de ello, uno de los análogos ensayados mostró selectividad frente a la IPCS ya que no se observó inhibición de la SMS y la GCS de mamíferos, mostrando así propiedades interesantes como agente antifúngico. De manera adicional, algunos análogos de (fito)esfingolípidos fueron ensayados como antígenos de células iNKT restringidas por la proteína CD1d y resultaron activos. Curiosamente, el compuesto más activo resultó ser un análogo de fitoceramida no glicosídico, aunque otros GSL también resultaron activos. Por otro lado, se desarrolló una metodología sintética para obtener aziridinas con configuración galacto (análogos de galactosa) enantiomericamente y diastereomericamente puras para obtener análogos de glicolípidos.</dc:description>
<dc:date>2012-12-18</dc:date>
<dc:type>info:eu-repo/semantics/doctoralThesis</dc:type>
<dc:type>info:eu-repo/semantics/publishedVersion</dc:type>
<dc:identifier>B. 1378-2013</dc:identifier>
<dc:identifier>http://hdl.handle.net/10803/96979</dc:identifier>
<dc:language>eng</dc:language>
<dc:rights>ADVERTIMENT. L'accés als continguts d'aquesta tesi doctoral i la seva utilització ha de respectar els drets de la persona autora. Pot ser utilitzada per a consulta o estudi personal, així com en activitats o materials d'investigació i docència en els termes establerts a l'art. 32 del Text Refós de la Llei de Propietat Intel·lectual (RDL 1/1996). Per altres utilitzacions es requereix l'autorització prèvia i expressa de la persona autora. En qualsevol cas, en la utilització dels seus continguts caldrà indicar de forma clara el nom i cognoms de la persona autora i el títol de la tesi doctoral. No s'autoritza la seva reproducció o altres formes d'explotació efectuades amb finalitats de lucre ni la seva comunicació pública des d'un lloc aliè al servei TDX. Tampoc s'autoritza la presentació del seu contingut en una finestra o marc aliè a TDX (framing). Aquesta reserva de drets afecta tant als continguts de la tesi com als seus resums i índexs.</dc:rights>
<dc:rights>info:eu-repo/semantics/openAccess</dc:rights>
<dc:format>application/pdf</dc:format>
<dc:format>63 p.</dc:format>
<dc:publisher>Universitat de Barcelona</dc:publisher>
<dc:source>TDX (Tesis Doctorals en Xarxa)</dc:source>
</oai_dc:dc>
<?xml version="1.0" encoding="UTF-8" ?>
<d:DIDL schemaLocation="urn:mpeg:mpeg21:2002:02-DIDL-NS http://standards.iso.org/ittf/PubliclyAvailableStandards/MPEG-21_schema_files/did/didl.xsd">
<d:DIDLInfo>
<dcterms:created schemaLocation="http://purl.org/dc/terms/ http://dublincore.org/schemas/xmls/qdc/dcterms.xsd">2014-01-08T06:45:04Z</dcterms:created>
</d:DIDLInfo>
<d:Item id="hdl_10803_96979">
<d:Descriptor>
<d:Statement mimeType="application/xml; charset=utf-8">
<dii:Identifier schemaLocation="urn:mpeg:mpeg21:2002:01-DII-NS http://standards.iso.org/ittf/PubliclyAvailableStandards/MPEG-21_schema_files/dii/dii.xsd">urn:hdl:10803/96979</dii:Identifier>
</d:Statement>
</d:Descriptor>
<d:Descriptor>
<d:Statement mimeType="application/xml; charset=utf-8">
<oai_dc:dc schemaLocation="http://www.openarchives.org/OAI/2.0/oai_dc/ http://www.openarchives.org/OAI/2.0/oai_dc.xsd">
<dc:title>A modular approach to sphingolipid analogs mediated by aziridines: Synthesis and biological studies</dc:title>
<dc:creator>Alcaide López, Anna</dc:creator>
<dc:contributor>anna_alcaide@hotmail.com</dc:contributor>
<dc:contributor>false</dc:contributor>
<dc:contributor>Llebaria Soldevila, Amadeu</dc:contributor>
<dc:contributor>Delgado Cirilo, Antonio</dc:contributor>
<dc:contributor>true</dc:contributor>
<dc:subject>Síntesi de fàrmacs</dc:subject>
<dc:subject>Síntesis de fármacos</dc:subject>
<dc:subject>Drug synthesis</dc:subject>
<dc:subject>Sphingolipids</dc:subject>
<dc:subject>Esfingolípidos (SL)</dc:subject>
<dc:subject>Esfingolípids</dc:subject>
<dc:subject>Aziridinas</dc:subject>
<dc:subject>Aziridines</dc:subject>
<dc:description>El text dels capítols 3, 5, 6 i 7 ha estat retirat seguint instruccions de l’autora de la tesi, en existir participació d’empreses, existir conveni de confidencialitat o existeix la possibilitat de generar patents / El texto delos capítulos 3,5, 6 y 7 ha sido retirado siguiendo instrucciones de la autora, al existir participación de empresas, convenio de confidencialidad o la posibilidad de generar patentes / The text of chapters 3, 5, 6 and 7 has been withdrawn on the instructions of the author, as there is participation of undertakings, confidentiality agreement or the ability to generate patent</dc:description>
<dc:description>Sphingolipids are essential biomolecules for the physiological cell function. In addition to its structural role in cell membranes, these lipids have also crucial functions in signal transduction and cell regulation. As a consequence of the important biological roles of sphingolipids, the synthesis of their analogs and the development of chemical inhibitors of sphingolipid enzymes are the object of current interest. Furthermore, it has been reported that slight modifications on the natural C1 (phyto)sphingosine scaffold or variations in its chain lengths can potentially alter the role and bioactivity of sphingolipid analogs. On the other hand, cyclitols are an important group of compounds due to their remarkable biological activities as well as their synthetic usefulness in the synthesis of other natural compounds or pharmaceuticals. Specially, the development of carbohydrate mimetics prompted primarily by their properties as glycosidase inhibitors, has led to a wide variety of novel structures by themselves or when considering them as key synthetic precursors of more complex molecules such as glycosphingolipids. For the above‐mentioned reasons, we developed a synthetic methodology towards sphingolipid analogs based on the regioselective ring‐opening reactions of N‐acylaziridines with different nucleophiles such as thiols or beta‐glycosil thiols, amines, phosphate derivatives or phosphorothioate derivatives. This approach is a short and flexible route for the synthesis of a variety of (phyto)sphingolipid analogs from aziridine derivatives and this method leads to molecules with different groups bonded to the C‐1 position of the sphingoid backbone from common intermediate aziridines by changing the nucleophile in the ring‐opening reaction step. Moreover, the diversity of compounds obtained is extended by introducing different N‐acyl groups at the nitrogen aziridine. Once, the desired sphingolipid analogs were obtained, a representative selection of them was tested in enzyme assays to identify inhibitors of mammalian sphingolipid metabolism enzymes, such as sphingomyelin synthase (SMS) and glucosylceramide synthase (GCS). Some of the tested analogs were potent inhibitors of GCS and none of them inhibited SMS at concentrations relevant for activity. In general, the inhibitory activity was higher for phytosphingosine analogs than their corresponding sphingosine analogs and the presence of the double bond between C4 and C5 of the sphingosine backbone in analogs was important for their bioactivity, since the dihydroceramide analogs were less active. In addition, a collection of (phyto)sphingolipid analogs were tested in an assay to identify inhibitors against yeast inositol phosphorylceramide synthase (IPCS). Generally, the inhibitory activities were lower than the inhibitions against GCS. However, one analog depicted selectivity against baker’s yeast IPCS since no inhibition of mammalian SMS and GCS was observed. For that reason, this analog showed potential properties as antifungal agent. Some (phyto)sphingolipid analogs were also tested as antigens for CD1d‐restricted iNKT cells and some of them were active, although this activity was lower when comparing with the endogenous glycolipid beta‐glucosylceramide. In particular, the most active compound was a nonglycosidic phytoceramide analog, but some glycosphingolipid analogs were also active in the activation of iNKT cells. However, these compounds were considered weak antigens. Finally, in order to obtain glycolipid analogs a synthetic methodology to obtain enantio‐ and diastereomerically pure galacto‐configured aziridines based on olefin aziridination reactions was examined. This consists in the use of nitrene precursors and a galactose related cyclohexene. The results obtained with this method showed potential for the preparation of the aziridine compounds.</dc:description>
<dc:description>Los esfingolípidos (SL) son biomoléculas esenciales para las funciones fisiológicas de las células. El metabolismo anómalo o la expresión de SL específicos o glicoesfingolípidos (GSL) es el origen de diferentes enfermedades como las esfingolipidosis, causadas por la presencia de mutaciones en las enzimas que intervienen en la biosíntesis de SL o GSL. Debido a la importancia biológica de los SL, el desarrollo de inhibidores químicos de las enzimas que intervienen en el metabolismo de los SL de mamíferos y hongos, es un tema de gran interés científico. Por otro lado, cabe remarcar que los ciclitoles son un tipo de compuestos muy interesantes debido a su remarcable actividad biológica y a su utilidad como precursores sintéticos de moléculas más complejas como los GSL. Teniendo en cuenta las consideraciones comentadas anteriormente, se ha desarrollado una nueva metodología sintética para la obtención de análogos de SLs basada en las reacciones de apertura de Nacilaziridinas con diferentes nucleófilos como tioles, beta‐glicosil tioles, aminas, fosfatos y fosforotioatos. Esta aproximación es una ruta corta y flexible para la obtención de análogos lipídicos con diversidad estructural. Una selección representativa de los compuestos sintetizados se ensayó frente a la inhibición de enzimas del metabolismo de los mamíferos tales como la esfingomielin sintasa (SMS) y la glucosilceramida sintasa (GCS), y enzimas del metabolismo de los hongos como la inositol fosforilceramida sintasa (IPCS). Algunos de estos análogos resultaron ser inhibidores potentes de la GCS pero ninguno de ellos fue inhibidor de la SMS. Mientras que la inhibición frente a la IPCS en levaduras fue más baja en comparación con la inhibición de la GCS. A pesar de ello, uno de los análogos ensayados mostró selectividad frente a la IPCS ya que no se observó inhibición de la SMS y la GCS de mamíferos, mostrando así propiedades interesantes como agente antifúngico. De manera adicional, algunos análogos de (fito)esfingolípidos fueron ensayados como antígenos de células iNKT restringidas por la proteína CD1d y resultaron activos. Curiosamente, el compuesto más activo resultó ser un análogo de fitoceramida no glicosídico, aunque otros GSL también resultaron activos. Por otro lado, se desarrolló una metodología sintética para obtener aziridinas con configuración galacto (análogos de galactosa) enantiomericamente y diastereomericamente puras para obtener análogos de glicolípidos.</dc:description>
<dc:date>2013-01-07T09:05:55Z</dc:date>
<dc:date>2014-01-08T06:45:04Z</dc:date>
<dc:date>2012-12-18</dc:date>
<dc:type>info:eu-repo/semantics/doctoralThesis</dc:type>
<dc:type>info:eu-repo/semantics/publishedVersion</dc:type>
<dc:identifier>http://hdl.handle.net/10803/96979</dc:identifier>
<dc:identifier>http://mediaserver.xpp.cesca.cat/tdx/documents/14/46/02/144602932041939827037076578962064869825/</dc:identifier>
<dc:identifier>http://mediaserver.csuc.cat/tdx/documents/14/46/02/144602932041939827037076578962064869825/</dc:identifier>
<dc:identifier>http://mediaserver.csuc.cat/tdx/documents/14/46/02/144602932041939827037076578962064869825/</dc:identifier>
<dc:language>eng</dc:language>
<dc:rights>ADVERTIMENT. L'accés als continguts d'aquesta tesi doctoral i la seva utilització ha de respectar els drets de la persona autora. Pot ser utilitzada per a consulta o estudi personal, així com en activitats o materials d'investigació i docència en els termes establerts a l'art. 32 del Text Refós de la Llei de Propietat Intel·lectual (RDL 1/1996). Per altres utilitzacions es requereix l'autorització prèvia i expressa de la persona autora. En qualsevol cas, en la utilització dels seus continguts caldrà indicar de forma clara el nom i cognoms de la persona autora i el títol de la tesi doctoral. No s'autoritza la seva reproducció o altres formes d'explotació efectuades amb finalitats de lucre ni la seva comunicació pública des d'un lloc aliè al servei TDX. Tampoc s'autoritza la presentació del seu contingut en una finestra o marc aliè a TDX (framing). Aquesta reserva de drets afecta tant als continguts de la tesi com als seus resums i índexs.</dc:rights>
<dc:rights>info:eu-repo/semantics/openAccess</dc:rights>
<dc:publisher>Universitat de Barcelona</dc:publisher>
<dc:source>TDX (Tesis Doctorals en Xarxa)</dc:source>
</oai_dc:dc>
</d:Statement>
</d:Descriptor>
<d:Component id="10803_96979_1">
</d:Component>
</d:Item>
</d:DIDL>
<?xml version="1.0" encoding="UTF-8" ?>
<dim:dim schemaLocation="http://www.dspace.org/xmlns/dspace/dim http://www.dspace.org/schema/dim.xsd">
<dim:field element="contributor" mdschema="dc">Universitat de Barcelona. Departament de Farmacologia i Química Terapèutica</dim:field>
<dim:field element="contributor" mdschema="dc" qualifier="author">Alcaide López, Anna</dim:field>
<dim:field element="contributor" mdschema="dc" qualifier="authoremail">anna_alcaide@hotmail.com</dim:field>
<dim:field element="contributor" mdschema="dc" qualifier="authoremailshow">false</dim:field>
<dim:field element="contributor" mdschema="dc" qualifier="director">Llebaria Soldevila, Amadeu</dim:field>
<dim:field element="contributor" mdschema="dc" qualifier="tutor">Delgado Cirilo, Antonio</dim:field>
<dim:field element="contributor" mdschema="dc" qualifier="authorsendemail">true</dim:field>
<dim:field element="date" mdschema="dc" qualifier="accessioned">2013-01-07T09:05:55Z</dim:field>
<dim:field element="date" mdschema="dc" qualifier="available">2014-01-08T06:45:04Z</dim:field>
<dim:field element="date" mdschema="dc" qualifier="issued">2012-12-18</dim:field>
<dim:field element="identifier" mdschema="dc">B. 1378-2013</dim:field>
<dim:field element="identifier" mdschema="dc" qualifier="uri">http://hdl.handle.net/10803/96979</dim:field>
<dim:field element="identifier" mdschema="dc" qualifier="pdf">http://mediaserver.xpp.cesca.cat/tdx/documents/14/46/02/144602932041939827037076578962064869825/</dim:field>
<dim:field element="identifier" mdschema="dc" qualifier="pdf">http://mediaserver.csuc.cat/tdx/documents/14/46/02/144602932041939827037076578962064869825/</dim:field>
<dim:field element="identifier" mdschema="dc" qualifier="pdf">http://mediaserver.csuc.cat/tdx/documents/14/46/02/144602932041939827037076578962064869825/</dim:field>
<dim:field element="description" mdschema="dc">El text dels capítols 3, 5, 6 i 7 ha estat retirat seguint instruccions de l’autora de la tesi, en existir participació d’empreses, existir conveni de confidencialitat o existeix la possibilitat de generar patents / El texto delos capítulos 3,5, 6 y 7 ha sido retirado siguiendo instrucciones de la autora, al existir participación de empresas, convenio de confidencialidad o la posibilidad de generar patentes / The text of chapters 3, 5, 6 and 7 has been withdrawn on the instructions of the author, as there is participation of undertakings, confidentiality agreement or the ability to generate patent</dim:field>
<dim:field element="description" lang="eng" mdschema="dc" qualifier="abstract">Sphingolipids are essential biomolecules for the physiological cell function. In addition to its structural role in cell membranes, these lipids have also crucial functions in signal transduction and cell regulation. As a consequence of the important biological roles of sphingolipids, the synthesis of their analogs and the development of chemical inhibitors of sphingolipid enzymes are the object of current interest. Furthermore, it has been reported that slight modifications on the natural C1 (phyto)sphingosine scaffold or variations in its chain lengths can potentially alter the role and bioactivity of sphingolipid analogs. On the other hand, cyclitols are an important group of compounds due to their remarkable biological activities as well as their synthetic usefulness in the synthesis of other natural compounds or pharmaceuticals. Specially, the development of carbohydrate mimetics prompted primarily by their properties as glycosidase inhibitors, has led to a wide variety of novel structures by themselves or when considering them as key synthetic precursors of more complex molecules such as glycosphingolipids. For the above‐mentioned reasons, we developed a synthetic methodology towards sphingolipid analogs based on the regioselective ring‐opening reactions of N‐acylaziridines with different nucleophiles such as thiols or beta‐glycosil thiols, amines, phosphate derivatives or phosphorothioate derivatives. This approach is a short and flexible route for the synthesis of a variety of (phyto)sphingolipid analogs from aziridine derivatives and this method leads to molecules with different groups bonded to the C‐1 position of the sphingoid backbone from common intermediate aziridines by changing the nucleophile in the ring‐opening reaction step. Moreover, the diversity of compounds obtained is extended by introducing different N‐acyl groups at the nitrogen aziridine. Once, the desired sphingolipid analogs were obtained, a representative selection of them was tested in enzyme assays to identify inhibitors of mammalian sphingolipid metabolism enzymes, such as sphingomyelin synthase (SMS) and glucosylceramide synthase (GCS). Some of the tested analogs were potent inhibitors of GCS and none of them inhibited SMS at concentrations relevant for activity. In general, the inhibitory activity was higher for phytosphingosine analogs than their corresponding sphingosine analogs and the presence of the double bond between C4 and C5 of the sphingosine backbone in analogs was important for their bioactivity, since the dihydroceramide analogs were less active. In addition, a collection of (phyto)sphingolipid analogs were tested in an assay to identify inhibitors against yeast inositol phosphorylceramide synthase (IPCS). Generally, the inhibitory activities were lower than the inhibitions against GCS. However, one analog depicted selectivity against baker’s yeast IPCS since no inhibition of mammalian SMS and GCS was observed. For that reason, this analog showed potential properties as antifungal agent. Some (phyto)sphingolipid analogs were also tested as antigens for CD1d‐restricted iNKT cells and some of them were active, although this activity was lower when comparing with the endogenous glycolipid beta‐glucosylceramide. In particular, the most active compound was a nonglycosidic phytoceramide analog, but some glycosphingolipid analogs were also active in the activation of iNKT cells. However, these compounds were considered weak antigens. Finally, in order to obtain glycolipid analogs a synthetic methodology to obtain enantio‐ and diastereomerically pure galacto‐configured aziridines based on olefin aziridination reactions was examined. This consists in the use of nitrene precursors and a galactose related cyclohexene. The results obtained with this method showed potential for the preparation of the aziridine compounds.</dim:field>
<dim:field element="description" lang="spa" mdschema="dc" qualifier="abstract">Los esfingolípidos (SL) son biomoléculas esenciales para las funciones fisiológicas de las células. El metabolismo anómalo o la expresión de SL específicos o glicoesfingolípidos (GSL) es el origen de diferentes enfermedades como las esfingolipidosis, causadas por la presencia de mutaciones en las enzimas que intervienen en la biosíntesis de SL o GSL. Debido a la importancia biológica de los SL, el desarrollo de inhibidores químicos de las enzimas que intervienen en el metabolismo de los SL de mamíferos y hongos, es un tema de gran interés científico. Por otro lado, cabe remarcar que los ciclitoles son un tipo de compuestos muy interesantes debido a su remarcable actividad biológica y a su utilidad como precursores sintéticos de moléculas más complejas como los GSL. Teniendo en cuenta las consideraciones comentadas anteriormente, se ha desarrollado una nueva metodología sintética para la obtención de análogos de SLs basada en las reacciones de apertura de Nacilaziridinas con diferentes nucleófilos como tioles, beta‐glicosil tioles, aminas, fosfatos y fosforotioatos. Esta aproximación es una ruta corta y flexible para la obtención de análogos lipídicos con diversidad estructural. Una selección representativa de los compuestos sintetizados se ensayó frente a la inhibición de enzimas del metabolismo de los mamíferos tales como la esfingomielin sintasa (SMS) y la glucosilceramida sintasa (GCS), y enzimas del metabolismo de los hongos como la inositol fosforilceramida sintasa (IPCS). Algunos de estos análogos resultaron ser inhibidores potentes de la GCS pero ninguno de ellos fue inhibidor de la SMS. Mientras que la inhibición frente a la IPCS en levaduras fue más baja en comparación con la inhibición de la GCS. A pesar de ello, uno de los análogos ensayados mostró selectividad frente a la IPCS ya que no se observó inhibición de la SMS y la GCS de mamíferos, mostrando así propiedades interesantes como agente antifúngico. De manera adicional, algunos análogos de (fito)esfingolípidos fueron ensayados como antígenos de células iNKT restringidas por la proteína CD1d y resultaron activos. Curiosamente, el compuesto más activo resultó ser un análogo de fitoceramida no glicosídico, aunque otros GSL también resultaron activos. Por otro lado, se desarrolló una metodología sintética para obtener aziridinas con configuración galacto (análogos de galactosa) enantiomericamente y diastereomericamente puras para obtener análogos de glicolípidos.</dim:field>
<dim:field element="description" mdschema="dc" qualifier="provenance">Submitted by UB (tdx@ub.edu) on 2013-01-07T09:05:55Z No. of bitstreams: 1 AAL_PhD_THESIS.pdf: 1251494 bytes, checksum: 3a742d502554e479b809eb35228d5d56 (MD5)</dim:field>
<dim:field element="description" mdschema="dc" qualifier="provenance">Made available in DSpace on 2013-01-07T09:05:55Z (GMT). No. of bitstreams: 1 AAL_PhD_THESIS.pdf: 1251494 bytes, checksum: 3a742d502554e479b809eb35228d5d56 (MD5) Previous issue date: 2012-12-18</dim:field>
<dim:field element="format" mdschema="dc" qualifier="extent">63 p.</dim:field>
<dim:field element="format" mdschema="dc" qualifier="mimetype">application/pdf</dim:field>
<dim:field element="language" mdschema="dc" qualifier="iso">eng</dim:field>
<dim:field element="publisher" mdschema="dc">Universitat de Barcelona</dim:field>
<dim:field element="rights" mdschema="dc" qualifier="license">ADVERTIMENT. L'accés als continguts d'aquesta tesi doctoral i la seva utilització ha de respectar els drets de la persona autora. Pot ser utilitzada per a consulta o estudi personal, així com en activitats o materials d'investigació i docència en els termes establerts a l'art. 32 del Text Refós de la Llei de Propietat Intel·lectual (RDL 1/1996). Per altres utilitzacions es requereix l'autorització prèvia i expressa de la persona autora. En qualsevol cas, en la utilització dels seus continguts caldrà indicar de forma clara el nom i cognoms de la persona autora i el títol de la tesi doctoral. No s'autoritza la seva reproducció o altres formes d'explotació efectuades amb finalitats de lucre ni la seva comunicació pública des d'un lloc aliè al servei TDX. Tampoc s'autoritza la presentació del seu contingut en una finestra o marc aliè a TDX (framing). Aquesta reserva de drets afecta tant als continguts de la tesi com als seus resums i índexs.</dim:field>
<dim:field element="rights" mdschema="dc" qualifier="accessLevel">info:eu-repo/semantics/openAccess</dim:field>
<dim:field element="source" mdschema="dc">TDX (Tesis Doctorals en Xarxa)</dim:field>
<dim:field element="subject" mdschema="dc">Síntesi de fàrmacs</dim:field>
<dim:field element="subject" mdschema="dc">Síntesis de fármacos</dim:field>
<dim:field element="subject" mdschema="dc">Drug synthesis</dim:field>
<dim:field element="subject" mdschema="dc">Sphingolipids</dim:field>
<dim:field element="subject" mdschema="dc">Esfingolípidos (SL)</dim:field>
<dim:field element="subject" mdschema="dc">Esfingolípids</dim:field>
<dim:field element="subject" mdschema="dc">Aziridinas</dim:field>
<dim:field element="subject" mdschema="dc">Aziridines</dim:field>
<dim:field element="subject" mdschema="dc" qualifier="other">Ciències de la Salut</dim:field>
<dim:field element="subject" lang="cat" mdschema="dc" qualifier="udc">615</dim:field>
<dim:field element="title" mdschema="dc">A modular approach to sphingolipid analogs mediated by aziridines: Synthesis and biological studies</dim:field>
<dim:field element="type" mdschema="dc">info:eu-repo/semantics/doctoralThesis</dim:field>
<dim:field element="type" mdschema="dc">info:eu-repo/semantics/publishedVersion</dim:field>
<dim:field element="embargo" mdschema="dc" qualifier="terms">12 mesos</dim:field>
</dim:dim>
<?xml version="1.0" encoding="UTF-8" ?>
<thesis schemaLocation="http://www.ndltd.org/standards/metadata/etdms/1.0/ http://www.ndltd.org/standards/metadata/etdms/1.0/etdms.xsd">
<title>A modular approach to sphingolipid analogs mediated by aziridines: Synthesis and biological studies</title>
<creator>Alcaide López, Anna</creator>
<contributor>anna_alcaide@hotmail.com</contributor>
<contributor>false</contributor>
<contributor>Llebaria Soldevila, Amadeu</contributor>
<contributor>Delgado Cirilo, Antonio</contributor>
<contributor>true</contributor>
<subject>Síntesi de fàrmacs</subject>
<subject>Síntesis de fármacos</subject>
<subject>Drug synthesis</subject>
<subject>Sphingolipids</subject>
<subject>Esfingolípidos (SL)</subject>
<subject>Esfingolípids</subject>
<subject>Aziridinas</subject>
<subject>Aziridines</subject>
<description>El text dels capítols 3, 5, 6 i 7 ha estat retirat seguint instruccions de l’autora de la tesi, en existir participació d’empreses, existir conveni de confidencialitat o existeix la possibilitat de generar patents / El texto delos capítulos 3,5, 6 y 7 ha sido retirado siguiendo instrucciones de la autora, al existir participación de empresas, convenio de confidencialidad o la posibilidad de generar patentes / The text of chapters 3, 5, 6 and 7 has been withdrawn on the instructions of the author, as there is participation of undertakings, confidentiality agreement or the ability to generate patent</description>
<description>Sphingolipids are essential biomolecules for the physiological cell function. In addition to its structural role in cell membranes, these lipids have also crucial functions in signal transduction and cell regulation. As a consequence of the important biological roles of sphingolipids, the synthesis of their analogs and the development of chemical inhibitors of sphingolipid enzymes are the object of current interest. Furthermore, it has been reported that slight modifications on the natural C1 (phyto)sphingosine scaffold or variations in its chain lengths can potentially alter the role and bioactivity of sphingolipid analogs. On the other hand, cyclitols are an important group of compounds due to their remarkable biological activities as well as their synthetic usefulness in the synthesis of other natural compounds or pharmaceuticals. Specially, the development of carbohydrate mimetics prompted primarily by their properties as glycosidase inhibitors, has led to a wide variety of novel structures by themselves or when considering them as key synthetic precursors of more complex molecules such as glycosphingolipids. For the above‐mentioned reasons, we developed a synthetic methodology towards sphingolipid analogs based on the regioselective ring‐opening reactions of N‐acylaziridines with different nucleophiles such as thiols or beta‐glycosil thiols, amines, phosphate derivatives or phosphorothioate derivatives. This approach is a short and flexible route for the synthesis of a variety of (phyto)sphingolipid analogs from aziridine derivatives and this method leads to molecules with different groups bonded to the C‐1 position of the sphingoid backbone from common intermediate aziridines by changing the nucleophile in the ring‐opening reaction step. Moreover, the diversity of compounds obtained is extended by introducing different N‐acyl groups at the nitrogen aziridine. Once, the desired sphingolipid analogs were obtained, a representative selection of them was tested in enzyme assays to identify inhibitors of mammalian sphingolipid metabolism enzymes, such as sphingomyelin synthase (SMS) and glucosylceramide synthase (GCS). Some of the tested analogs were potent inhibitors of GCS and none of them inhibited SMS at concentrations relevant for activity. In general, the inhibitory activity was higher for phytosphingosine analogs than their corresponding sphingosine analogs and the presence of the double bond between C4 and C5 of the sphingosine backbone in analogs was important for their bioactivity, since the dihydroceramide analogs were less active. In addition, a collection of (phyto)sphingolipid analogs were tested in an assay to identify inhibitors against yeast inositol phosphorylceramide synthase (IPCS). Generally, the inhibitory activities were lower than the inhibitions against GCS. However, one analog depicted selectivity against baker’s yeast IPCS since no inhibition of mammalian SMS and GCS was observed. For that reason, this analog showed potential properties as antifungal agent. Some (phyto)sphingolipid analogs were also tested as antigens for CD1d‐restricted iNKT cells and some of them were active, although this activity was lower when comparing with the endogenous glycolipid beta‐glucosylceramide. In particular, the most active compound was a nonglycosidic phytoceramide analog, but some glycosphingolipid analogs were also active in the activation of iNKT cells. However, these compounds were considered weak antigens. Finally, in order to obtain glycolipid analogs a synthetic methodology to obtain enantio‐ and diastereomerically pure galacto‐configured aziridines based on olefin aziridination reactions was examined. This consists in the use of nitrene precursors and a galactose related cyclohexene. The results obtained with this method showed potential for the preparation of the aziridine compounds.</description>
<description>Los esfingolípidos (SL) son biomoléculas esenciales para las funciones fisiológicas de las células. El metabolismo anómalo o la expresión de SL específicos o glicoesfingolípidos (GSL) es el origen de diferentes enfermedades como las esfingolipidosis, causadas por la presencia de mutaciones en las enzimas que intervienen en la biosíntesis de SL o GSL. Debido a la importancia biológica de los SL, el desarrollo de inhibidores químicos de las enzimas que intervienen en el metabolismo de los SL de mamíferos y hongos, es un tema de gran interés científico. Por otro lado, cabe remarcar que los ciclitoles son un tipo de compuestos muy interesantes debido a su remarcable actividad biológica y a su utilidad como precursores sintéticos de moléculas más complejas como los GSL. Teniendo en cuenta las consideraciones comentadas anteriormente, se ha desarrollado una nueva metodología sintética para la obtención de análogos de SLs basada en las reacciones de apertura de Nacilaziridinas con diferentes nucleófilos como tioles, beta‐glicosil tioles, aminas, fosfatos y fosforotioatos. Esta aproximación es una ruta corta y flexible para la obtención de análogos lipídicos con diversidad estructural. Una selección representativa de los compuestos sintetizados se ensayó frente a la inhibición de enzimas del metabolismo de los mamíferos tales como la esfingomielin sintasa (SMS) y la glucosilceramida sintasa (GCS), y enzimas del metabolismo de los hongos como la inositol fosforilceramida sintasa (IPCS). Algunos de estos análogos resultaron ser inhibidores potentes de la GCS pero ninguno de ellos fue inhibidor de la SMS. Mientras que la inhibición frente a la IPCS en levaduras fue más baja en comparación con la inhibición de la GCS. A pesar de ello, uno de los análogos ensayados mostró selectividad frente a la IPCS ya que no se observó inhibición de la SMS y la GCS de mamíferos, mostrando así propiedades interesantes como agente antifúngico. De manera adicional, algunos análogos de (fito)esfingolípidos fueron ensayados como antígenos de células iNKT restringidas por la proteína CD1d y resultaron activos. Curiosamente, el compuesto más activo resultó ser un análogo de fitoceramida no glicosídico, aunque otros GSL también resultaron activos. Por otro lado, se desarrolló una metodología sintética para obtener aziridinas con configuración galacto (análogos de galactosa) enantiomericamente y diastereomericamente puras para obtener análogos de glicolípidos.</description>
<date>2013-01-07</date>
<date>2014-01-08</date>
<date>2012-12-18</date>
<type>info:eu-repo/semantics/doctoralThesis</type>
<type>info:eu-repo/semantics/publishedVersion</type>
<identifier>http://hdl.handle.net/10803/96979</identifier>
<identifier>http://mediaserver.xpp.cesca.cat/tdx/documents/14/46/02/144602932041939827037076578962064869825/</identifier>
<identifier>http://mediaserver.csuc.cat/tdx/documents/14/46/02/144602932041939827037076578962064869825/</identifier>
<identifier>http://mediaserver.csuc.cat/tdx/documents/14/46/02/144602932041939827037076578962064869825/</identifier>
<language>eng</language>
<rights>ADVERTIMENT. L'accés als continguts d'aquesta tesi doctoral i la seva utilització ha de respectar els drets de la persona autora. Pot ser utilitzada per a consulta o estudi personal, així com en activitats o materials d'investigació i docència en els termes establerts a l'art. 32 del Text Refós de la Llei de Propietat Intel·lectual (RDL 1/1996). Per altres utilitzacions es requereix l'autorització prèvia i expressa de la persona autora. En qualsevol cas, en la utilització dels seus continguts caldrà indicar de forma clara el nom i cognoms de la persona autora i el títol de la tesi doctoral. No s'autoritza la seva reproducció o altres formes d'explotació efectuades amb finalitats de lucre ni la seva comunicació pública des d'un lloc aliè al servei TDX. Tampoc s'autoritza la presentació del seu contingut en una finestra o marc aliè a TDX (framing). Aquesta reserva de drets afecta tant als continguts de la tesi com als seus resums i índexs.</rights>
<rights>info:eu-repo/semantics/openAccess</rights>
<publisher>Universitat de Barcelona</publisher>
<source>TDX (Tesis Doctorals en Xarxa)</source>
</thesis>
<?xml version="1.0" encoding="UTF-8" ?>
<record schemaLocation="http://www.loc.gov/MARC21/slim http://www.loc.gov/standards/marcxml/schema/MARC21slim.xsd">
<leader>00925njm 22002777a 4500</leader>
<datafield ind1=" " ind2=" " tag="042">
<subfield code="a">dc</subfield>
</datafield>
<datafield ind1=" " ind2=" " tag="720">
<subfield code="a">Alcaide López, Anna</subfield>
<subfield code="e">author</subfield>
</datafield>
<datafield ind1=" " ind2=" " tag="260">
<subfield code="c">2012-12-18</subfield>
</datafield>
<datafield ind1=" " ind2=" " tag="520">
<subfield code="a">Sphingolipids are essential biomolecules for the physiological cell function. In addition to its structural role in cell membranes, these lipids have also crucial functions in signal transduction and cell regulation. As a consequence of the important biological roles of sphingolipids, the synthesis of their analogs and the development of chemical inhibitors of sphingolipid enzymes are the object of current interest. Furthermore, it has been reported that slight modifications on the natural C1 (phyto)sphingosine scaffold or variations in its chain lengths can potentially alter the role and bioactivity of sphingolipid analogs. On the other hand, cyclitols are an important group of compounds due to their remarkable biological activities as well as their synthetic usefulness in the synthesis of other natural compounds or pharmaceuticals. Specially, the development of carbohydrate mimetics prompted primarily by their properties as glycosidase inhibitors, has led to a wide variety of novel structures by themselves or when considering them as key synthetic precursors of more complex molecules such as glycosphingolipids. For the above‐mentioned reasons, we developed a synthetic methodology towards sphingolipid analogs based on the regioselective ring‐opening reactions of N‐acylaziridines with different nucleophiles such as thiols or beta‐glycosil thiols, amines, phosphate derivatives or phosphorothioate derivatives. This approach is a short and flexible route for the synthesis of a variety of (phyto)sphingolipid analogs from aziridine derivatives and this method leads to molecules with different groups bonded to the C‐1 position of the sphingoid backbone from common intermediate aziridines by changing the nucleophile in the ring‐opening reaction step. Moreover, the diversity of compounds obtained is extended by introducing different N‐acyl groups at the nitrogen aziridine. Once, the desired sphingolipid analogs were obtained, a representative selection of them was tested in enzyme assays to identify inhibitors of mammalian sphingolipid metabolism enzymes, such as sphingomyelin synthase (SMS) and glucosylceramide synthase (GCS). Some of the tested analogs were potent inhibitors of GCS and none of them inhibited SMS at concentrations relevant for activity. In general, the inhibitory activity was higher for phytosphingosine analogs than their corresponding sphingosine analogs and the presence of the double bond between C4 and C5 of the sphingosine backbone in analogs was important for their bioactivity, since the dihydroceramide analogs were less active. In addition, a collection of (phyto)sphingolipid analogs were tested in an assay to identify inhibitors against yeast inositol phosphorylceramide synthase (IPCS). Generally, the inhibitory activities were lower than the inhibitions against GCS. However, one analog depicted selectivity against baker’s yeast IPCS since no inhibition of mammalian SMS and GCS was observed. For that reason, this analog showed potential properties as antifungal agent. Some (phyto)sphingolipid analogs were also tested as antigens for CD1d‐restricted iNKT cells and some of them were active, although this activity was lower when comparing with the endogenous glycolipid beta‐glucosylceramide. In particular, the most active compound was a nonglycosidic phytoceramide analog, but some glycosphingolipid analogs were also active in the activation of iNKT cells. However, these compounds were considered weak antigens. Finally, in order to obtain glycolipid analogs a synthetic methodology to obtain enantio‐ and diastereomerically pure galacto‐configured aziridines based on olefin aziridination reactions was examined. This consists in the use of nitrene precursors and a galactose related cyclohexene. The results obtained with this method showed potential for the preparation of the aziridine compounds.</subfield>
</datafield>
<datafield ind1=" " ind2=" " tag="520">
<subfield code="a">Los esfingolípidos (SL) son biomoléculas esenciales para las funciones fisiológicas de las células. El metabolismo anómalo o la expresión de SL específicos o glicoesfingolípidos (GSL) es el origen de diferentes enfermedades como las esfingolipidosis, causadas por la presencia de mutaciones en las enzimas que intervienen en la biosíntesis de SL o GSL. Debido a la importancia biológica de los SL, el desarrollo de inhibidores químicos de las enzimas que intervienen en el metabolismo de los SL de mamíferos y hongos, es un tema de gran interés científico. Por otro lado, cabe remarcar que los ciclitoles son un tipo de compuestos muy interesantes debido a su remarcable actividad biológica y a su utilidad como precursores sintéticos de moléculas más complejas como los GSL. Teniendo en cuenta las consideraciones comentadas anteriormente, se ha desarrollado una nueva metodología sintética para la obtención de análogos de SLs basada en las reacciones de apertura de Nacilaziridinas con diferentes nucleófilos como tioles, beta‐glicosil tioles, aminas, fosfatos y fosforotioatos. Esta aproximación es una ruta corta y flexible para la obtención de análogos lipídicos con diversidad estructural. Una selección representativa de los compuestos sintetizados se ensayó frente a la inhibición de enzimas del metabolismo de los mamíferos tales como la esfingomielin sintasa (SMS) y la glucosilceramida sintasa (GCS), y enzimas del metabolismo de los hongos como la inositol fosforilceramida sintasa (IPCS). Algunos de estos análogos resultaron ser inhibidores potentes de la GCS pero ninguno de ellos fue inhibidor de la SMS. Mientras que la inhibición frente a la IPCS en levaduras fue más baja en comparación con la inhibición de la GCS. A pesar de ello, uno de los análogos ensayados mostró selectividad frente a la IPCS ya que no se observó inhibición de la SMS y la GCS de mamíferos, mostrando así propiedades interesantes como agente antifúngico. De manera adicional, algunos análogos de (fito)esfingolípidos fueron ensayados como antígenos de células iNKT restringidas por la proteína CD1d y resultaron activos. Curiosamente, el compuesto más activo resultó ser un análogo de fitoceramida no glicosídico, aunque otros GSL también resultaron activos. Por otro lado, se desarrolló una metodología sintética para obtener aziridinas con configuración galacto (análogos de galactosa) enantiomericamente y diastereomericamente puras para obtener análogos de glicolípidos.</subfield>
</datafield>
<datafield ind1="8" ind2=" " tag="024">
<subfield code="a">http://hdl.handle.net/10803/96979</subfield>
</datafield>
<datafield ind1="8" ind2=" " tag="024">
<subfield code="a">http://mediaserver.xpp.cesca.cat/tdx/documents/14/46/02/144602932041939827037076578962064869825/</subfield>
</datafield>
<datafield ind1="8" ind2=" " tag="024">
<subfield code="a">http://mediaserver.csuc.cat/tdx/documents/14/46/02/144602932041939827037076578962064869825/</subfield>
</datafield>
<datafield ind1="8" ind2=" " tag="024">
<subfield code="a">http://mediaserver.csuc.cat/tdx/documents/14/46/02/144602932041939827037076578962064869825/</subfield>
</datafield>
<datafield ind1=" " ind2=" " tag="653">
<subfield code="a">Síntesi de fàrmacs</subfield>
</datafield>
<datafield ind1=" " ind2=" " tag="653">
<subfield code="a">Síntesis de fármacos</subfield>
</datafield>
<datafield ind1=" " ind2=" " tag="653">
<subfield code="a">Drug synthesis</subfield>
</datafield>
<datafield ind1=" " ind2=" " tag="653">
<subfield code="a">Sphingolipids</subfield>
</datafield>
<datafield ind1=" " ind2=" " tag="653">
<subfield code="a">Esfingolípidos (SL)</subfield>
</datafield>
<datafield ind1=" " ind2=" " tag="653">
<subfield code="a">Esfingolípids</subfield>
</datafield>
<datafield ind1=" " ind2=" " tag="653">
<subfield code="a">Aziridinas</subfield>
</datafield>
<datafield ind1=" " ind2=" " tag="653">
<subfield code="a">Aziridines</subfield>
</datafield>
<datafield ind1="0" ind2="0" tag="245">
<subfield code="a">A modular approach to sphingolipid analogs mediated by aziridines: Synthesis and biological studies</subfield>
</datafield>
</record>
<?xml version="1.0" encoding="UTF-8" ?>
<record schemaLocation="http://www.loc.gov/MARC21/slim http://www.loc.gov/standards/marcxml/schema/MARC21slim.xsd">
<leader>nam a 5i 4500</leader>
<datafield ind1=" " ind2=" " tag="653">
<subfield code="a">Síntesi de fàrmacs</subfield>
</datafield>
<datafield ind1=" " ind2=" " tag="653">
<subfield code="a">Síntesis de fármacos</subfield>
</datafield>
<datafield ind1=" " ind2=" " tag="653">
<subfield code="a">Drug synthesis</subfield>
</datafield>
<datafield ind1=" " ind2=" " tag="653">
<subfield code="a">Sphingolipids</subfield>
</datafield>
<datafield ind1=" " ind2=" " tag="653">
<subfield code="a">Esfingolípidos (SL)</subfield>
</datafield>
<datafield ind1=" " ind2=" " tag="653">
<subfield code="a">Esfingolípids</subfield>
</datafield>
<datafield ind1=" " ind2=" " tag="653">
<subfield code="a">Aziridinas</subfield>
</datafield>
<datafield ind1=" " ind2=" " tag="653">
<subfield code="a">Aziridines</subfield>
</datafield>
<datafield ind1="1" ind2="0" tag="245">
<subfield code="a">A modular approach to sphingolipid analogs mediated by aziridines: Synthesis and biological studies</subfield>
</datafield>
<datafield ind1=" " ind2="1" tag="264">
<subfield code="a">[Barcelona] :</subfield>
<subfield code="b">Universitat de Barcelona,</subfield>
<subfield code="c">[2013]</subfield>
</datafield>
<datafield ind1="4" ind2="0" tag="856">
<subfield code="z">Accés lliure</subfield>
<subfield code="u">http://www.tdx.cat/handle/10803/96979</subfield>
</datafield>
<controlfield tag="007">cr |||||||||||</controlfield>
<controlfield tag="008">AAMMDDs2013 sp ||||fsm||||0|| 0 eng|c</controlfield>
<datafield ind1="1" ind2=" " tag="100">
<subfield code="a">Alcaide López, Anna,</subfield>
<subfield code="e">autor</subfield>
</datafield>
<datafield ind1=" " ind2=" " tag="300">
<subfield code="a">1 recurs en línia (63 pàgines)</subfield>
</datafield>
<datafield ind1=" " ind2=" " tag="500">
<subfield code="a">El text dels capítols 3, 5, 6 i 7 ha estat retirat seguint instruccions de l’autora de la tesi, en existir participació d’empreses, existir conveni de confidencialitat o existeix la possibilitat de generar patents / El texto delos capítulos 3,5, 6 y 7 ha sido retirado siguiendo instrucciones de la autora, al existir participación de empresas, convenio de confidencialidad o la posibilidad de generar patentes / The text of chapters 3, 5, 6 and 7 has been withdrawn on the instructions of the author, as there is participation of undertakings, confidentiality agreement or the ability to generate patent</subfield>
</datafield>
<datafield ind1=" " ind2=" " tag="502">
<subfield code="g">Tesi</subfield>
<subfield code="b">Doctorat</subfield>
<subfield code="c">Universitat de Barcelona. Departament de Farmacologia i Química Terapèutica</subfield>
<subfield code="d">2012</subfield>
</datafield>
<datafield ind1="2" ind2=" " tag="710">
<subfield code="a">Universitat de Barcelona. Departament de Farmacologia i Química Terapèutica</subfield>
</datafield>
<datafield ind1=" " ind2="4" tag="655">
<subfield code="a">Tesis i dissertacions electròniques</subfield>
</datafield>
<datafield ind1="1" ind2=" " tag="700">
<subfield code="a">Llebaria Soldevila, Amadeu,</subfield>
<subfield code="e">supervisor acadèmic</subfield>
</datafield>
<datafield ind1="1" ind2=" " tag="700">
<subfield code="a">Delgado Cirilo, Antonio,</subfield>
<subfield code="e">supervisor acadèmic</subfield>
</datafield>
<datafield ind1="0" ind2=" " tag="730">
<subfield code="a">TDX</subfield>
</datafield>
<datafield ind1=" " ind2=" " tag="017">
<subfield code="a">DL B. 1378-2013</subfield>
<subfield code="b">Biblioteca de Catalunya</subfield>
</datafield>
<datafield ind1=" " ind2=" " tag="520">
<subfield code="a">Sphingolipids are essential biomolecules for the physiological cell function. In addition to its structural role in cell membranes, these lipids have also crucial functions in signal transduction and cell regulation. As a consequence of the important biological roles of sphingolipids, the synthesis of their analogs and the development of chemical inhibitors of sphingolipid enzymes are the object of current interest. Furthermore, it has been reported that slight modifications on the natural C1 (phyto)sphingosine scaffold or variations in its chain lengths can potentially alter the role and bioactivity of sphingolipid analogs. On the other hand, cyclitols are an important group of compounds due to their remarkable biological activities as well as their synthetic usefulness in the synthesis of other natural compounds or pharmaceuticals. Specially, the development of carbohydrate mimetics prompted primarily by their properties as glycosidase inhibitors, has led to a wide variety of novel structures by themselves or when considering them as key synthetic precursors of more complex molecules such as glycosphingolipids. For the above‐mentioned reasons, we developed a synthetic methodology towards sphingolipid analogs based on the regioselective ring‐opening reactions of N‐acylaziridines with different nucleophiles such as thiols or beta‐glycosil thiols, amines, phosphate derivatives or phosphorothioate derivatives. This approach is a short and flexible route for the synthesis of a variety of (phyto)sphingolipid analogs from aziridine derivatives and this method leads to molecules with different groups bonded to the C‐1 position of the sphingoid backbone from common intermediate aziridines by changing the nucleophile in the ring‐opening reaction step. Moreover, the diversity of compounds obtained is extended by introducing different N‐acyl groups at the nitrogen aziridine. Once, the desired sphingolipid analogs were obtained, a representative selection of them was tested in enzyme assays to identify inhibitors of mammalian sphingolipid metabolism enzymes, such as sphingomyelin synthase (SMS) and glucosylceramide synthase (GCS). Some of the tested analogs were potent inhibitors of GCS and none of them inhibited SMS at concentrations relevant for activity. In general, the inhibitory activity was higher for phytosphingosine analogs than their corresponding sphingosine analogs and the presence of the double bond between C4 and C5 of the sphingosine backbone in analogs was important for their bioactivity, since the dihydroceramide analogs were less active. In addition, a collection of (phyto)sphingolipid analogs were tested in an assay to identify inhibitors against yeast inositol phosphorylceramide synthase (IPCS). Generally, the inhibitory activities were lower than the inhibitions against GCS. However, one analog depicted selectivity against baker’s yeast IPCS since no inhibition of mammalian SMS and GCS was observed. For that reason, this analog showed potential properties as antifungal agent. Some (phyto)sphingolipid analogs were also tested as antigens for CD1d‐restricted iNKT cells and some of them were active, although this activity was lower when comparing with the endogenous glycolipid beta‐glucosylceramide. In particular, the most active compound was a nonglycosidic phytoceramide analog, but some glycosphingolipid analogs were also active in the activation of iNKT cells. However, these compounds were considered weak antigens. Finally, in order to obtain glycolipid analogs a synthetic methodology to obtain enantio‐ and diastereomerically pure galacto‐configured aziridines based on olefin aziridination reactions was examined. This consists in the use of nitrene precursors and a galactose related cyclohexene. The results obtained with this method showed potential for the preparation of the aziridine compounds.</subfield>
</datafield>
<datafield ind1=" " ind2=" " tag="998">
<subfield code="a">b</subfield>
</datafield>
<datafield ind1=" " ind2=" " tag="040">
<subfield code="a">ES-BaCBU</subfield>
<subfield code="b">cat</subfield>
<subfield code="e">rda</subfield>
<subfield code="c">ES-BaCBU</subfield>
</datafield>
<datafield ind1=" " ind2=" " tag="336">
<subfield code="a">text</subfield>
<subfield code="b">txt</subfield>
<subfield code="2">rdacontent</subfield>
</datafield>
<datafield ind1=" " ind2=" " tag="337">
<subfield code="a">informàtic</subfield>
<subfield code="b">c</subfield>
<subfield code="2">rdamedia</subfield>
</datafield>
<datafield ind1=" " ind2=" " tag="338">
<subfield code="a">recurs en línia</subfield>
<subfield code="b">cr</subfield>
<subfield code="2">rdacarrier</subfield>
</datafield>
</record>
<?xml version="1.0" encoding="UTF-8" ?>
<mets ID=" DSpace_ITEM_10803-96979" OBJID=" hdl:10803/96979" PROFILE="DSpace METS SIP Profile 1.0" TYPE="DSpace ITEM" schemaLocation="http://www.loc.gov/METS/ http://www.loc.gov/standards/mets/mets.xsd">
<metsHdr CREATEDATE="2017-10-06T22:40:35Z">
<agent ROLE="CUSTODIAN" TYPE="ORGANIZATION">
<name>TDX</name>
</agent>
</metsHdr>
<dmdSec ID="DMD_10803_96979">
<mdWrap MDTYPE="MODS">
<xmlData schemaLocation="http://www.loc.gov/mods/v3 http://www.loc.gov/standards/mods/v3/mods-3-1.xsd">
<mods:mods schemaLocation="http://www.loc.gov/mods/v3 http://www.loc.gov/standards/mods/v3/mods-3-1.xsd">
<mods:name>
<mods:role>
<mods:roleTerm type="text">author</mods:roleTerm>
</mods:role>
<mods:namePart>Alcaide López, Anna</mods:namePart>
</mods:name>
<mods:name>
<mods:role>
<mods:roleTerm type="text">authoremail</mods:roleTerm>
</mods:role>
<mods:namePart>anna_alcaide@hotmail.com</mods:namePart>
</mods:name>
<mods:name>
<mods:role>
<mods:roleTerm type="text">authoremailshow</mods:roleTerm>
</mods:role>
<mods:namePart>false</mods:namePart>
</mods:name>
<mods:name>
<mods:role>
<mods:roleTerm type="text">director</mods:roleTerm>
</mods:role>
<mods:namePart>Llebaria Soldevila, Amadeu</mods:namePart>
</mods:name>
<mods:name>
<mods:role>
<mods:roleTerm type="text">tutor</mods:roleTerm>
</mods:role>
<mods:namePart>Delgado Cirilo, Antonio</mods:namePart>
</mods:name>
<mods:name>
<mods:role>
<mods:roleTerm type="text">authorsendemail</mods:roleTerm>
</mods:role>
<mods:namePart>true</mods:namePart>
</mods:name>
<mods:extension>
<mods:dateAccessioned encoding="iso8601">2013-01-07T09:05:55Z</mods:dateAccessioned>
</mods:extension>
<mods:extension>
<mods:dateAvailable encoding="iso8601">2014-01-08T06:45:04Z</mods:dateAvailable>
</mods:extension>
<mods:originInfo>
<mods:dateIssued encoding="iso8601">2012-12-18</mods:dateIssued>
</mods:originInfo>
<mods:identifier type="uri">http://hdl.handle.net/10803/96979</mods:identifier>
<mods:identifier type="pdf">http://mediaserver.xpp.cesca.cat/tdx/documents/14/46/02/144602932041939827037076578962064869825/</mods:identifier>
<mods:abstract>Sphingolipids are essential biomolecules for the physiological cell function. In addition to its structural role in cell membranes, these lipids have also crucial functions in signal transduction and cell regulation. As a consequence of the important biological roles of sphingolipids, the synthesis of their analogs and the development of chemical inhibitors of sphingolipid enzymes are the object of current interest. Furthermore, it has been reported that slight modifications on the natural C1 (phyto)sphingosine scaffold or variations in its chain lengths can potentially alter the role and bioactivity of sphingolipid analogs. On the other hand, cyclitols are an important group of compounds due to their remarkable biological activities as well as their synthetic usefulness in the synthesis of other natural compounds or pharmaceuticals. Specially, the development of carbohydrate mimetics prompted primarily by their properties as glycosidase inhibitors, has led to a wide variety of novel structures by themselves or when considering them as key synthetic precursors of more complex molecules such as glycosphingolipids. For the above‐mentioned reasons, we developed a synthetic methodology towards sphingolipid analogs based on the regioselective ring‐opening reactions of N‐acylaziridines with different nucleophiles such as thiols or beta‐glycosil thiols, amines, phosphate derivatives or phosphorothioate derivatives. This approach is a short and flexible route for the synthesis of a variety of (phyto)sphingolipid analogs from aziridine derivatives and this method leads to molecules with different groups bonded to the C‐1 position of the sphingoid backbone from common intermediate aziridines by changing the nucleophile in the ring‐opening reaction step. Moreover, the diversity of compounds obtained is extended by introducing different N‐acyl groups at the nitrogen aziridine. Once, the desired sphingolipid analogs were obtained, a representative selection of them was tested in enzyme assays to identify inhibitors of mammalian sphingolipid metabolism enzymes, such as sphingomyelin synthase (SMS) and glucosylceramide synthase (GCS). Some of the tested analogs were potent inhibitors of GCS and none of them inhibited SMS at concentrations relevant for activity. In general, the inhibitory activity was higher for phytosphingosine analogs than their corresponding sphingosine analogs and the presence of the double bond between C4 and C5 of the sphingosine backbone in analogs was important for their bioactivity, since the dihydroceramide analogs were less active. In addition, a collection of (phyto)sphingolipid analogs were tested in an assay to identify inhibitors against yeast inositol phosphorylceramide synthase (IPCS). Generally, the inhibitory activities were lower than the inhibitions against GCS. However, one analog depicted selectivity against baker’s yeast IPCS since no inhibition of mammalian SMS and GCS was observed. For that reason, this analog showed potential properties as antifungal agent. Some (phyto)sphingolipid analogs were also tested as antigens for CD1d‐restricted iNKT cells and some of them were active, although this activity was lower when comparing with the endogenous glycolipid beta‐glucosylceramide. In particular, the most active compound was a nonglycosidic phytoceramide analog, but some glycosphingolipid analogs were also active in the activation of iNKT cells. However, these compounds were considered weak antigens. Finally, in order to obtain glycolipid analogs a synthetic methodology to obtain enantio‐ and diastereomerically pure galacto‐configured aziridines based on olefin aziridination reactions was examined. This consists in the use of nitrene precursors and a galactose related cyclohexene. The results obtained with this method showed potential for the preparation of the aziridine compounds.</mods:abstract>
<mods:abstract>Los esfingolípidos (SL) son biomoléculas esenciales para las funciones fisiológicas de las células. El metabolismo anómalo o la expresión de SL específicos o glicoesfingolípidos (GSL) es el origen de diferentes enfermedades como las esfingolipidosis, causadas por la presencia de mutaciones en las enzimas que intervienen en la biosíntesis de SL o GSL. Debido a la importancia biológica de los SL, el desarrollo de inhibidores químicos de las enzimas que intervienen en el metabolismo de los SL de mamíferos y hongos, es un tema de gran interés científico. Por otro lado, cabe remarcar que los ciclitoles son un tipo de compuestos muy interesantes debido a su remarcable actividad biológica y a su utilidad como precursores sintéticos de moléculas más complejas como los GSL. Teniendo en cuenta las consideraciones comentadas anteriormente, se ha desarrollado una nueva metodología sintética para la obtención de análogos de SLs basada en las reacciones de apertura de Nacilaziridinas con diferentes nucleófilos como tioles, beta‐glicosil tioles, aminas, fosfatos y fosforotioatos. Esta aproximación es una ruta corta y flexible para la obtención de análogos lipídicos con diversidad estructural. Una selección representativa de los compuestos sintetizados se ensayó frente a la inhibición de enzimas del metabolismo de los mamíferos tales como la esfingomielin sintasa (SMS) y la glucosilceramida sintasa (GCS), y enzimas del metabolismo de los hongos como la inositol fosforilceramida sintasa (IPCS). Algunos de estos análogos resultaron ser inhibidores potentes de la GCS pero ninguno de ellos fue inhibidor de la SMS. Mientras que la inhibición frente a la IPCS en levaduras fue más baja en comparación con la inhibición de la GCS. A pesar de ello, uno de los análogos ensayados mostró selectividad frente a la IPCS ya que no se observó inhibición de la SMS y la GCS de mamíferos, mostrando así propiedades interesantes como agente antifúngico. De manera adicional, algunos análogos de (fito)esfingolípidos fueron ensayados como antígenos de células iNKT restringidas por la proteína CD1d y resultaron activos. Curiosamente, el compuesto más activo resultó ser un análogo de fitoceramida no glicosídico, aunque otros GSL también resultaron activos. Por otro lado, se desarrolló una metodología sintética para obtener aziridinas con configuración galacto (análogos de galactosa) enantiomericamente y diastereomericamente puras para obtener análogos de glicolípidos.</mods:abstract>
<mods:language>
<mods:languageTerm authority="rfc3066">eng</mods:languageTerm>
</mods:language>
<mods:subject>
<mods:topic>Síntesi de fàrmacs</mods:topic>
</mods:subject>
<mods:subject>
<mods:topic>Síntesis de fármacos</mods:topic>
</mods:subject>
<mods:subject>
<mods:topic>Drug synthesis</mods:topic>
</mods:subject>
<mods:subject>
<mods:topic>Sphingolipids</mods:topic>
</mods:subject>
<mods:subject>
<mods:topic>Esfingolípidos (SL)</mods:topic>
</mods:subject>
<mods:subject>
<mods:topic>Esfingolípids</mods:topic>
</mods:subject>
<mods:subject>
<mods:topic>Aziridinas</mods:topic>
</mods:subject>
<mods:subject>
<mods:topic>Aziridines</mods:topic>
</mods:subject>
<mods:titleInfo>
<mods:title>A modular approach to sphingolipid analogs mediated by aziridines: Synthesis and biological studies</mods:title>
</mods:titleInfo>
<mods:genre>info:eu-repo/semantics/doctoralThesis</mods:genre>
</mods:mods>
</xmlData>
</mdWrap>
</dmdSec>
<amdSec ID="FO_10803_96979_1">
<techMD ID="TECH_O_10803_96979_1">
<mdWrap MDTYPE="PREMIS">
<xmlData schemaLocation="http://www.loc.gov/standards/premis http://www.loc.gov/standards/premis/PREMIS-v1-0.xsd">
<premis:premis>
<premis:object>
<premis:objectIdentifier>
<premis:objectIdentifierType>URL</premis:objectIdentifierType>
<premis:objectIdentifierValue>http://www.tdx.cat/bitstream/10803/96979/1/AAL_PhD_THESIS.pdf</premis:objectIdentifierValue>
</premis:objectIdentifier>
<premis:objectCategory>File</premis:objectCategory>
<premis:objectCharacteristics>
<premis:fixity>
<premis:messageDigestAlgorithm>MD5</premis:messageDigestAlgorithm>
<premis:messageDigest>3a742d502554e479b809eb35228d5d56</premis:messageDigest>
</premis:fixity>
<premis:size>1251494</premis:size>
<premis:format>
<premis:formatDesignation>
<premis:formatName>application/pdf</premis:formatName>
</premis:formatDesignation>
</premis:format>
</premis:objectCharacteristics>
<premis:originalName>AAL_PhD_THESIS.pdf</premis:originalName>
</premis:object>
</premis:premis>
</xmlData>
</mdWrap>
</techMD>
</amdSec>
<amdSec ID="FT_10803_96979_2">
<techMD ID="TECH_T_10803_96979_2">
<mdWrap MDTYPE="PREMIS">
<xmlData schemaLocation="http://www.loc.gov/standards/premis http://www.loc.gov/standards/premis/PREMIS-v1-0.xsd">
<premis:premis>
<premis:object>
<premis:objectIdentifier>
<premis:objectIdentifierType>URL</premis:objectIdentifierType>
<premis:objectIdentifierValue>http://www.tdx.cat/bitstream/10803/96979/2/AAL_PhD_THESIS.pdf.txt</premis:objectIdentifierValue>
</premis:objectIdentifier>
<premis:objectCategory>File</premis:objectCategory>
<premis:objectCharacteristics>
<premis:fixity>
<premis:messageDigestAlgorithm>MD5</premis:messageDigestAlgorithm>
<premis:messageDigest>71a22e2d6253079fb3856c2e108e0486</premis:messageDigest>
</premis:fixity>
<premis:size>87912</premis:size>
<premis:format>
<premis:formatDesignation>
<premis:formatName>text/plain</premis:formatName>
</premis:formatDesignation>
</premis:format>
</premis:objectCharacteristics>
<premis:originalName>AAL_PhD_THESIS.pdf.txt</premis:originalName>
</premis:object>
</premis:premis>
</xmlData>
</mdWrap>
</techMD>
</amdSec>
<fileSec>
<fileGrp USE="ORIGINAL">
<file ADMID="FO_10803_96979_1" CHECKSUM="3a742d502554e479b809eb35228d5d56" CHECKSUMTYPE="MD5" GROUPID="GROUP_BITSTREAM_10803_96979_1" ID="BITSTREAM_ORIGINAL_10803_96979_1" MIMETYPE="application/pdf" SEQ="1" SIZE="1251494">
</file>
</fileGrp>
<fileGrp USE="TEXT">
<file ADMID="FT_10803_96979_2" CHECKSUM="71a22e2d6253079fb3856c2e108e0486" CHECKSUMTYPE="MD5" GROUPID="GROUP_BITSTREAM_10803_96979_2" ID="BITSTREAM_TEXT_10803_96979_2" MIMETYPE="text/plain" SEQ="2" SIZE="87912">
</file>
</fileGrp>
</fileSec>
<structMap LABEL="DSpace Object" TYPE="LOGICAL">
<div ADMID="DMD_10803_96979" TYPE="DSpace Object Contents">
<div TYPE="DSpace BITSTREAM">
</div>
</div>
</structMap>
</mets>
<?xml version="1.0" encoding="UTF-8" ?>
<mods:mods schemaLocation="http://www.loc.gov/mods/v3 http://www.loc.gov/standards/mods/v3/mods-3-1.xsd">
<mods:name>
<mods:namePart>Alcaide López, Anna</mods:namePart>
</mods:name>
<mods:extension>
<mods:dateAvailable encoding="iso8601">2013-01-07T09:05:55Z</mods:dateAvailable>
</mods:extension>
<mods:extension>
<mods:dateAccessioned encoding="iso8601">2014-01-08T06:45:04Z</mods:dateAccessioned>
</mods:extension>
<mods:originInfo>
<mods:dateIssued encoding="iso8601">2012-12-18</mods:dateIssued>
</mods:originInfo>
<mods:identifier type="uri">http://hdl.handle.net/10803/96979</mods:identifier>
<mods:identifier type="pdf">http://mediaserver.xpp.cesca.cat/tdx/documents/14/46/02/144602932041939827037076578962064869825/</mods:identifier>
<mods:identifier type="pdf">http://mediaserver.csuc.cat/tdx/documents/14/46/02/144602932041939827037076578962064869825/</mods:identifier>
<mods:identifier type="pdf">http://mediaserver.csuc.cat/tdx/documents/14/46/02/144602932041939827037076578962064869825/</mods:identifier>
<mods:abstract>Sphingolipids are essential biomolecules for the physiological cell function. In addition to its structural role in cell membranes, these lipids have also crucial functions in signal transduction and cell regulation. As a consequence of the important biological roles of sphingolipids, the synthesis of their analogs and the development of chemical inhibitors of sphingolipid enzymes are the object of current interest. Furthermore, it has been reported that slight modifications on the natural C1 (phyto)sphingosine scaffold or variations in its chain lengths can potentially alter the role and bioactivity of sphingolipid analogs. On the other hand, cyclitols are an important group of compounds due to their remarkable biological activities as well as their synthetic usefulness in the synthesis of other natural compounds or pharmaceuticals. Specially, the development of carbohydrate mimetics prompted primarily by their properties as glycosidase inhibitors, has led to a wide variety of novel structures by themselves or when considering them as key synthetic precursors of more complex molecules such as glycosphingolipids. For the above‐mentioned reasons, we developed a synthetic methodology towards sphingolipid analogs based on the regioselective ring‐opening reactions of N‐acylaziridines with different nucleophiles such as thiols or beta‐glycosil thiols, amines, phosphate derivatives or phosphorothioate derivatives. This approach is a short and flexible route for the synthesis of a variety of (phyto)sphingolipid analogs from aziridine derivatives and this method leads to molecules with different groups bonded to the C‐1 position of the sphingoid backbone from common intermediate aziridines by changing the nucleophile in the ring‐opening reaction step. Moreover, the diversity of compounds obtained is extended by introducing different N‐acyl groups at the nitrogen aziridine. Once, the desired sphingolipid analogs were obtained, a representative selection of them was tested in enzyme assays to identify inhibitors of mammalian sphingolipid metabolism enzymes, such as sphingomyelin synthase (SMS) and glucosylceramide synthase (GCS). Some of the tested analogs were potent inhibitors of GCS and none of them inhibited SMS at concentrations relevant for activity. In general, the inhibitory activity was higher for phytosphingosine analogs than their corresponding sphingosine analogs and the presence of the double bond between C4 and C5 of the sphingosine backbone in analogs was important for their bioactivity, since the dihydroceramide analogs were less active. In addition, a collection of (phyto)sphingolipid analogs were tested in an assay to identify inhibitors against yeast inositol phosphorylceramide synthase (IPCS). Generally, the inhibitory activities were lower than the inhibitions against GCS. However, one analog depicted selectivity against baker’s yeast IPCS since no inhibition of mammalian SMS and GCS was observed. For that reason, this analog showed potential properties as antifungal agent. Some (phyto)sphingolipid analogs were also tested as antigens for CD1d‐restricted iNKT cells and some of them were active, although this activity was lower when comparing with the endogenous glycolipid beta‐glucosylceramide. In particular, the most active compound was a nonglycosidic phytoceramide analog, but some glycosphingolipid analogs were also active in the activation of iNKT cells. However, these compounds were considered weak antigens. Finally, in order to obtain glycolipid analogs a synthetic methodology to obtain enantio‐ and diastereomerically pure galacto‐configured aziridines based on olefin aziridination reactions was examined. This consists in the use of nitrene precursors and a galactose related cyclohexene. The results obtained with this method showed potential for the preparation of the aziridine compounds.</mods:abstract>
<mods:abstract>Los esfingolípidos (SL) son biomoléculas esenciales para las funciones fisiológicas de las células. El metabolismo anómalo o la expresión de SL específicos o glicoesfingolípidos (GSL) es el origen de diferentes enfermedades como las esfingolipidosis, causadas por la presencia de mutaciones en las enzimas que intervienen en la biosíntesis de SL o GSL. Debido a la importancia biológica de los SL, el desarrollo de inhibidores químicos de las enzimas que intervienen en el metabolismo de los SL de mamíferos y hongos, es un tema de gran interés científico. Por otro lado, cabe remarcar que los ciclitoles son un tipo de compuestos muy interesantes debido a su remarcable actividad biológica y a su utilidad como precursores sintéticos de moléculas más complejas como los GSL. Teniendo en cuenta las consideraciones comentadas anteriormente, se ha desarrollado una nueva metodología sintética para la obtención de análogos de SLs basada en las reacciones de apertura de Nacilaziridinas con diferentes nucleófilos como tioles, beta‐glicosil tioles, aminas, fosfatos y fosforotioatos. Esta aproximación es una ruta corta y flexible para la obtención de análogos lipídicos con diversidad estructural. Una selección representativa de los compuestos sintetizados se ensayó frente a la inhibición de enzimas del metabolismo de los mamíferos tales como la esfingomielin sintasa (SMS) y la glucosilceramida sintasa (GCS), y enzimas del metabolismo de los hongos como la inositol fosforilceramida sintasa (IPCS). Algunos de estos análogos resultaron ser inhibidores potentes de la GCS pero ninguno de ellos fue inhibidor de la SMS. Mientras que la inhibición frente a la IPCS en levaduras fue más baja en comparación con la inhibición de la GCS. A pesar de ello, uno de los análogos ensayados mostró selectividad frente a la IPCS ya que no se observó inhibición de la SMS y la GCS de mamíferos, mostrando así propiedades interesantes como agente antifúngico. De manera adicional, algunos análogos de (fito)esfingolípidos fueron ensayados como antígenos de células iNKT restringidas por la proteína CD1d y resultaron activos. Curiosamente, el compuesto más activo resultó ser un análogo de fitoceramida no glicosídico, aunque otros GSL también resultaron activos. Por otro lado, se desarrolló una metodología sintética para obtener aziridinas con configuración galacto (análogos de galactosa) enantiomericamente y diastereomericamente puras para obtener análogos de glicolípidos.</mods:abstract>
<mods:language>
<mods:languageTerm>eng</mods:languageTerm>
</mods:language>
<mods:accessCondition type="useAndReproduction">ADVERTIMENT. L'accés als continguts d'aquesta tesi doctoral i la seva utilització ha de respectar els drets de la persona autora. Pot ser utilitzada per a consulta o estudi personal, així com en activitats o materials d'investigació i docència en els termes establerts a l'art. 32 del Text Refós de la Llei de Propietat Intel·lectual (RDL 1/1996). Per altres utilitzacions es requereix l'autorització prèvia i expressa de la persona autora. En qualsevol cas, en la utilització dels seus continguts caldrà indicar de forma clara el nom i cognoms de la persona autora i el títol de la tesi doctoral. No s'autoritza la seva reproducció o altres formes d'explotació efectuades amb finalitats de lucre ni la seva comunicació pública des d'un lloc aliè al servei TDX. Tampoc s'autoritza la presentació del seu contingut en una finestra o marc aliè a TDX (framing). Aquesta reserva de drets afecta tant als continguts de la tesi com als seus resums i índexs.</mods:accessCondition>
<mods:accessCondition type="useAndReproduction">info:eu-repo/semantics/openAccess</mods:accessCondition>
<mods:subject>
<mods:topic>Síntesi de fàrmacs</mods:topic>
</mods:subject>
<mods:subject>
<mods:topic>Síntesis de fármacos</mods:topic>
</mods:subject>
<mods:subject>
<mods:topic>Drug synthesis</mods:topic>
</mods:subject>
<mods:subject>
<mods:topic>Sphingolipids</mods:topic>
</mods:subject>
<mods:subject>
<mods:topic>Esfingolípidos (SL)</mods:topic>
</mods:subject>
<mods:subject>
<mods:topic>Esfingolípids</mods:topic>
</mods:subject>
<mods:subject>
<mods:topic>Aziridinas</mods:topic>
</mods:subject>
<mods:subject>
<mods:topic>Aziridines</mods:topic>
</mods:subject>
<mods:titleInfo>
<mods:title>A modular approach to sphingolipid analogs mediated by aziridines: Synthesis and biological studies</mods:title>
</mods:titleInfo>
<mods:genre>info:eu-repo/semantics/doctoralThesis</mods:genre>
<mods:genre>info:eu-repo/semantics/publishedVersion</mods:genre>
</mods:mods>
<?xml version="1.0" encoding="UTF-8" ?>
<atom:entry schemaLocation="http://www.w3.org/2005/Atom http://www.kbcafe.com/rss/atom.xsd.xml">
<atom:id>http://hdl.handle.net/10803/96979/ore.xml</atom:id>
<atom:published>2014-01-08T06:45:04Z</atom:published>
<atom:updated>2013-01-07T09:05:55Z</atom:updated>
<atom:source>
<atom:generator>TDX</atom:generator>
</atom:source>
<atom:title>A modular approach to sphingolipid analogs mediated by aziridines: Synthesis and biological studies</atom:title>
<atom:author>
<atom:name>Alcaide López, Anna</atom:name>
</atom:author>
<oreatom:triples>
<rdf:Description about="http://hdl.handle.net/10803/96979/ore.xml#atom">
<dcterms:modified>2013-01-07T09:05:55Z</dcterms:modified>
</rdf:Description>
<rdf:Description about="http://www.tdx.cat/bitstream/10803/96979/3/AAL_PhD_THESIS.pdf.xml">
<dcterms:description>MEDIA_DOCUMENT</dcterms:description>
</rdf:Description>
<rdf:Description about="http://www.tdx.cat/bitstream/10803/96979/1/AAL_PhD_THESIS.pdf">
<dcterms:description>ORIGINAL</dcterms:description>
</rdf:Description>
<rdf:Description about="http://www.tdx.cat/bitstream/10803/96979/2/AAL_PhD_THESIS.pdf.txt">
<dcterms:description>TEXT</dcterms:description>
</rdf:Description>
</oreatom:triples>
</atom:entry>
<?xml version="1.0" encoding="UTF-8" ?>
<qdc:qualifieddc schemaLocation="http://purl.org/dc/elements/1.1/ http://dublincore.org/schemas/xmls/qdc/2006/01/06/dc.xsd http://purl.org/dc/terms/ http://dublincore.org/schemas/xmls/qdc/2006/01/06/dcterms.xsd http://dspace.org/qualifieddc/ http://www.ukoln.ac.uk/metadata/dcmi/xmlschema/qualifieddc.xsd">
<dc:title>A modular approach to sphingolipid analogs mediated by aziridines: Synthesis and biological studies</dc:title>
<dc:creator>Alcaide López, Anna</dc:creator>
<dc:contributor>anna_alcaide@hotmail.com</dc:contributor>
<dc:contributor>false</dc:contributor>
<dc:contributor>Llebaria Soldevila, Amadeu</dc:contributor>
<dc:contributor>Delgado Cirilo, Antonio</dc:contributor>
<dc:contributor>true</dc:contributor>
<dc:subject>Síntesi de fàrmacs</dc:subject>
<dc:subject>Síntesis de fármacos</dc:subject>
<dc:subject>Drug synthesis</dc:subject>
<dc:subject>Sphingolipids</dc:subject>
<dc:subject>Esfingolípidos (SL)</dc:subject>
<dc:subject>Esfingolípids</dc:subject>
<dc:subject>Aziridinas</dc:subject>
<dc:subject>Aziridines</dc:subject>
<dcterms:abstract>Sphingolipids are essential biomolecules for the physiological cell function. In addition to its structural role in cell membranes, these lipids have also crucial functions in signal transduction and cell regulation. As a consequence of the important biological roles of sphingolipids, the synthesis of their analogs and the development of chemical inhibitors of sphingolipid enzymes are the object of current interest. Furthermore, it has been reported that slight modifications on the natural C1 (phyto)sphingosine scaffold or variations in its chain lengths can potentially alter the role and bioactivity of sphingolipid analogs. On the other hand, cyclitols are an important group of compounds due to their remarkable biological activities as well as their synthetic usefulness in the synthesis of other natural compounds or pharmaceuticals. Specially, the development of carbohydrate mimetics prompted primarily by their properties as glycosidase inhibitors, has led to a wide variety of novel structures by themselves or when considering them as key synthetic precursors of more complex molecules such as glycosphingolipids. For the above‐mentioned reasons, we developed a synthetic methodology towards sphingolipid analogs based on the regioselective ring‐opening reactions of N‐acylaziridines with different nucleophiles such as thiols or beta‐glycosil thiols, amines, phosphate derivatives or phosphorothioate derivatives. This approach is a short and flexible route for the synthesis of a variety of (phyto)sphingolipid analogs from aziridine derivatives and this method leads to molecules with different groups bonded to the C‐1 position of the sphingoid backbone from common intermediate aziridines by changing the nucleophile in the ring‐opening reaction step. Moreover, the diversity of compounds obtained is extended by introducing different N‐acyl groups at the nitrogen aziridine. Once, the desired sphingolipid analogs were obtained, a representative selection of them was tested in enzyme assays to identify inhibitors of mammalian sphingolipid metabolism enzymes, such as sphingomyelin synthase (SMS) and glucosylceramide synthase (GCS). Some of the tested analogs were potent inhibitors of GCS and none of them inhibited SMS at concentrations relevant for activity. In general, the inhibitory activity was higher for phytosphingosine analogs than their corresponding sphingosine analogs and the presence of the double bond between C4 and C5 of the sphingosine backbone in analogs was important for their bioactivity, since the dihydroceramide analogs were less active. In addition, a collection of (phyto)sphingolipid analogs were tested in an assay to identify inhibitors against yeast inositol phosphorylceramide synthase (IPCS). Generally, the inhibitory activities were lower than the inhibitions against GCS. However, one analog depicted selectivity against baker’s yeast IPCS since no inhibition of mammalian SMS and GCS was observed. For that reason, this analog showed potential properties as antifungal agent. Some (phyto)sphingolipid analogs were also tested as antigens for CD1d‐restricted iNKT cells and some of them were active, although this activity was lower when comparing with the endogenous glycolipid beta‐glucosylceramide. In particular, the most active compound was a nonglycosidic phytoceramide analog, but some glycosphingolipid analogs were also active in the activation of iNKT cells. However, these compounds were considered weak antigens. Finally, in order to obtain glycolipid analogs a synthetic methodology to obtain enantio‐ and diastereomerically pure galacto‐configured aziridines based on olefin aziridination reactions was examined. This consists in the use of nitrene precursors and a galactose related cyclohexene. The results obtained with this method showed potential for the preparation of the aziridine compounds.</dcterms:abstract>
<dcterms:abstract>Los esfingolípidos (SL) son biomoléculas esenciales para las funciones fisiológicas de las células. El metabolismo anómalo o la expresión de SL específicos o glicoesfingolípidos (GSL) es el origen de diferentes enfermedades como las esfingolipidosis, causadas por la presencia de mutaciones en las enzimas que intervienen en la biosíntesis de SL o GSL. Debido a la importancia biológica de los SL, el desarrollo de inhibidores químicos de las enzimas que intervienen en el metabolismo de los SL de mamíferos y hongos, es un tema de gran interés científico. Por otro lado, cabe remarcar que los ciclitoles son un tipo de compuestos muy interesantes debido a su remarcable actividad biológica y a su utilidad como precursores sintéticos de moléculas más complejas como los GSL. Teniendo en cuenta las consideraciones comentadas anteriormente, se ha desarrollado una nueva metodología sintética para la obtención de análogos de SLs basada en las reacciones de apertura de Nacilaziridinas con diferentes nucleófilos como tioles, beta‐glicosil tioles, aminas, fosfatos y fosforotioatos. Esta aproximación es una ruta corta y flexible para la obtención de análogos lipídicos con diversidad estructural. Una selección representativa de los compuestos sintetizados se ensayó frente a la inhibición de enzimas del metabolismo de los mamíferos tales como la esfingomielin sintasa (SMS) y la glucosilceramida sintasa (GCS), y enzimas del metabolismo de los hongos como la inositol fosforilceramida sintasa (IPCS). Algunos de estos análogos resultaron ser inhibidores potentes de la GCS pero ninguno de ellos fue inhibidor de la SMS. Mientras que la inhibición frente a la IPCS en levaduras fue más baja en comparación con la inhibición de la GCS. A pesar de ello, uno de los análogos ensayados mostró selectividad frente a la IPCS ya que no se observó inhibición de la SMS y la GCS de mamíferos, mostrando así propiedades interesantes como agente antifúngico. De manera adicional, algunos análogos de (fito)esfingolípidos fueron ensayados como antígenos de células iNKT restringidas por la proteína CD1d y resultaron activos. Curiosamente, el compuesto más activo resultó ser un análogo de fitoceramida no glicosídico, aunque otros GSL también resultaron activos. Por otro lado, se desarrolló una metodología sintética para obtener aziridinas con configuración galacto (análogos de galactosa) enantiomericamente y diastereomericamente puras para obtener análogos de glicolípidos.</dcterms:abstract>
<dcterms:dateAccepted>2014-01-08T06:45:04Z</dcterms:dateAccepted>
<dcterms:available>2014-01-08T06:45:04Z</dcterms:available>
<dcterms:created>2014-01-08T06:45:04Z</dcterms:created>
<dcterms:issued>2012-12-18</dcterms:issued>
<dc:type>info:eu-repo/semantics/doctoralThesis</dc:type>
<dc:type>info:eu-repo/semantics/publishedVersion</dc:type>
<dc:identifier>http://hdl.handle.net/10803/96979</dc:identifier>
<dc:identifier>http://mediaserver.xpp.cesca.cat/tdx/documents/14/46/02/144602932041939827037076578962064869825/</dc:identifier>
<dc:identifier>http://mediaserver.csuc.cat/tdx/documents/14/46/02/144602932041939827037076578962064869825/</dc:identifier>
<dc:identifier>http://mediaserver.csuc.cat/tdx/documents/14/46/02/144602932041939827037076578962064869825/</dc:identifier>
<dc:language>eng</dc:language>
<dc:rights>ADVERTIMENT. L'accés als continguts d'aquesta tesi doctoral i la seva utilització ha de respectar els drets de la persona autora. Pot ser utilitzada per a consulta o estudi personal, així com en activitats o materials d'investigació i docència en els termes establerts a l'art. 32 del Text Refós de la Llei de Propietat Intel·lectual (RDL 1/1996). Per altres utilitzacions es requereix l'autorització prèvia i expressa de la persona autora. En qualsevol cas, en la utilització dels seus continguts caldrà indicar de forma clara el nom i cognoms de la persona autora i el títol de la tesi doctoral. No s'autoritza la seva reproducció o altres formes d'explotació efectuades amb finalitats de lucre ni la seva comunicació pública des d'un lloc aliè al servei TDX. Tampoc s'autoritza la presentació del seu contingut en una finestra o marc aliè a TDX (framing). Aquesta reserva de drets afecta tant als continguts de la tesi com als seus resums i índexs.</dc:rights>
<dc:rights>info:eu-repo/semantics/openAccess</dc:rights>
<dc:publisher>Universitat de Barcelona</dc:publisher>
<dc:source>TDX (Tesis Doctorals en Xarxa)</dc:source>
</qdc:qualifieddc>
<?xml version="1.0" encoding="UTF-8" ?>
<rdf:RDF schemaLocation="http://www.openarchives.org/OAI/2.0/rdf/ http://www.openarchives.org/OAI/2.0/rdf.xsd">
<ow:Publication about="oai:www.tdx.cat:10803/96979">
<dc:title>A modular approach to sphingolipid analogs mediated by aziridines: Synthesis and biological studies</dc:title>
<dc:creator>Alcaide López, Anna</dc:creator>
<dc:contributor>anna_alcaide@hotmail.com</dc:contributor>
<dc:contributor>false</dc:contributor>
<dc:contributor>Llebaria Soldevila, Amadeu</dc:contributor>
<dc:contributor>Delgado Cirilo, Antonio</dc:contributor>
<dc:contributor>true</dc:contributor>
<dc:subject>Síntesi de fàrmacs</dc:subject>
<dc:subject>Síntesis de fármacos</dc:subject>
<dc:subject>Drug synthesis</dc:subject>
<dc:subject>Sphingolipids</dc:subject>
<dc:subject>Esfingolípidos (SL)</dc:subject>
<dc:subject>Esfingolípids</dc:subject>
<dc:subject>Aziridinas</dc:subject>
<dc:subject>Aziridines</dc:subject>
<dc:description>El text dels capítols 3, 5, 6 i 7 ha estat retirat seguint instruccions de l’autora de la tesi, en existir participació d’empreses, existir conveni de confidencialitat o existeix la possibilitat de generar patents / El texto delos capítulos 3,5, 6 y 7 ha sido retirado siguiendo instrucciones de la autora, al existir participación de empresas, convenio de confidencialidad o la posibilidad de generar patentes / The text of chapters 3, 5, 6 and 7 has been withdrawn on the instructions of the author, as there is participation of undertakings, confidentiality agreement or the ability to generate patent</dc:description>
<dc:description>Sphingolipids are essential biomolecules for the physiological cell function. In addition to its structural role in cell membranes, these lipids have also crucial functions in signal transduction and cell regulation. As a consequence of the important biological roles of sphingolipids, the synthesis of their analogs and the development of chemical inhibitors of sphingolipid enzymes are the object of current interest. Furthermore, it has been reported that slight modifications on the natural C1 (phyto)sphingosine scaffold or variations in its chain lengths can potentially alter the role and bioactivity of sphingolipid analogs. On the other hand, cyclitols are an important group of compounds due to their remarkable biological activities as well as their synthetic usefulness in the synthesis of other natural compounds or pharmaceuticals. Specially, the development of carbohydrate mimetics prompted primarily by their properties as glycosidase inhibitors, has led to a wide variety of novel structures by themselves or when considering them as key synthetic precursors of more complex molecules such as glycosphingolipids. For the above‐mentioned reasons, we developed a synthetic methodology towards sphingolipid analogs based on the regioselective ring‐opening reactions of N‐acylaziridines with different nucleophiles such as thiols or beta‐glycosil thiols, amines, phosphate derivatives or phosphorothioate derivatives. This approach is a short and flexible route for the synthesis of a variety of (phyto)sphingolipid analogs from aziridine derivatives and this method leads to molecules with different groups bonded to the C‐1 position of the sphingoid backbone from common intermediate aziridines by changing the nucleophile in the ring‐opening reaction step. Moreover, the diversity of compounds obtained is extended by introducing different N‐acyl groups at the nitrogen aziridine. Once, the desired sphingolipid analogs were obtained, a representative selection of them was tested in enzyme assays to identify inhibitors of mammalian sphingolipid metabolism enzymes, such as sphingomyelin synthase (SMS) and glucosylceramide synthase (GCS). Some of the tested analogs were potent inhibitors of GCS and none of them inhibited SMS at concentrations relevant for activity. In general, the inhibitory activity was higher for phytosphingosine analogs than their corresponding sphingosine analogs and the presence of the double bond between C4 and C5 of the sphingosine backbone in analogs was important for their bioactivity, since the dihydroceramide analogs were less active. In addition, a collection of (phyto)sphingolipid analogs were tested in an assay to identify inhibitors against yeast inositol phosphorylceramide synthase (IPCS). Generally, the inhibitory activities were lower than the inhibitions against GCS. However, one analog depicted selectivity against baker’s yeast IPCS since no inhibition of mammalian SMS and GCS was observed. For that reason, this analog showed potential properties as antifungal agent. Some (phyto)sphingolipid analogs were also tested as antigens for CD1d‐restricted iNKT cells and some of them were active, although this activity was lower when comparing with the endogenous glycolipid beta‐glucosylceramide. In particular, the most active compound was a nonglycosidic phytoceramide analog, but some glycosphingolipid analogs were also active in the activation of iNKT cells. However, these compounds were considered weak antigens. Finally, in order to obtain glycolipid analogs a synthetic methodology to obtain enantio‐ and diastereomerically pure galacto‐configured aziridines based on olefin aziridination reactions was examined. This consists in the use of nitrene precursors and a galactose related cyclohexene. The results obtained with this method showed potential for the preparation of the aziridine compounds.</dc:description>
<dc:description>Los esfingolípidos (SL) son biomoléculas esenciales para las funciones fisiológicas de las células. El metabolismo anómalo o la expresión de SL específicos o glicoesfingolípidos (GSL) es el origen de diferentes enfermedades como las esfingolipidosis, causadas por la presencia de mutaciones en las enzimas que intervienen en la biosíntesis de SL o GSL. Debido a la importancia biológica de los SL, el desarrollo de inhibidores químicos de las enzimas que intervienen en el metabolismo de los SL de mamíferos y hongos, es un tema de gran interés científico. Por otro lado, cabe remarcar que los ciclitoles son un tipo de compuestos muy interesantes debido a su remarcable actividad biológica y a su utilidad como precursores sintéticos de moléculas más complejas como los GSL. Teniendo en cuenta las consideraciones comentadas anteriormente, se ha desarrollado una nueva metodología sintética para la obtención de análogos de SLs basada en las reacciones de apertura de Nacilaziridinas con diferentes nucleófilos como tioles, beta‐glicosil tioles, aminas, fosfatos y fosforotioatos. Esta aproximación es una ruta corta y flexible para la obtención de análogos lipídicos con diversidad estructural. Una selección representativa de los compuestos sintetizados se ensayó frente a la inhibición de enzimas del metabolismo de los mamíferos tales como la esfingomielin sintasa (SMS) y la glucosilceramida sintasa (GCS), y enzimas del metabolismo de los hongos como la inositol fosforilceramida sintasa (IPCS). Algunos de estos análogos resultaron ser inhibidores potentes de la GCS pero ninguno de ellos fue inhibidor de la SMS. Mientras que la inhibición frente a la IPCS en levaduras fue más baja en comparación con la inhibición de la GCS. A pesar de ello, uno de los análogos ensayados mostró selectividad frente a la IPCS ya que no se observó inhibición de la SMS y la GCS de mamíferos, mostrando así propiedades interesantes como agente antifúngico. De manera adicional, algunos análogos de (fito)esfingolípidos fueron ensayados como antígenos de células iNKT restringidas por la proteína CD1d y resultaron activos. Curiosamente, el compuesto más activo resultó ser un análogo de fitoceramida no glicosídico, aunque otros GSL también resultaron activos. Por otro lado, se desarrolló una metodología sintética para obtener aziridinas con configuración galacto (análogos de galactosa) enantiomericamente y diastereomericamente puras para obtener análogos de glicolípidos.</dc:description>
<dc:date>2013-01-07T09:05:55Z</dc:date>
<dc:date>2014-01-08T06:45:04Z</dc:date>
<dc:date>2012-12-18</dc:date>
<dc:type>info:eu-repo/semantics/doctoralThesis</dc:type>
<dc:type>info:eu-repo/semantics/publishedVersion</dc:type>
<dc:identifier>http://hdl.handle.net/10803/96979</dc:identifier>
<dc:identifier>http://mediaserver.xpp.cesca.cat/tdx/documents/14/46/02/144602932041939827037076578962064869825/</dc:identifier>
<dc:identifier>http://mediaserver.csuc.cat/tdx/documents/14/46/02/144602932041939827037076578962064869825/</dc:identifier>
<dc:identifier>http://mediaserver.csuc.cat/tdx/documents/14/46/02/144602932041939827037076578962064869825/</dc:identifier>
<dc:language>eng</dc:language>
<dc:rights>ADVERTIMENT. L'accés als continguts d'aquesta tesi doctoral i la seva utilització ha de respectar els drets de la persona autora. Pot ser utilitzada per a consulta o estudi personal, així com en activitats o materials d'investigació i docència en els termes establerts a l'art. 32 del Text Refós de la Llei de Propietat Intel·lectual (RDL 1/1996). Per altres utilitzacions es requereix l'autorització prèvia i expressa de la persona autora. En qualsevol cas, en la utilització dels seus continguts caldrà indicar de forma clara el nom i cognoms de la persona autora i el títol de la tesi doctoral. No s'autoritza la seva reproducció o altres formes d'explotació efectuades amb finalitats de lucre ni la seva comunicació pública des d'un lloc aliè al servei TDX. Tampoc s'autoritza la presentació del seu contingut en una finestra o marc aliè a TDX (framing). Aquesta reserva de drets afecta tant als continguts de la tesi com als seus resums i índexs.</dc:rights>
<dc:rights>info:eu-repo/semantics/openAccess</dc:rights>
<dc:publisher>Universitat de Barcelona</dc:publisher>
<dc:source>TDX (Tesis Doctorals en Xarxa)</dc:source>
</ow:Publication>
</rdf:RDF>
<?xml version="1.0" encoding="UTF-8" ?>
<uketd_dc:uketddc schemaLocation="http://naca.central.cranfield.ac.uk/ethos-oai/2.0/ http://naca.central.cranfield.ac.uk/ethos-oai/2.0/uketd_dc.xsd">
<dc:title>A modular approach to sphingolipid analogs mediated by aziridines: Synthesis and biological studies</dc:title>
<dc:creator>Alcaide López, Anna</dc:creator>
<dcterms:abstract>Sphingolipids are essential biomolecules for the physiological cell function. In addition to its structural role in cell membranes, these lipids have also crucial functions in signal transduction and cell regulation. As a consequence of the important biological roles of sphingolipids, the synthesis of their analogs and the development of chemical inhibitors of sphingolipid enzymes are the object of current interest. Furthermore, it has been reported that slight modifications on the natural C1 (phyto)sphingosine scaffold or variations in its chain lengths can potentially alter the role and bioactivity of sphingolipid analogs. On the other hand, cyclitols are an important group of compounds due to their remarkable biological activities as well as their synthetic usefulness in the synthesis of other natural compounds or pharmaceuticals. Specially, the development of carbohydrate mimetics prompted primarily by their properties as glycosidase inhibitors, has led to a wide variety of novel structures by themselves or when considering them as key synthetic precursors of more complex molecules such as glycosphingolipids. For the above‐mentioned reasons, we developed a synthetic methodology towards sphingolipid analogs based on the regioselective ring‐opening reactions of N‐acylaziridines with different nucleophiles such as thiols or beta‐glycosil thiols, amines, phosphate derivatives or phosphorothioate derivatives. This approach is a short and flexible route for the synthesis of a variety of (phyto)sphingolipid analogs from aziridine derivatives and this method leads to molecules with different groups bonded to the C‐1 position of the sphingoid backbone from common intermediate aziridines by changing the nucleophile in the ring‐opening reaction step. Moreover, the diversity of compounds obtained is extended by introducing different N‐acyl groups at the nitrogen aziridine. Once, the desired sphingolipid analogs were obtained, a representative selection of them was tested in enzyme assays to identify inhibitors of mammalian sphingolipid metabolism enzymes, such as sphingomyelin synthase (SMS) and glucosylceramide synthase (GCS). Some of the tested analogs were potent inhibitors of GCS and none of them inhibited SMS at concentrations relevant for activity. In general, the inhibitory activity was higher for phytosphingosine analogs than their corresponding sphingosine analogs and the presence of the double bond between C4 and C5 of the sphingosine backbone in analogs was important for their bioactivity, since the dihydroceramide analogs were less active. In addition, a collection of (phyto)sphingolipid analogs were tested in an assay to identify inhibitors against yeast inositol phosphorylceramide synthase (IPCS). Generally, the inhibitory activities were lower than the inhibitions against GCS. However, one analog depicted selectivity against baker’s yeast IPCS since no inhibition of mammalian SMS and GCS was observed. For that reason, this analog showed potential properties as antifungal agent. Some (phyto)sphingolipid analogs were also tested as antigens for CD1d‐restricted iNKT cells and some of them were active, although this activity was lower when comparing with the endogenous glycolipid beta‐glucosylceramide. In particular, the most active compound was a nonglycosidic phytoceramide analog, but some glycosphingolipid analogs were also active in the activation of iNKT cells. However, these compounds were considered weak antigens. Finally, in order to obtain glycolipid analogs a synthetic methodology to obtain enantio‐ and diastereomerically pure galacto‐configured aziridines based on olefin aziridination reactions was examined. This consists in the use of nitrene precursors and a galactose related cyclohexene. The results obtained with this method showed potential for the preparation of the aziridine compounds.</dcterms:abstract>
<dcterms:abstract>Los esfingolípidos (SL) son biomoléculas esenciales para las funciones fisiológicas de las células. El metabolismo anómalo o la expresión de SL específicos o glicoesfingolípidos (GSL) es el origen de diferentes enfermedades como las esfingolipidosis, causadas por la presencia de mutaciones en las enzimas que intervienen en la biosíntesis de SL o GSL. Debido a la importancia biológica de los SL, el desarrollo de inhibidores químicos de las enzimas que intervienen en el metabolismo de los SL de mamíferos y hongos, es un tema de gran interés científico. Por otro lado, cabe remarcar que los ciclitoles son un tipo de compuestos muy interesantes debido a su remarcable actividad biológica y a su utilidad como precursores sintéticos de moléculas más complejas como los GSL. Teniendo en cuenta las consideraciones comentadas anteriormente, se ha desarrollado una nueva metodología sintética para la obtención de análogos de SLs basada en las reacciones de apertura de Nacilaziridinas con diferentes nucleófilos como tioles, beta‐glicosil tioles, aminas, fosfatos y fosforotioatos. Esta aproximación es una ruta corta y flexible para la obtención de análogos lipídicos con diversidad estructural. Una selección representativa de los compuestos sintetizados se ensayó frente a la inhibición de enzimas del metabolismo de los mamíferos tales como la esfingomielin sintasa (SMS) y la glucosilceramida sintasa (GCS), y enzimas del metabolismo de los hongos como la inositol fosforilceramida sintasa (IPCS). Algunos de estos análogos resultaron ser inhibidores potentes de la GCS pero ninguno de ellos fue inhibidor de la SMS. Mientras que la inhibición frente a la IPCS en levaduras fue más baja en comparación con la inhibición de la GCS. A pesar de ello, uno de los análogos ensayados mostró selectividad frente a la IPCS ya que no se observó inhibición de la SMS y la GCS de mamíferos, mostrando así propiedades interesantes como agente antifúngico. De manera adicional, algunos análogos de (fito)esfingolípidos fueron ensayados como antígenos de células iNKT restringidas por la proteína CD1d y resultaron activos. Curiosamente, el compuesto más activo resultó ser un análogo de fitoceramida no glicosídico, aunque otros GSL también resultaron activos. Por otro lado, se desarrolló una metodología sintética para obtener aziridinas con configuración galacto (análogos de galactosa) enantiomericamente y diastereomericamente puras para obtener análogos de glicolípidos.</dcterms:abstract>
<uketdterms:institution>Universitat de Barcelona</uketdterms:institution>
<dcterms:issued>2012-12-18</dcterms:issued>
<dc:type>info:eu-repo/semantics/doctoralThesis</dc:type>
<dc:type>info:eu-repo/semantics/publishedVersion</dc:type>
<dc:language type="dcterms:ISO639-2">eng</dc:language>
<dcterms:isReferencedBy>http://hdl.handle.net/10803/96979</dcterms:isReferencedBy>
<dc:identifier type="dcterms:URI">http://www.tdx.cat/bitstream/10803/96979/1/AAL_PhD_THESIS.pdf</dc:identifier>
<uketdterms:checksum type="uketdterms:MD5">3a742d502554e479b809eb35228d5d56</uketdterms:checksum>
<dcterms:hasFormat>http://www.tdx.cat/bitstream/10803/96979/2/AAL_PhD_THESIS.pdf.txt</dcterms:hasFormat>
<uketdterms:checksum type="uketdterms:MD5">71a22e2d6253079fb3856c2e108e0486</uketdterms:checksum>
<uketdterms:embargodate>12 mesos</uketdterms:embargodate>
<dc:subject>Síntesi de fàrmacs</dc:subject>
<dc:subject>Síntesis de fármacos</dc:subject>
<dc:subject>Drug synthesis</dc:subject>
<dc:subject>Sphingolipids</dc:subject>
<dc:subject>Esfingolípidos (SL)</dc:subject>
<dc:subject>Esfingolípids</dc:subject>
<dc:subject>Aziridinas</dc:subject>
<dc:subject>Aziridines</dc:subject>
<dc:subject>Ciències de la Salut</dc:subject>
</uketd_dc:uketddc>
<?xml version="1.0" encoding="UTF-8" ?>
<metadata schemaLocation="http://www.lyncode.com/xoai http://www.lyncode.com/xsd/xoai.xsd">
<element name="dc">
<element name="contributor">
<element name="none">
<field name="value">Universitat de Barcelona. Departament de Farmacologia i Química Terapèutica</field>
</element>
<element name="author">
<element name="none">
<field name="value">Alcaide López, Anna</field>
</element>
</element>
<element name="authoremail">
<element name="none">
<field name="value">anna_alcaide@hotmail.com</field>
</element>
</element>
<element name="authoremailshow">
<element name="none">
<field name="value">false</field>
</element>
</element>
<element name="director">
<element name="none">
<field name="value">Llebaria Soldevila, Amadeu</field>
</element>
</element>
<element name="tutor">
<element name="none">
<field name="value">Delgado Cirilo, Antonio</field>
</element>
</element>
<element name="authorsendemail">
<element name="none">
<field name="value">true</field>
</element>
</element>
</element>
<element name="date">
<element name="accessioned">
<element name="none">
<field name="value">2013-01-07T09:05:55Z</field>
</element>
</element>
<element name="available">
<element name="none">
<field name="value">2014-01-08T06:45:04Z</field>
</element>
</element>
<element name="issued">
<element name="none">
<field name="value">2012-12-18</field>
</element>
</element>
</element>
<element name="identifier">
<element name="none">
<field name="value">B. 1378-2013</field>
</element>
<element name="uri">
<element name="none">
<field name="value">http://hdl.handle.net/10803/96979</field>
</element>
</element>
<element name="pdf">
<element name="none">
<field name="value">http://mediaserver.xpp.cesca.cat/tdx/documents/14/46/02/144602932041939827037076578962064869825/</field>
<field name="value">http://mediaserver.csuc.cat/tdx/documents/14/46/02/144602932041939827037076578962064869825/</field>
<field name="value">http://mediaserver.csuc.cat/tdx/documents/14/46/02/144602932041939827037076578962064869825/</field>
</element>
</element>
</element>
<element name="description">
<element name="none">
<field name="value">El text dels capítols 3, 5, 6 i 7 ha estat retirat seguint instruccions de l’autora de la tesi, en existir participació d’empreses, existir conveni de confidencialitat o existeix la possibilitat de generar patents / El texto delos capítulos 3,5, 6 y 7 ha sido retirado siguiendo instrucciones de la autora, al existir participación de empresas, convenio de confidencialidad o la posibilidad de generar patentes / The text of chapters 3, 5, 6 and 7 has been withdrawn on the instructions of the author, as there is participation of undertakings, confidentiality agreement or the ability to generate patent</field>
</element>
<element name="abstract">
<element name="eng">
<field name="value">Sphingolipids are essential biomolecules for the physiological cell function. In addition to its structural role in cell membranes, these lipids have also crucial functions in signal transduction and cell regulation. As a consequence of the important biological roles of sphingolipids, the synthesis of their analogs and the development of chemical inhibitors of sphingolipid enzymes are the object of current interest. Furthermore, it has been reported that slight modifications on the natural C1 (phyto)sphingosine scaffold or variations in its chain lengths can potentially alter the role and bioactivity of sphingolipid analogs. On the other hand, cyclitols are an important group of compounds due to their remarkable biological activities as well as their synthetic usefulness in the synthesis of other natural compounds or pharmaceuticals. Specially, the development of carbohydrate mimetics prompted primarily by their properties as glycosidase inhibitors, has led to a wide variety of novel structures by themselves or when considering them as key synthetic precursors of more complex molecules such as glycosphingolipids. For the above‐mentioned reasons, we developed a synthetic methodology towards sphingolipid analogs based on the regioselective ring‐opening reactions of N‐acylaziridines with different nucleophiles such as thiols or beta‐glycosil thiols, amines, phosphate derivatives or phosphorothioate derivatives. This approach is a short and flexible route for the synthesis of a variety of (phyto)sphingolipid analogs from aziridine derivatives and this method leads to molecules with different groups bonded to the C‐1 position of the sphingoid backbone from common intermediate aziridines by changing the nucleophile in the ring‐opening reaction step. Moreover, the diversity of compounds obtained is extended by introducing different N‐acyl groups at the nitrogen aziridine. Once, the desired sphingolipid analogs were obtained, a representative selection of them was tested in enzyme assays to identify inhibitors of mammalian sphingolipid metabolism enzymes, such as sphingomyelin synthase (SMS) and glucosylceramide synthase (GCS). Some of the tested analogs were potent inhibitors of GCS and none of them inhibited SMS at concentrations relevant for activity. In general, the inhibitory activity was higher for phytosphingosine analogs than their corresponding sphingosine analogs and the presence of the double bond between C4 and C5 of the sphingosine backbone in analogs was important for their bioactivity, since the dihydroceramide analogs were less active. In addition, a collection of (phyto)sphingolipid analogs were tested in an assay to identify inhibitors against yeast inositol phosphorylceramide synthase (IPCS). Generally, the inhibitory activities were lower than the inhibitions against GCS. However, one analog depicted selectivity against baker’s yeast IPCS since no inhibition of mammalian SMS and GCS was observed. For that reason, this analog showed potential properties as antifungal agent. Some (phyto)sphingolipid analogs were also tested as antigens for CD1d‐restricted iNKT cells and some of them were active, although this activity was lower when comparing with the endogenous glycolipid beta‐glucosylceramide. In particular, the most active compound was a nonglycosidic phytoceramide analog, but some glycosphingolipid analogs were also active in the activation of iNKT cells. However, these compounds were considered weak antigens. Finally, in order to obtain glycolipid analogs a synthetic methodology to obtain enantio‐ and diastereomerically pure galacto‐configured aziridines based on olefin aziridination reactions was examined. This consists in the use of nitrene precursors and a galactose related cyclohexene. The results obtained with this method showed potential for the preparation of the aziridine compounds.</field>
</element>
<element name="spa">
<field name="value">Los esfingolípidos (SL) son biomoléculas esenciales para las funciones fisiológicas de las células. El metabolismo anómalo o la expresión de SL específicos o glicoesfingolípidos (GSL) es el origen de diferentes enfermedades como las esfingolipidosis, causadas por la presencia de mutaciones en las enzimas que intervienen en la biosíntesis de SL o GSL. Debido a la importancia biológica de los SL, el desarrollo de inhibidores químicos de las enzimas que intervienen en el metabolismo de los SL de mamíferos y hongos, es un tema de gran interés científico. Por otro lado, cabe remarcar que los ciclitoles son un tipo de compuestos muy interesantes debido a su remarcable actividad biológica y a su utilidad como precursores sintéticos de moléculas más complejas como los GSL. Teniendo en cuenta las consideraciones comentadas anteriormente, se ha desarrollado una nueva metodología sintética para la obtención de análogos de SLs basada en las reacciones de apertura de Nacilaziridinas con diferentes nucleófilos como tioles, beta‐glicosil tioles, aminas, fosfatos y fosforotioatos. Esta aproximación es una ruta corta y flexible para la obtención de análogos lipídicos con diversidad estructural. Una selección representativa de los compuestos sintetizados se ensayó frente a la inhibición de enzimas del metabolismo de los mamíferos tales como la esfingomielin sintasa (SMS) y la glucosilceramida sintasa (GCS), y enzimas del metabolismo de los hongos como la inositol fosforilceramida sintasa (IPCS). Algunos de estos análogos resultaron ser inhibidores potentes de la GCS pero ninguno de ellos fue inhibidor de la SMS. Mientras que la inhibición frente a la IPCS en levaduras fue más baja en comparación con la inhibición de la GCS. A pesar de ello, uno de los análogos ensayados mostró selectividad frente a la IPCS ya que no se observó inhibición de la SMS y la GCS de mamíferos, mostrando así propiedades interesantes como agente antifúngico. De manera adicional, algunos análogos de (fito)esfingolípidos fueron ensayados como antígenos de células iNKT restringidas por la proteína CD1d y resultaron activos. Curiosamente, el compuesto más activo resultó ser un análogo de fitoceramida no glicosídico, aunque otros GSL también resultaron activos. Por otro lado, se desarrolló una metodología sintética para obtener aziridinas con configuración galacto (análogos de galactosa) enantiomericamente y diastereomericamente puras para obtener análogos de glicolípidos.</field>
</element>
</element>
<element name="provenance">
<element name="none">
<field name="value">Submitted by UB (tdx@ub.edu) on 2013-01-07T09:05:55Z No. of bitstreams: 1 AAL_PhD_THESIS.pdf: 1251494 bytes, checksum: 3a742d502554e479b809eb35228d5d56 (MD5)</field>
<field name="value">Made available in DSpace on 2013-01-07T09:05:55Z (GMT). No. of bitstreams: 1 AAL_PhD_THESIS.pdf: 1251494 bytes, checksum: 3a742d502554e479b809eb35228d5d56 (MD5) Previous issue date: 2012-12-18</field>
</element>
</element>
</element>
<element name="format">
<element name="extent">
<element name="none">
<field name="value">63 p.</field>
</element>
</element>
<element name="mimetype">
<element name="none">
<field name="value">application/pdf</field>
</element>
</element>
</element>
<element name="language">
<element name="iso">
<element name="none">
<field name="value">eng</field>
</element>
</element>
</element>
<element name="publisher">
<element name="none">
<field name="value">Universitat de Barcelona</field>
</element>
</element>
<element name="rights">
<element name="license">
<element name="none">
<field name="value">ADVERTIMENT. L'accés als continguts d'aquesta tesi doctoral i la seva utilització ha de respectar els drets de la persona autora. Pot ser utilitzada per a consulta o estudi personal, així com en activitats o materials d'investigació i docència en els termes establerts a l'art. 32 del Text Refós de la Llei de Propietat Intel·lectual (RDL 1/1996). Per altres utilitzacions es requereix l'autorització prèvia i expressa de la persona autora. En qualsevol cas, en la utilització dels seus continguts caldrà indicar de forma clara el nom i cognoms de la persona autora i el títol de la tesi doctoral. No s'autoritza la seva reproducció o altres formes d'explotació efectuades amb finalitats de lucre ni la seva comunicació pública des d'un lloc aliè al servei TDX. Tampoc s'autoritza la presentació del seu contingut en una finestra o marc aliè a TDX (framing). Aquesta reserva de drets afecta tant als continguts de la tesi com als seus resums i índexs.</field>
</element>
</element>
<element name="accessLevel">
<element name="none">
<field name="value">info:eu-repo/semantics/openAccess</field>
</element>
</element>
</element>
<element name="source">
<element name="none">
<field name="value">TDX (Tesis Doctorals en Xarxa)</field>
</element>
</element>
<element name="subject">
<element name="none">
<field name="value">Síntesi de fàrmacs</field>
<field name="value">Síntesis de fármacos</field>
<field name="value">Drug synthesis</field>
<field name="value">Sphingolipids</field>
<field name="value">Esfingolípidos (SL)</field>
<field name="value">Esfingolípids</field>
<field name="value">Aziridinas</field>
<field name="value">Aziridines</field>
</element>
<element name="other">
<element name="none">
<field name="value">Ciències de la Salut</field>
</element>
</element>
<element name="udc">
<element name="cat">
<field name="value">615</field>
</element>
</element>
</element>
<element name="title">
<element name="none">
<field name="value">A modular approach to sphingolipid analogs mediated by aziridines: Synthesis and biological studies</field>
</element>
</element>
<element name="type">
<element name="none">
<field name="value">info:eu-repo/semantics/doctoralThesis</field>
<field name="value">info:eu-repo/semantics/publishedVersion</field>
</element>
</element>
<element name="embargo">
<element name="terms">
<element name="none">
<field name="value">12 mesos</field>
</element>
</element>
</element>
</element>
<element name="bundles">
<element name="bundle">
<field name="name">MEDIA_DOCUMENT</field>
<element name="bitstreams">
<element name="bitstream">
<field name="name">AAL_PhD_THESIS.pdf.xml</field>
<field name="originalName">AAL_PhD_THESIS.pdf.xml</field>
<field name="description">Document Consulta</field>
<field name="format">text/xml</field>
<field name="size">106</field>
<field name="url">http://www.tdx.cat/bitstream/10803/96979/3/AAL_PhD_THESIS.pdf.xml</field>
<field name="checksum">5c5a5220ca26f60ef9578d0bf9a67eb1</field>
<field name="checksumAlgorithm">MD5</field>
<field name="sid">3</field>
</element>
</element>
</element>
<element name="bundle">
<field name="name">ORIGINAL</field>
<element name="bitstreams">
<element name="bitstream">
<field name="name">AAL_PhD_THESIS.pdf</field>
<field name="originalName">AAL_PhD_THESIS.pdf</field>
<field name="format">application/pdf</field>
<field name="size">1251494</field>
<field name="url">http://www.tdx.cat/bitstream/10803/96979/1/AAL_PhD_THESIS.pdf</field>
<field name="checksum">3a742d502554e479b809eb35228d5d56</field>
<field name="checksumAlgorithm">MD5</field>
<field name="sid">1</field>
</element>
</element>
</element>
<element name="bundle">
<field name="name">TEXT</field>
<element name="bitstreams">
<element name="bitstream">
<field name="name">AAL_PhD_THESIS.pdf.txt</field>
<field name="originalName">AAL_PhD_THESIS.pdf.txt</field>
<field name="description">Extracted Text</field>
<field name="format">text/plain</field>
<field name="size">87912</field>
<field name="url">http://www.tdx.cat/bitstream/10803/96979/2/AAL_PhD_THESIS.pdf.txt</field>
<field name="checksum">71a22e2d6253079fb3856c2e108e0486</field>
<field name="checksumAlgorithm">MD5</field>
<field name="sid">2</field>
</element>
</element>
</element>
</element>
<element name="others">
<field name="handle">10803/96979</field>
<field name="identifier">oai:www.tdx.cat:10803/96979</field>
<field name="lastModifyDate">2017-08-31 01:20:35.212</field>
</element>
<element name="repository">
<field name="name">TDX</field>
<field name="mail">tdx@csuc.cat</field>
</element>
</metadata>