<?xml version="1.0" encoding="UTF-8" ?>
<oai_dc:dc schemaLocation="http://www.openarchives.org/OAI/2.0/oai_dc/ http://www.openarchives.org/OAI/2.0/oai_dc.xsd">
<dc:title>3D printing of PLA:CaP:GO scaffolds for bone tissue applications</dc:title>
<dc:creator>González Rodríguez, Laura</dc:creator>
<dc:creator>Pérez Davila, Sara</dc:creator>
<dc:creator>Lama, R.</dc:creator>
<dc:creator>López Álvarez, Miriam</dc:creator>
<dc:creator>Serra Rodríguez, Julia Asunción</dc:creator>
<dc:creator>Novoa, B.</dc:creator>
<dc:creator>Figueras, A.</dc:creator>
<dc:creator>González Fernández, Pío Manuel</dc:creator>
<dc:subject>3314 Tecnología Médica</dc:subject>
<dc:subject>2299 Otras Especialidades Físicas</dc:subject>
<dc:description>PLA:CaP:GO scaffolds were fabricated with a previously optimised biocompatible dose of GO and then characterised physicochemically and in a zebrafish model.</dc:description>
<dc:description>Graphene oxide (GO) has attracted increasing interest for biomedical applications owing to its outstanding properties such as high specific surface area, ability to bind functional molecules for therapeutic purposes and solubility, together with mechanical resistance and good thermal conductivity. The combination of GO with other biomaterials, such as calcium phosphate (CaP) and biodegradable polymers, presents a promising strategy for bone tissue engineering. Presently, the development of these advanced biomaterials benefits from the use of additive manufacturing techniques, such as 3D printing. In this study, we develop a 3D printed PLA:CaP:GO scaffold for bone tissue engineering. First, GO was characterised alone by XPS to determine its main bond contributions and C : O ratio. Secondly, we determined the GO dose which ensures the absence of toxicity, directly exposed in vitro (human osteoblast-like cells MG-63) and in vivo (zebrafish model). In addition, GO was microinjected in the zebrafish to evaluate its effect on immune cells, quantifying the genetic expression of the main markers. Results indicated that the GO tested (C : O of 2.14, 49.50% oxidised, main bonds: C–OH, C–O–C) in a dose ≤0.25 mg mL −1 promoted MG63 cells viability percentages above 70%, and in a dose ≤0.10 mg mL −1 resulted in the absence of toxicity in zebrafish embryos. The immune response evaluation reinforced this result. Finally, the optimised GO dose (0.10 mg mL −1 ) was combined with polylactic acid (PLA) and CaP to obtain a 3D printed PLA:CaP:GO scaffold. Physicochemical characterisation (SEM/EDS, XRD, FT-Raman, nano-indentation) was performed and in vivo tests confirmed its biocompatibility, enabling a novel approach for bone tissue-related applications.</dc:description>
<dc:description>Xunta de Galicia | Ref. ED431C 2021/49</dc:description>
<dc:description>Xunta de Galicia | Ref. ED481A 2019/314</dc:description>
<dc:description>Xunta de Galicia | Ref. IN607B 2022/13</dc:description>
<dc:description>Xunta de Galicia | Ref. IN606A-2017/011</dc:description>
<dc:description>Universidade de Vigo/CISUG</dc:description>
<dc:description>Agencia Estatal de Investigación | Ref. PID 2020-115415RB-100</dc:description>
<dc:date>2024-09-09T12:15:22Z</dc:date>
<dc:date>2024-09-09T12:15:22Z</dc:date>
<dc:date>2023</dc:date>
<dc:date>2024-07-19T09:55:42Z</dc:date>
<dc:type>article</dc:type>
<dc:identifier>RSC Advances, 13(23): 15947-15959 (2023)</dc:identifier>
<dc:identifier>20462069</dc:identifier>
<dc:identifier>http://hdl.handle.net/11093/7351</dc:identifier>
<dc:identifier>10.1039/D3RA00981E</dc:identifier>
<dc:identifier>https://xlink.rsc.org/?DOI=D3RA00981E</dc:identifier>
<dc:language>eng</dc:language>
<dc:relation>info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID 2020-115415RB-100/ES</dc:relation>
<dc:rights>Attribution-NonCommercial 3.0 Unported</dc:rights>
<dc:rights>https://creativecommons.org/licenses/by-nc/3.0/</dc:rights>
<dc:rights>openAccess</dc:rights>
<dc:publisher>RSC Advances</dc:publisher>
<dc:publisher>Física aplicada</dc:publisher>
<dc:publisher>Novos Materiais</dc:publisher>
</oai_dc:dc>
<?xml version="1.0" encoding="UTF-8" ?>
<d:DIDL schemaLocation="urn:mpeg:mpeg21:2002:02-DIDL-NS http://standards.iso.org/ittf/PubliclyAvailableStandards/MPEG-21_schema_files/did/didl.xsd">
<dcterms:created schemaLocation="http://purl.org/dc/terms/ http://dublincore.org/schemas/xmls/qdc/dcterms.xsd">2024-09-09T12:15:22Z</dcterms:created>
</d:DIDLInfo>
<d:Statement mimeType="application/xml; charset=utf-8">
<oai_dc:dc schemaLocation="http://www.openarchives.org/OAI/2.0/oai_dc/ http://www.openarchives.org/OAI/2.0/oai_dc.xsd">
<dc:title>3D printing of PLA:CaP:GO scaffolds for bone tissue applications</dc:title>
<dc:creator>González Rodríguez, Laura</dc:creator>
<dc:creator>Pérez Davila, Sara</dc:creator>
<dc:creator>Lama, R.</dc:creator>
<dc:creator>López Álvarez, Miriam</dc:creator>
<dc:creator>Serra Rodríguez, Julia Asunción</dc:creator>
<dc:creator>Novoa, B.</dc:creator>
<dc:creator>Figueras, A.</dc:creator>
<dc:creator>González Fernández, Pío Manuel</dc:creator>
<dc:description>PLA:CaP:GO scaffolds were fabricated with a previously optimised biocompatible dose of GO and then characterised physicochemically and in a zebrafish model.</dc:description>
<dc:description>Graphene oxide (GO) has attracted increasing interest for biomedical applications owing to its outstanding properties such as high specific surface area, ability to bind functional molecules for therapeutic purposes and solubility, together with mechanical resistance and good thermal conductivity. The combination of GO with other biomaterials, such as calcium phosphate (CaP) and biodegradable polymers, presents a promising strategy for bone tissue engineering. Presently, the development of these advanced biomaterials benefits from the use of additive manufacturing techniques, such as 3D printing. In this study, we develop a 3D printed PLA:CaP:GO scaffold for bone tissue engineering. First, GO was characterised alone by XPS to determine its main bond contributions and C : O ratio. Secondly, we determined the GO dose which ensures the absence of toxicity, directly exposed in vitro (human osteoblast-like cells MG-63) and in vivo (zebrafish model). In addition, GO was microinjected in the zebrafish to evaluate its effect on immune cells, quantifying the genetic expression of the main markers. Results indicated that the GO tested (C : O of 2.14, 49.50% oxidised, main bonds: C–OH, C–O–C) in a dose ≤0.25 mg mL −1 promoted MG63 cells viability percentages above 70%, and in a dose ≤0.10 mg mL −1 resulted in the absence of toxicity in zebrafish embryos. The immune response evaluation reinforced this result. Finally, the optimised GO dose (0.10 mg mL −1 ) was combined with polylactic acid (PLA) and CaP to obtain a 3D printed PLA:CaP:GO scaffold. Physicochemical characterisation (SEM/EDS, XRD, FT-Raman, nano-indentation) was performed and in vivo tests confirmed its biocompatibility, enabling a novel approach for bone tissue-related applications.</dc:description>
<dc:date>2024-09-09T12:15:22Z</dc:date>
<dc:date>2024-09-09T12:15:22Z</dc:date>
<dc:date>2023</dc:date>
<dc:date>2024-07-19T09:55:42Z</dc:date>
<dc:type>article</dc:type>
<dc:identifier>RSC Advances, 13(23): 15947-15959 (2023)</dc:identifier>
<dc:identifier>20462069</dc:identifier>
<dc:identifier>http://hdl.handle.net/11093/7351</dc:identifier>
<dc:identifier>10.1039/D3RA00981E</dc:identifier>
<dc:identifier>https://xlink.rsc.org/?DOI=D3RA00981E</dc:identifier>
<dc:language>eng</dc:language>
<dc:relation>info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID 2020-115415RB-100/ES</dc:relation>
<dc:rights>https://creativecommons.org/licenses/by-nc/3.0/</dc:rights>
<dc:rights>openAccess</dc:rights>
<dc:rights>Attribution-NonCommercial 3.0 Unported</dc:rights>
<dc:publisher>RSC Advances</dc:publisher>
<dc:publisher>Física aplicada</dc:publisher>
<dc:publisher>Novos Materiais</dc:publisher>
</oai_dc:dc>
</d:Statement>
</d:Descriptor>
<d:Component id="11093_7351_4">
</d:Component>
</d:Item>
</d:DIDL>
<?xml version="1.0" encoding="UTF-8" ?>
<dim:dim schemaLocation="http://www.dspace.org/xmlns/dspace/dim http://www.dspace.org/schema/dim.xsd">
<dim:field authority="8546" confidence="600" element="contributor" mdschema="dc" qualifier="author">González Rodríguez, Laura</dim:field>
<dim:field authority="7973" confidence="600" element="contributor" mdschema="dc" qualifier="author">Pérez Davila, Sara</dim:field>
<dim:field authority="bfb6cbfa-7902-4abf-9238-010a4da43793" confidence="600" element="contributor" mdschema="dc" qualifier="author">Lama, R.</dim:field>
<dim:field authority="5191" confidence="600" element="contributor" mdschema="dc" qualifier="author">López Álvarez, Miriam</dim:field>
<dim:field authority="602" confidence="600" element="contributor" mdschema="dc" qualifier="author">Serra Rodríguez, Julia Asunción</dim:field>
<dim:field authority="bfef794c-796e-46c6-9ed1-e6910b8f721d" confidence="600" element="contributor" mdschema="dc" qualifier="author">Novoa, B.</dim:field>
<dim:field authority="daaf4e31-4cb4-4e53-9508-83c37eb87600" confidence="600" element="contributor" mdschema="dc" qualifier="author">Figueras, A.</dim:field>
<dim:field authority="282" confidence="600" element="contributor" mdschema="dc" qualifier="author">González Fernández, Pío Manuel</dim:field>
<dim:field element="date" mdschema="dc" qualifier="accessioned">2024-09-09T12:15:22Z</dim:field>
<dim:field element="date" mdschema="dc" qualifier="available">2024-09-09T12:15:22Z</dim:field>
<dim:field element="date" mdschema="dc" qualifier="issued">2023</dim:field>
<dim:field element="date" mdschema="dc" qualifier="updated">2024-07-19T09:55:42Z</dim:field>
<dim:field element="identifier" lang="spa" mdschema="dc" qualifier="citation">RSC Advances, 13(23): 15947-15959 (2023)</dim:field>
<dim:field element="identifier" mdschema="dc" qualifier="issn">20462069</dim:field>
<dim:field element="identifier" mdschema="dc" qualifier="uri">http://hdl.handle.net/11093/7351</dim:field>
<dim:field element="identifier" mdschema="dc" qualifier="doi">10.1039/D3RA00981E</dim:field>
<dim:field element="identifier" lang="spa" mdschema="dc" qualifier="editor">https://xlink.rsc.org/?DOI=D3RA00981E</dim:field>
<dim:field element="description" lang="en" mdschema="dc" qualifier="abstract">PLA:CaP:GO scaffolds were fabricated with a previously optimised biocompatible dose of GO and then characterised physicochemically and in a zebrafish model.</dim:field>
<dim:field element="description" lang="en" mdschema="dc" qualifier="abstract">Graphene oxide (GO) has attracted increasing interest for biomedical applications owing to its outstanding properties such as high specific surface area, ability to bind functional molecules for therapeutic purposes and solubility, together with mechanical resistance and good thermal conductivity. The combination of GO with other biomaterials, such as calcium phosphate (CaP) and biodegradable polymers, presents a promising strategy for bone tissue engineering. Presently, the development of these advanced biomaterials benefits from the use of additive manufacturing techniques, such as 3D printing. In this study, we develop a 3D printed PLA:CaP:GO scaffold for bone tissue engineering. First, GO was characterised alone by XPS to determine its main bond contributions and C : O ratio. Secondly, we determined the GO dose which ensures the absence of toxicity, directly exposed in vitro (human osteoblast-like cells MG-63) and in vivo (zebrafish model). In addition, GO was microinjected in the zebrafish to evaluate its effect on immune cells, quantifying the genetic expression of the main markers. Results indicated that the GO tested (C : O of 2.14, 49.50% oxidised, main bonds: C–OH, C–O–C) in a dose ≤0.25 mg mL −1 promoted MG63 cells viability percentages above 70%, and in a dose ≤0.10 mg mL −1 resulted in the absence of toxicity in zebrafish embryos. The immune response evaluation reinforced this result. Finally, the optimised GO dose (0.10 mg mL −1 ) was combined with polylactic acid (PLA) and CaP to obtain a 3D printed PLA:CaP:GO scaffold. Physicochemical characterisation (SEM/EDS, XRD, FT-Raman, nano-indentation) was performed and in vivo tests confirmed its biocompatibility, enabling a novel approach for bone tissue-related applications.</dim:field>
<dim:field element="description" lang="spa" mdschema="dc" qualifier="sponsorship">Xunta de Galicia | Ref. ED431C 2021/49</dim:field>
<dim:field element="description" lang="spa" mdschema="dc" qualifier="sponsorship">Xunta de Galicia | Ref. ED481A 2019/314</dim:field>
<dim:field element="description" lang="spa" mdschema="dc" qualifier="sponsorship">Xunta de Galicia | Ref. IN607B 2022/13</dim:field>
<dim:field element="description" lang="spa" mdschema="dc" qualifier="sponsorship">Xunta de Galicia | Ref. IN606A-2017/011</dim:field>
<dim:field element="description" lang="spa" mdschema="dc" qualifier="sponsorship">Universidade de Vigo/CISUG</dim:field>
<dim:field element="description" lang="spa" mdschema="dc" qualifier="sponsorship">Agencia Estatal de Investigación | Ref. PID 2020-115415RB-100</dim:field>
<dim:field element="language" lang="spa" mdschema="dc" qualifier="iso">eng</dim:field>
<dim:field element="publisher" lang="spa" mdschema="dc">RSC Advances</dim:field>
<dim:field element="publisher" lang="spa" mdschema="dc" qualifier="departamento">Física aplicada</dim:field>
<dim:field element="publisher" lang="spa" mdschema="dc" qualifier="grupoinvestigacion">Novos Materiais</dim:field>
<dim:field element="relation" mdschema="dc">info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID 2020-115415RB-100/ES</dim:field>
<dim:field element="rights" mdschema="dc">Attribution-NonCommercial 3.0 Unported</dim:field>
<dim:field element="rights" mdschema="dc" qualifier="uri">https://creativecommons.org/licenses/by-nc/3.0/</dim:field>
<dim:field element="rights" lang="spa" mdschema="dc" qualifier="accessRights">openAccess</dim:field>
<dim:field element="title" lang="en" mdschema="dc">3D printing of PLA:CaP:GO scaffolds for bone tissue applications</dim:field>
<dim:field element="type" lang="spa" mdschema="dc">article</dim:field>
<dim:field element="subject" lang="spa" mdschema="dc" qualifier="unesco">3314 Tecnología Médica</dim:field>
<dim:field element="subject" lang="spa" mdschema="dc" qualifier="unesco">2299 Otras Especialidades Físicas</dim:field>
<dim:field element="computerCitation" lang="spa" mdschema="dc">pub_title=RSC Advances|volume=13|journal_number=23|start_pag=15947|end_pag=15959</dim:field>
</dim:dim>
<?xml version="1.0" encoding="UTF-8" ?>
<thesis schemaLocation="http://www.ndltd.org/standards/metadata/etdms/1.0/ http://www.ndltd.org/standards/metadata/etdms/1.0/etdms.xsd">
<title>3D printing of PLA:CaP:GO scaffolds for bone tissue applications</title>
<creator>González Rodríguez, Laura</creator>
<creator>Pérez Davila, Sara</creator>
<creator>Lama, R.</creator>
<creator>López Álvarez, Miriam</creator>
<creator>Serra Rodríguez, Julia Asunción</creator>
<creator>Novoa, B.</creator>
<creator>Figueras, A.</creator>
<creator>González Fernández, Pío Manuel</creator>
<description>PLA:CaP:GO scaffolds were fabricated with a previously optimised biocompatible dose of GO and then characterised physicochemically and in a zebrafish model.</description>
<description>Graphene oxide (GO) has attracted increasing interest for biomedical applications owing to its outstanding properties such as high specific surface area, ability to bind functional molecules for therapeutic purposes and solubility, together with mechanical resistance and good thermal conductivity. The combination of GO with other biomaterials, such as calcium phosphate (CaP) and biodegradable polymers, presents a promising strategy for bone tissue engineering. Presently, the development of these advanced biomaterials benefits from the use of additive manufacturing techniques, such as 3D printing. In this study, we develop a 3D printed PLA:CaP:GO scaffold for bone tissue engineering. First, GO was characterised alone by XPS to determine its main bond contributions and C : O ratio. Secondly, we determined the GO dose which ensures the absence of toxicity, directly exposed in vitro (human osteoblast-like cells MG-63) and in vivo (zebrafish model). In addition, GO was microinjected in the zebrafish to evaluate its effect on immune cells, quantifying the genetic expression of the main markers. Results indicated that the GO tested (C : O of 2.14, 49.50% oxidised, main bonds: C–OH, C–O–C) in a dose ≤0.25 mg mL −1 promoted MG63 cells viability percentages above 70%, and in a dose ≤0.10 mg mL −1 resulted in the absence of toxicity in zebrafish embryos. The immune response evaluation reinforced this result. Finally, the optimised GO dose (0.10 mg mL −1 ) was combined with polylactic acid (PLA) and CaP to obtain a 3D printed PLA:CaP:GO scaffold. Physicochemical characterisation (SEM/EDS, XRD, FT-Raman, nano-indentation) was performed and in vivo tests confirmed its biocompatibility, enabling a novel approach for bone tissue-related applications.</description>
<date>2024-09-09</date>
<date>2024-09-09</date>
<date>2023</date>
<date>2024-07-19</date>
<type>article</type>
<identifier>RSC Advances, 13(23): 15947-15959 (2023)</identifier>
<identifier>20462069</identifier>
<identifier>http://hdl.handle.net/11093/7351</identifier>
<identifier>10.1039/D3RA00981E</identifier>
<identifier>https://xlink.rsc.org/?DOI=D3RA00981E</identifier>
<language>eng</language>
<relation>info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID 2020-115415RB-100/ES</relation>
<rights>https://creativecommons.org/licenses/by-nc/3.0/</rights>
<rights>openAccess</rights>
<rights>Attribution-NonCommercial 3.0 Unported</rights>
<publisher>RSC Advances</publisher>
<publisher>Física aplicada</publisher>
<publisher>Novos Materiais</publisher>
</thesis>
<?xml version="1.0" encoding="UTF-8" ?>
<record schemaLocation="http://www.loc.gov/MARC21/slim http://www.loc.gov/standards/marcxml/schema/MARC21slim.xsd">
<leader>00925njm 22002777a 4500</leader>
<datafield ind1=" " ind2=" " tag="042">
<subfield code="a">dc</subfield>
</datafield>
<datafield ind1=" " ind2=" " tag="720">
<subfield code="a">González Rodríguez, Laura</subfield>
<subfield code="e">author</subfield>
</datafield>
<datafield ind1=" " ind2=" " tag="720">
<subfield code="a">Pérez Davila, Sara</subfield>
<subfield code="e">author</subfield>
</datafield>
<datafield ind1=" " ind2=" " tag="720">
<subfield code="a">Lama, R.</subfield>
<subfield code="e">author</subfield>
</datafield>
<datafield ind1=" " ind2=" " tag="720">
<subfield code="a">López Álvarez, Miriam</subfield>
<subfield code="e">author</subfield>
</datafield>
<datafield ind1=" " ind2=" " tag="720">
<subfield code="a">Serra Rodríguez, Julia Asunción</subfield>
<subfield code="e">author</subfield>
</datafield>
<datafield ind1=" " ind2=" " tag="720">
<subfield code="a">Novoa, B.</subfield>
<subfield code="e">author</subfield>
</datafield>
<datafield ind1=" " ind2=" " tag="720">
<subfield code="a">Figueras, A.</subfield>
<subfield code="e">author</subfield>
</datafield>
<datafield ind1=" " ind2=" " tag="720">
<subfield code="a">González Fernández, Pío Manuel</subfield>
<subfield code="e">author</subfield>
</datafield>
<datafield ind1=" " ind2=" " tag="260">
<subfield code="c">2023</subfield>
</datafield>
<datafield ind1=" " ind2=" " tag="520">
<subfield code="a">PLA:CaP:GO scaffolds were fabricated with a previously optimised biocompatible dose of GO and then characterised physicochemically and in a zebrafish model.</subfield>
</datafield>
<datafield ind1=" " ind2=" " tag="520">
<subfield code="a">Graphene oxide (GO) has attracted increasing interest for biomedical applications owing to its outstanding properties such as high specific surface area, ability to bind functional molecules for therapeutic purposes and solubility, together with mechanical resistance and good thermal conductivity. The combination of GO with other biomaterials, such as calcium phosphate (CaP) and biodegradable polymers, presents a promising strategy for bone tissue engineering. Presently, the development of these advanced biomaterials benefits from the use of additive manufacturing techniques, such as 3D printing. In this study, we develop a 3D printed PLA:CaP:GO scaffold for bone tissue engineering. First, GO was characterised alone by XPS to determine its main bond contributions and C : O ratio. Secondly, we determined the GO dose which ensures the absence of toxicity, directly exposed in vitro (human osteoblast-like cells MG-63) and in vivo (zebrafish model). In addition, GO was microinjected in the zebrafish to evaluate its effect on immune cells, quantifying the genetic expression of the main markers. Results indicated that the GO tested (C : O of 2.14, 49.50% oxidised, main bonds: C–OH, C–O–C) in a dose ≤0.25 mg mL −1 promoted MG63 cells viability percentages above 70%, and in a dose ≤0.10 mg mL −1 resulted in the absence of toxicity in zebrafish embryos. The immune response evaluation reinforced this result. Finally, the optimised GO dose (0.10 mg mL −1 ) was combined with polylactic acid (PLA) and CaP to obtain a 3D printed PLA:CaP:GO scaffold. Physicochemical characterisation (SEM/EDS, XRD, FT-Raman, nano-indentation) was performed and in vivo tests confirmed its biocompatibility, enabling a novel approach for bone tissue-related applications.</subfield>
</datafield>
<datafield ind1="8" ind2=" " tag="024">
<subfield code="a">RSC Advances, 13(23): 15947-15959 (2023)</subfield>
</datafield>
<datafield ind1="8" ind2=" " tag="024">
<subfield code="a">20462069</subfield>
</datafield>
<datafield ind1="8" ind2=" " tag="024">
<subfield code="a">http://hdl.handle.net/11093/7351</subfield>
</datafield>
<datafield ind1="8" ind2=" " tag="024">
<subfield code="a">10.1039/D3RA00981E</subfield>
</datafield>
<datafield ind1="8" ind2=" " tag="024">
<subfield code="a">https://xlink.rsc.org/?DOI=D3RA00981E</subfield>
</datafield>
<datafield ind1="0" ind2="0" tag="245">
<subfield code="a">3D printing of PLA:CaP:GO scaffolds for bone tissue applications</subfield>
</datafield>
</record>
Se ha omitido la presentación del registro por ser demasiado largo. Si lo desea, puede descargárselo en el enlace anterior.
<?xml version="1.0" encoding="UTF-8" ?>
<mods:mods schemaLocation="http://www.loc.gov/mods/v3 http://www.loc.gov/standards/mods/v3/mods-3-1.xsd">
<mods:namePart>González Rodríguez, Laura</mods:namePart>
</mods:name>
<mods:namePart>Pérez Davila, Sara</mods:namePart>
</mods:name>
<mods:namePart>Lama, R.</mods:namePart>
</mods:name>
<mods:namePart>López Álvarez, Miriam</mods:namePart>
</mods:name>
<mods:namePart>Serra Rodríguez, Julia Asunción</mods:namePart>
</mods:name>
<mods:namePart>Novoa, B.</mods:namePart>
</mods:name>
<mods:namePart>Figueras, A.</mods:namePart>
</mods:name>
<mods:namePart>González Fernández, Pío Manuel</mods:namePart>
</mods:name>
<mods:dateAvailable encoding="iso8601">2024-09-09T12:15:22Z</mods:dateAvailable>
</mods:extension>
<mods:dateAccessioned encoding="iso8601">2024-09-09T12:15:22Z</mods:dateAccessioned>
</mods:extension>
<mods:dateIssued encoding="iso8601">2023</mods:dateIssued>
</mods:originInfo>
<mods:identifier type="citation">RSC Advances, 13(23): 15947-15959 (2023)</mods:identifier>
<mods:identifier type="issn">20462069</mods:identifier>
<mods:identifier type="uri">http://hdl.handle.net/11093/7351</mods:identifier>
<mods:identifier type="doi">10.1039/D3RA00981E</mods:identifier>
<mods:identifier type="editor">https://xlink.rsc.org/?DOI=D3RA00981E</mods:identifier>
<mods:abstract>PLA:CaP:GO scaffolds were fabricated with a previously optimised biocompatible dose of GO and then characterised physicochemically and in a zebrafish model.</mods:abstract>
<mods:abstract>Graphene oxide (GO) has attracted increasing interest for biomedical applications owing to its outstanding properties such as high specific surface area, ability to bind functional molecules for therapeutic purposes and solubility, together with mechanical resistance and good thermal conductivity. The combination of GO with other biomaterials, such as calcium phosphate (CaP) and biodegradable polymers, presents a promising strategy for bone tissue engineering. Presently, the development of these advanced biomaterials benefits from the use of additive manufacturing techniques, such as 3D printing. In this study, we develop a 3D printed PLA:CaP:GO scaffold for bone tissue engineering. First, GO was characterised alone by XPS to determine its main bond contributions and C : O ratio. Secondly, we determined the GO dose which ensures the absence of toxicity, directly exposed in vitro (human osteoblast-like cells MG-63) and in vivo (zebrafish model). In addition, GO was microinjected in the zebrafish to evaluate its effect on immune cells, quantifying the genetic expression of the main markers. Results indicated that the GO tested (C : O of 2.14, 49.50% oxidised, main bonds: C–OH, C–O–C) in a dose ≤0.25 mg mL −1 promoted MG63 cells viability percentages above 70%, and in a dose ≤0.10 mg mL −1 resulted in the absence of toxicity in zebrafish embryos. The immune response evaluation reinforced this result. Finally, the optimised GO dose (0.10 mg mL −1 ) was combined with polylactic acid (PLA) and CaP to obtain a 3D printed PLA:CaP:GO scaffold. Physicochemical characterisation (SEM/EDS, XRD, FT-Raman, nano-indentation) was performed and in vivo tests confirmed its biocompatibility, enabling a novel approach for bone tissue-related applications.</mods:abstract>
<mods:languageTerm>eng</mods:languageTerm>
</mods:language>
<mods:accessCondition type="useAndReproduction">https://creativecommons.org/licenses/by-nc/3.0/</mods:accessCondition>
<mods:accessCondition type="useAndReproduction">openAccess</mods:accessCondition>
<mods:accessCondition type="useAndReproduction">Attribution-NonCommercial 3.0 Unported</mods:accessCondition>
<mods:title>3D printing of PLA:CaP:GO scaffolds for bone tissue applications</mods:title>
</mods:titleInfo>
<mods:genre>article</mods:genre>
</mods:mods>
<?xml version="1.0" encoding="UTF-8" ?>
<atom:entry schemaLocation="http://www.w3.org/2005/Atom http://www.kbcafe.com/rss/atom.xsd.xml">
<atom:id>http://hdl.handle.net/11093/7351/ore.xml</atom:id>
<atom:published>2024-09-09T12:15:22Z</atom:published>
<atom:updated>2024-09-09T12:15:22Z</atom:updated>
<atom:generator>Investigo</atom:generator>
</atom:source>
<atom:title>3D printing of PLA:CaP:GO scaffolds for bone tissue applications</atom:title>
<atom:name>González Rodríguez, Laura</atom:name>
</atom:author>
<atom:name>Pérez Davila, Sara</atom:name>
</atom:author>
<atom:name>Lama, R.</atom:name>
</atom:author>
<atom:name>López Álvarez, Miriam</atom:name>
</atom:author>
<atom:name>Serra Rodríguez, Julia Asunción</atom:name>
</atom:author>
<atom:name>Novoa, B.</atom:name>
</atom:author>
<atom:name>Figueras, A.</atom:name>
</atom:author>
<atom:name>González Fernández, Pío Manuel</atom:name>
</atom:author>
<rdf:Description about="http://hdl.handle.net/11093/7351/ore.xml#atom">
<dcterms:modified>2024-09-09T12:15:22Z</dcterms:modified>
</rdf:Description>
<rdf:Description about="https://www.investigo.biblioteca.uvigo.es/xmlui/bitstream/11093/7351/4/2023_serra_3d_pla.pdf">
<dcterms:description>ORIGINAL</dcterms:description>
</rdf:Description>
<rdf:Description about="https://www.investigo.biblioteca.uvigo.es/xmlui/bitstream/11093/7351/2/license.txt">
<dcterms:description>LICENSE</dcterms:description>
</rdf:Description>
<rdf:Description about="https://www.investigo.biblioteca.uvigo.es/xmlui/bitstream/11093/7351/3/sword.zip">
<dcterms:description>SWORD</dcterms:description>
</rdf:Description>
<rdf:Description about="https://www.investigo.biblioteca.uvigo.es/xmlui/bitstream/11093/7351/5/2023_serra_3d_pla.pdf.txt">
<dcterms:description>TEXT</dcterms:description>
</rdf:Description>
</oreatom:triples>
</atom:entry>
<?xml version="1.0" encoding="UTF-8" ?>
<qdc:qualifieddc schemaLocation="http://purl.org/dc/elements/1.1/ http://dublincore.org/schemas/xmls/qdc/2006/01/06/dc.xsd http://purl.org/dc/terms/ http://dublincore.org/schemas/xmls/qdc/2006/01/06/dcterms.xsd http://dspace.org/qualifieddc/ http://www.ukoln.ac.uk/metadata/dcmi/xmlschema/qualifieddc.xsd">
<dc:title>3D printing of PLA:CaP:GO scaffolds for bone tissue applications</dc:title>
<dc:creator>González Rodríguez, Laura</dc:creator>
<dc:creator>Pérez Davila, Sara</dc:creator>
<dc:creator>Lama, R.</dc:creator>
<dc:creator>López Álvarez, Miriam</dc:creator>
<dc:creator>Serra Rodríguez, Julia Asunción</dc:creator>
<dc:creator>Novoa, B.</dc:creator>
<dc:creator>Figueras, A.</dc:creator>
<dc:creator>González Fernández, Pío Manuel</dc:creator>
<dcterms:abstract>PLA:CaP:GO scaffolds were fabricated with a previously optimised biocompatible dose of GO and then characterised physicochemically and in a zebrafish model.</dcterms:abstract>
<dcterms:abstract>Graphene oxide (GO) has attracted increasing interest for biomedical applications owing to its outstanding properties such as high specific surface area, ability to bind functional molecules for therapeutic purposes and solubility, together with mechanical resistance and good thermal conductivity. The combination of GO with other biomaterials, such as calcium phosphate (CaP) and biodegradable polymers, presents a promising strategy for bone tissue engineering. Presently, the development of these advanced biomaterials benefits from the use of additive manufacturing techniques, such as 3D printing. In this study, we develop a 3D printed PLA:CaP:GO scaffold for bone tissue engineering. First, GO was characterised alone by XPS to determine its main bond contributions and C : O ratio. Secondly, we determined the GO dose which ensures the absence of toxicity, directly exposed in vitro (human osteoblast-like cells MG-63) and in vivo (zebrafish model). In addition, GO was microinjected in the zebrafish to evaluate its effect on immune cells, quantifying the genetic expression of the main markers. Results indicated that the GO tested (C : O of 2.14, 49.50% oxidised, main bonds: C–OH, C–O–C) in a dose ≤0.25 mg mL −1 promoted MG63 cells viability percentages above 70%, and in a dose ≤0.10 mg mL −1 resulted in the absence of toxicity in zebrafish embryos. The immune response evaluation reinforced this result. Finally, the optimised GO dose (0.10 mg mL −1 ) was combined with polylactic acid (PLA) and CaP to obtain a 3D printed PLA:CaP:GO scaffold. Physicochemical characterisation (SEM/EDS, XRD, FT-Raman, nano-indentation) was performed and in vivo tests confirmed its biocompatibility, enabling a novel approach for bone tissue-related applications.</dcterms:abstract>
<dcterms:dateAccepted>2024-09-09T12:15:22Z</dcterms:dateAccepted>
<dcterms:available>2024-09-09T12:15:22Z</dcterms:available>
<dcterms:created>2024-09-09T12:15:22Z</dcterms:created>
<dcterms:issued>2023</dcterms:issued>
<dc:type>article</dc:type>
<dc:identifier>RSC Advances, 13(23): 15947-15959 (2023)</dc:identifier>
<dc:identifier>20462069</dc:identifier>
<dc:identifier>http://hdl.handle.net/11093/7351</dc:identifier>
<dc:identifier>10.1039/D3RA00981E</dc:identifier>
<dc:identifier>https://xlink.rsc.org/?DOI=D3RA00981E</dc:identifier>
<dc:language>eng</dc:language>
<dc:relation>info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID 2020-115415RB-100/ES</dc:relation>
<dc:rights>https://creativecommons.org/licenses/by-nc/3.0/</dc:rights>
<dc:rights>openAccess</dc:rights>
<dc:rights>Attribution-NonCommercial 3.0 Unported</dc:rights>
<dc:publisher>RSC Advances</dc:publisher>
<dc:publisher>Física aplicada</dc:publisher>
<dc:publisher>Novos Materiais</dc:publisher>
</qdc:qualifieddc>
<?xml version="1.0" encoding="UTF-8" ?>
<rdf:RDF schemaLocation="http://www.openarchives.org/OAI/2.0/rdf/ http://www.openarchives.org/OAI/2.0/rdf.xsd">
<ow:Publication about="oai:www.investigo.biblioteca.uvigo.es:11093/7351">
<dc:title>3D printing of PLA:CaP:GO scaffolds for bone tissue applications</dc:title>
<dc:creator>González Rodríguez, Laura</dc:creator>
<dc:creator>Pérez Davila, Sara</dc:creator>
<dc:creator>Lama, R.</dc:creator>
<dc:creator>López Álvarez, Miriam</dc:creator>
<dc:creator>Serra Rodríguez, Julia Asunción</dc:creator>
<dc:creator>Novoa, B.</dc:creator>
<dc:creator>Figueras, A.</dc:creator>
<dc:creator>González Fernández, Pío Manuel</dc:creator>
<dc:description>PLA:CaP:GO scaffolds were fabricated with a previously optimised biocompatible dose of GO and then characterised physicochemically and in a zebrafish model.</dc:description>
<dc:description>Graphene oxide (GO) has attracted increasing interest for biomedical applications owing to its outstanding properties such as high specific surface area, ability to bind functional molecules for therapeutic purposes and solubility, together with mechanical resistance and good thermal conductivity. The combination of GO with other biomaterials, such as calcium phosphate (CaP) and biodegradable polymers, presents a promising strategy for bone tissue engineering. Presently, the development of these advanced biomaterials benefits from the use of additive manufacturing techniques, such as 3D printing. In this study, we develop a 3D printed PLA:CaP:GO scaffold for bone tissue engineering. First, GO was characterised alone by XPS to determine its main bond contributions and C : O ratio. Secondly, we determined the GO dose which ensures the absence of toxicity, directly exposed in vitro (human osteoblast-like cells MG-63) and in vivo (zebrafish model). In addition, GO was microinjected in the zebrafish to evaluate its effect on immune cells, quantifying the genetic expression of the main markers. Results indicated that the GO tested (C : O of 2.14, 49.50% oxidised, main bonds: C–OH, C–O–C) in a dose ≤0.25 mg mL −1 promoted MG63 cells viability percentages above 70%, and in a dose ≤0.10 mg mL −1 resulted in the absence of toxicity in zebrafish embryos. The immune response evaluation reinforced this result. Finally, the optimised GO dose (0.10 mg mL −1 ) was combined with polylactic acid (PLA) and CaP to obtain a 3D printed PLA:CaP:GO scaffold. Physicochemical characterisation (SEM/EDS, XRD, FT-Raman, nano-indentation) was performed and in vivo tests confirmed its biocompatibility, enabling a novel approach for bone tissue-related applications.</dc:description>
<dc:date>2024-09-09T12:15:22Z</dc:date>
<dc:date>2024-09-09T12:15:22Z</dc:date>
<dc:date>2023</dc:date>
<dc:date>2024-07-19T09:55:42Z</dc:date>
<dc:type>article</dc:type>
<dc:identifier>RSC Advances, 13(23): 15947-15959 (2023)</dc:identifier>
<dc:identifier>20462069</dc:identifier>
<dc:identifier>http://hdl.handle.net/11093/7351</dc:identifier>
<dc:identifier>10.1039/D3RA00981E</dc:identifier>
<dc:identifier>https://xlink.rsc.org/?DOI=D3RA00981E</dc:identifier>
<dc:language>eng</dc:language>
<dc:relation>info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID 2020-115415RB-100/ES</dc:relation>
<dc:rights>https://creativecommons.org/licenses/by-nc/3.0/</dc:rights>
<dc:rights>openAccess</dc:rights>
<dc:rights>Attribution-NonCommercial 3.0 Unported</dc:rights>
<dc:publisher>RSC Advances</dc:publisher>
<dc:publisher>Física aplicada</dc:publisher>
<dc:publisher>Novos Materiais</dc:publisher>
</ow:Publication>
</rdf:RDF>
<?xml version="1.0" encoding="UTF-8" ?>
<oai_dc:dc schemaLocation="http://www.openarchives.org/OAI/2.0/oai_dc/ http://www.openarchives.org/OAI/2.0/oai_dc.xsd">
<dcterms:dateAccepted>2024-09-09T12:15:22Z</dcterms:dateAccepted>
<dcterms:available>2024-09-09T12:15:22Z</dcterms:available>
<dcterms:issued>2023</dcterms:issued>
<dcterms:identifier_bibliographicCitation lang="spa">RSC Advances, 13(23): 15947-15959 (2023)</dcterms:identifier_bibliographicCitation>
<dcterms:identifier_issn>20462069</dcterms:identifier_issn>
<dcterms:identifier_doi>10.1039/D3RA00981E</dcterms:identifier_doi>
<dcterms:identifier type="dcterms:URI">http://hdl.handle.net/11093/7351</dcterms:identifier>
<dcterms:identifier_editor lang="spa">https://xlink.rsc.org/?DOI=D3RA00981E</dcterms:identifier_editor>
<dcterms:abstract lang="en">PLA:CaP:GO scaffolds were fabricated with a previously optimised biocompatible dose of GO and then characterised physicochemically and in a zebrafish model.</dcterms:abstract>
<dcterms:abstract lang="en">Graphene oxide (GO) has attracted increasing interest for biomedical applications owing to its outstanding properties such as high specific surface area, ability to bind functional molecules for therapeutic purposes and solubility, together with mechanical resistance and good thermal conductivity. The combination of GO with other biomaterials, such as calcium phosphate (CaP) and biodegradable polymers, presents a promising strategy for bone tissue engineering. Presently, the development of these advanced biomaterials benefits from the use of additive manufacturing techniques, such as 3D printing. In this study, we develop a 3D printed PLA:CaP:GO scaffold for bone tissue engineering. First, GO was characterised alone by XPS to determine its main bond contributions and C : O ratio. Secondly, we determined the GO dose which ensures the absence of toxicity, directly exposed in vitro (human osteoblast-like cells MG-63) and in vivo (zebrafish model). In addition, GO was microinjected in the zebrafish to evaluate its effect on immune cells, quantifying the genetic expression of the main markers. Results indicated that the GO tested (C : O of 2.14, 49.50% oxidised, main bonds: C–OH, C–O–C) in a dose ≤0.25 mg mL −1 promoted MG63 cells viability percentages above 70%, and in a dose ≤0.10 mg mL −1 resulted in the absence of toxicity in zebrafish embryos. The immune response evaluation reinforced this result. Finally, the optimised GO dose (0.10 mg mL −1 ) was combined with polylactic acid (PLA) and CaP to obtain a 3D printed PLA:CaP:GO scaffold. Physicochemical characterisation (SEM/EDS, XRD, FT-Raman, nano-indentation) was performed and in vivo tests confirmed its biocompatibility, enabling a novel approach for bone tissue-related applications.</dcterms:abstract>
<dcterms:description_sponsorship lang="spa">Xunta de Galicia | Ref. ED431C 2021/49</dcterms:description_sponsorship>
<dcterms:description_sponsorship lang="spa">Xunta de Galicia | Ref. ED481A 2019/314</dcterms:description_sponsorship>
<dcterms:description_sponsorship lang="spa">Xunta de Galicia | Ref. IN607B 2022/13</dcterms:description_sponsorship>
<dcterms:description_sponsorship lang="spa">Xunta de Galicia | Ref. IN606A-2017/011</dcterms:description_sponsorship>
<dcterms:description_sponsorship lang="spa">Universidade de Vigo/CISUG</dcterms:description_sponsorship>
<dcterms:description_sponsorship lang="spa">Agencia Estatal de Investigación | Ref. PID 2020-115415RB-100</dcterms:description_sponsorship>
<dcterms:language type="dcterms:ISO639-2" lang="spa">eng</dcterms:language>
<dcterms:publisher lang="spa">RSC Advances</dcterms:publisher>
<dcterms:relation>info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID 2020-115415RB-100/ES</dcterms:relation>
<dcterms:rights>Attribution-NonCommercial 3.0 Unported</dcterms:rights>
<dcterms:accessRights lang="spa">openAccess</dcterms:accessRights>
<dcterms:rights_uri type="dcterms:URI">https://creativecommons.org/licenses/by-nc/3.0/</dcterms:rights_uri>
<dcterms:title lang="en">3D printing of PLA:CaP:GO scaffolds for bone tissue applications</dcterms:title>
<dcterms:type lang="spa">article</dcterms:type>
<dcterms:computerCitation lang="spa">pub_title=RSC Advances|volume=13|journal_number=23|start_pag=15947|end_pag=15959</dcterms:computerCitation>
<dcterms:publisher_department lang="spa">Física aplicada</dcterms:publisher_department>
<dcterms:publisher_group lang="spa">Novos Materiais</dcterms:publisher_group>
<dcterms:subject lang="spa">3314 Tecnología Médica</dcterms:subject>
<dcterms:subject lang="spa">2299 Otras Especialidades Físicas</dcterms:subject>
<dcterms:authorList>8546#7973#Lama, R.#5191#602#Novoa, B.#Figueras, A.#282</dcterms:authorList>
</oai_dc:dc>
Se ha omitido la presentación del registro por ser demasiado largo. Si lo desea, puede descargárselo en el enlace anterior.