<?xml version="1.0" encoding="UTF-8" ?>
<oai_dc:dc schemaLocation="http://www.openarchives.org/OAI/2.0/oai_dc/ http://www.openarchives.org/OAI/2.0/oai_dc.xsd">
<dc:title>$E_{1}$-Formality of complex algebraic varieties</dc:title>
<dc:creator>Cirici, Joana</dc:creator>
<dc:creator>Guillén Santos, Francisco</dc:creator>
<dc:subject>Singularitats (Matemàtica)</dc:subject>
<dc:subject>Teoria de l'homotopia</dc:subject>
<dc:subject>Singularities (Mathematics)</dc:subject>
<dc:subject>Homotopy theory</dc:subject>
<dc:description>Let $X$ be a smooth complex algebraic variety. Morgan showed that the rational homotopy type of $X$ is a formal consequence of the differential graded algebra defined by the first term $E_{1}(X,W)$ of its weight spectral sequence. In the present work, we generalize this result to arbitrary nilpotent complex algebraic varieties (possibly singular and/or non-compact) and to algebraic morphisms between them. In particular, our results generalize the formality theorem of Deligne, Griffiths, Morgan and Sullivan for morphisms of compact Kähler varieties, filling a gap in Morgan"s theory concerning functoriality over the rationals. As an application, we study the Hopf invariant of certain algebraic morphisms using intersection theory.</dc:description>
<dc:date>2015-02-03T11:38:45Z</dc:date>
<dc:date>2015-02-03T11:38:45Z</dc:date>
<dc:date>2014-11-05</dc:date>
<dc:date>2015-02-03T11:38:45Z</dc:date>
<dc:type>info:eu-repo/semantics/article</dc:type>
<dc:type>info:eu-repo/semantics/publishedVersion</dc:type>
<dc:identifier>1472-2747</dc:identifier>
<dc:identifier>http://hdl.handle.net/2445/62303</dc:identifier>
<dc:identifier>646269</dc:identifier>
<dc:language>eng</dc:language>
<dc:relation>Reproducció del document publicat a: http://dx.doi.org/10.2140/agt.2014.14.3049</dc:relation>
<dc:relation>Algebraic and Geometric Topology, 2014, vol. 14, p. 3049-3079</dc:relation>
<dc:relation>http://dx.doi.org/10.2140/agt.2014.14.3049</dc:relation>
<dc:rights>(c) Mathematical Sciences Publishers (MSP), 2014</dc:rights>
<dc:rights>info:eu-repo/semantics/openAccess</dc:rights>
<dc:format>31 p.</dc:format>
<dc:format>application/pdf</dc:format>
<dc:publisher>Mathematical Sciences Publishers (MSP)</dc:publisher>
<dc:source>Articles publicats en revistes (Matemàtiques i Informàtica)</dc:source>
</oai_dc:dc>
<?xml version="1.0" encoding="UTF-8" ?>
<record schemaLocation="http://www.loc.gov/MARC21/slim http://www.loc.gov/standards/marcxml/schema/MARC21slim.xsd">
<leader>00925njm 22002777a 4500</leader>
<datafield ind1=" " ind2=" " tag="042">
<subfield code="a">dc</subfield>
</datafield>
<datafield ind1=" " ind2=" " tag="720">
<subfield code="a">Cirici, Joana</subfield>
<subfield code="e">author</subfield>
</datafield>
<datafield ind1=" " ind2=" " tag="720">
<subfield code="a">Guillén Santos, Francisco</subfield>
<subfield code="e">author</subfield>
</datafield>
<datafield ind1=" " ind2=" " tag="260">
<subfield code="c">2014-11-05</subfield>
</datafield>
<datafield ind1=" " ind2=" " tag="520">
<subfield code="a">Let $X$ be a smooth complex algebraic variety. Morgan showed that the rational homotopy type of $X$ is a formal consequence of the differential graded algebra defined by the first term $E_{1}(X,W)$ of its weight spectral sequence. In the present work, we generalize this result to arbitrary nilpotent complex algebraic varieties (possibly singular and/or non-compact) and to algebraic morphisms between them. In particular, our results generalize the formality theorem of Deligne, Griffiths, Morgan and Sullivan for morphisms of compact Kähler varieties, filling a gap in Morgan"s theory concerning functoriality over the rationals. As an application, we study the Hopf invariant of certain algebraic morphisms using intersection theory.</subfield>
</datafield>
<datafield ind1="8" ind2=" " tag="024">
<subfield code="a">1472-2747</subfield>
</datafield>
<datafield ind1="8" ind2=" " tag="024">
<subfield code="a">http://hdl.handle.net/2445/62303</subfield>
</datafield>
<datafield ind1="8" ind2=" " tag="024">
<subfield code="a">646269</subfield>
</datafield>
<datafield ind1="0" ind2="0" tag="245">
<subfield code="a">$E_{1}$-Formality of complex algebraic varieties</subfield>
</datafield>
</record>
<?xml version="1.0" encoding="UTF-8" ?>
<mets ID=" DSpace_ITEM_2445-62303" OBJID=" hdl:2445/62303" PROFILE="DSpace METS SIP Profile 1.0" TYPE="DSpace ITEM" schemaLocation="http://www.loc.gov/METS/ http://www.loc.gov/standards/mets/mets.xsd">
<metsHdr CREATEDATE="2024-08-02T18:02:01Z">
<agent ROLE="CUSTODIAN" TYPE="ORGANIZATION">
<name>Dipòsit Digital de la Universitat de Barcelona</name>
</agent>
</metsHdr>
<dmdSec ID="DMD_2445_62303">
<mdWrap MDTYPE="MODS">
<xmlData schemaLocation="http://www.loc.gov/mods/v3 http://www.loc.gov/standards/mods/v3/mods-3-1.xsd">
<mods:mods schemaLocation="http://www.loc.gov/mods/v3 http://www.loc.gov/standards/mods/v3/mods-3-1.xsd">
<mods:name>
<mods:role>
<mods:roleTerm type="text">author</mods:roleTerm>
</mods:role>
<mods:namePart>Cirici, Joana</mods:namePart>
</mods:name>
<mods:name>
<mods:role>
<mods:roleTerm type="text">author</mods:roleTerm>
</mods:role>
<mods:namePart>Guillén Santos, Francisco</mods:namePart>
</mods:name>
<mods:extension>
<mods:dateAccessioned encoding="iso8601">2015-02-03T11:38:45Z</mods:dateAccessioned>
</mods:extension>
<mods:extension>
<mods:dateAvailable encoding="iso8601">2015-02-03T11:38:45Z</mods:dateAvailable>
</mods:extension>
<mods:originInfo>
<mods:dateIssued encoding="iso8601">2014-11-05</mods:dateIssued>
</mods:originInfo>
<mods:identifier type="issn">1472-2747</mods:identifier>
<mods:identifier type="uri">http://hdl.handle.net/2445/62303</mods:identifier>
<mods:identifier type="idgrec">646269</mods:identifier>
<mods:abstract>Let $X$ be a smooth complex algebraic variety. Morgan showed that the rational homotopy type of $X$ is a formal consequence of the differential graded algebra defined by the first term $E_{1}(X,W)$ of its weight spectral sequence. In the present work, we generalize this result to arbitrary nilpotent complex algebraic varieties (possibly singular and/or non-compact) and to algebraic morphisms between them. In particular, our results generalize the formality theorem of Deligne, Griffiths, Morgan and Sullivan for morphisms of compact Kähler varieties, filling a gap in Morgan"s theory concerning functoriality over the rationals. As an application, we study the Hopf invariant of certain algebraic morphisms using intersection theory.</mods:abstract>
<mods:language>
<mods:languageTerm authority="rfc3066">eng</mods:languageTerm>
</mods:language>
<mods:accessCondition type="useAndReproduction">(c) Mathematical Sciences Publishers (MSP), 2014</mods:accessCondition>
<mods:titleInfo>
<mods:title>$E_{1}$-Formality of complex algebraic varieties</mods:title>
</mods:titleInfo>
<mods:genre>info:eu-repo/semantics/article</mods:genre>
</mods:mods>
</xmlData>
</mdWrap>
</dmdSec>
<amdSec ID="TMD_2445_62303">
<rightsMD ID="RIG_2445_62303">
<mdWrap MDTYPE="OTHER" MIMETYPE="text/plain" OTHERMDTYPE="DSpaceDepositLicense">
<binData>VG90cyBlbHMgbWF0ZXJpYWxzIGluY2xvc29zIGVuIGVsIERpcMOyc2l0IGRpZ2l0YWwgZGUgbGEgVUIgZXN0YW4gc3ViamVjdGVzIGEgbGxpY8OobmNpZXMgQ3JlYXRpdmUgQ29tbW9ucywKcXVlIGVuIGVsIG1vbWVudCBkZSBsbGl1cmFyIGVsIGRvY3VtZW50IGhhIGQnZXNjb2xsaXIgZWwgcHJvcGkgdXN1YXJpLgpTaSB1cyBwbGF1IG5vIG9ibGlkZXUgYXNzaWduYXIgdW5hIGxsaWPDqG5jaWEgYWwgdm9zdHJlIGRvY3VtZW50IS4K</binData>
</mdWrap>
</rightsMD>
</amdSec>
<amdSec ID="FO_2445_62303_1">
<techMD ID="TECH_O_2445_62303_1">
<mdWrap MDTYPE="PREMIS">
<xmlData schemaLocation="http://www.loc.gov/standards/premis http://www.loc.gov/standards/premis/PREMIS-v1-0.xsd">
<premis:premis>
<premis:object>
<premis:objectIdentifier>
<premis:objectIdentifierType>URL</premis:objectIdentifierType>
<premis:objectIdentifierValue>http://diposit.ub.edu/dspace/bitstream/2445/62303/1/646269.pdf</premis:objectIdentifierValue>
</premis:objectIdentifier>
<premis:objectCategory>File</premis:objectCategory>
<premis:objectCharacteristics>
<premis:fixity>
<premis:messageDigestAlgorithm>MD5</premis:messageDigestAlgorithm>
<premis:messageDigest>8ae1a76ee2069f30e8305f61081efe5d</premis:messageDigest>
</premis:fixity>
<premis:size>411780</premis:size>
<premis:format>
<premis:formatDesignation>
<premis:formatName>application/pdf</premis:formatName>
</premis:formatDesignation>
</premis:format>
</premis:objectCharacteristics>
<premis:originalName>646269.pdf</premis:originalName>
</premis:object>
</premis:premis>
</xmlData>
</mdWrap>
</techMD>
</amdSec>
<amdSec ID="FT_2445_62303_3">
<techMD ID="TECH_T_2445_62303_3">
<mdWrap MDTYPE="PREMIS">
<xmlData schemaLocation="http://www.loc.gov/standards/premis http://www.loc.gov/standards/premis/PREMIS-v1-0.xsd">
<premis:premis>
<premis:object>
<premis:objectIdentifier>
<premis:objectIdentifierType>URL</premis:objectIdentifierType>
<premis:objectIdentifierValue>http://diposit.ub.edu/dspace/bitstream/2445/62303/3/646269.pdf.txt</premis:objectIdentifierValue>
</premis:objectIdentifier>
<premis:objectCategory>File</premis:objectCategory>
<premis:objectCharacteristics>
<premis:fixity>
<premis:messageDigestAlgorithm>MD5</premis:messageDigestAlgorithm>
<premis:messageDigest>96600cafc685978c5f0614efaa057b39</premis:messageDigest>
</premis:fixity>
<premis:size>61964</premis:size>
<premis:format>
<premis:formatDesignation>
<premis:formatName>text/plain</premis:formatName>
</premis:formatDesignation>
</premis:format>
</premis:objectCharacteristics>
<premis:originalName>646269.pdf.txt</premis:originalName>
</premis:object>
</premis:premis>
</xmlData>
</mdWrap>
</techMD>
</amdSec>
<fileSec>
<fileGrp USE="ORIGINAL">
<file ADMID="FO_2445_62303_1" CHECKSUM="8ae1a76ee2069f30e8305f61081efe5d" CHECKSUMTYPE="MD5" GROUPID="GROUP_BITSTREAM_2445_62303_1" ID="BITSTREAM_ORIGINAL_2445_62303_1" MIMETYPE="application/pdf" SEQ="1" SIZE="411780">
</file>
</fileGrp>
<fileGrp USE="TEXT">
<file ADMID="FT_2445_62303_3" CHECKSUM="96600cafc685978c5f0614efaa057b39" CHECKSUMTYPE="MD5" GROUPID="GROUP_BITSTREAM_2445_62303_3" ID="BITSTREAM_TEXT_2445_62303_3" MIMETYPE="text/plain" SEQ="3" SIZE="61964">
</file>
</fileGrp>
</fileSec>
<structMap LABEL="DSpace Object" TYPE="LOGICAL">
<div ADMID="DMD_2445_62303" TYPE="DSpace Object Contents">
<div TYPE="DSpace BITSTREAM">
</div>
</div>
</structMap>
</mets>
<?xml version="1.0" encoding="UTF-8" ?>
<mods:mods schemaLocation="http://www.loc.gov/mods/v3 http://www.loc.gov/standards/mods/v3/mods-3-1.xsd">
<mods:name>
<mods:namePart>Cirici, Joana</mods:namePart>
</mods:name>
<mods:name>
<mods:namePart>Guillén Santos, Francisco</mods:namePart>
</mods:name>
<mods:extension>
<mods:dateAvailable encoding="iso8601">2015-02-03T11:38:45Z</mods:dateAvailable>
</mods:extension>
<mods:extension>
<mods:dateAccessioned encoding="iso8601">2015-02-03T11:38:45Z</mods:dateAccessioned>
</mods:extension>
<mods:originInfo>
<mods:dateIssued encoding="iso8601">2014-11-05</mods:dateIssued>
</mods:originInfo>
<mods:identifier type="issn">1472-2747</mods:identifier>
<mods:identifier type="uri">http://hdl.handle.net/2445/62303</mods:identifier>
<mods:identifier type="idgrec">646269</mods:identifier>
<mods:abstract>Let $X$ be a smooth complex algebraic variety. Morgan showed that the rational homotopy type of $X$ is a formal consequence of the differential graded algebra defined by the first term $E_{1}(X,W)$ of its weight spectral sequence. In the present work, we generalize this result to arbitrary nilpotent complex algebraic varieties (possibly singular and/or non-compact) and to algebraic morphisms between them. In particular, our results generalize the formality theorem of Deligne, Griffiths, Morgan and Sullivan for morphisms of compact Kähler varieties, filling a gap in Morgan"s theory concerning functoriality over the rationals. As an application, we study the Hopf invariant of certain algebraic morphisms using intersection theory.</mods:abstract>
<mods:language>
<mods:languageTerm>eng</mods:languageTerm>
</mods:language>
<mods:accessCondition type="useAndReproduction">info:eu-repo/semantics/openAccess</mods:accessCondition>
<mods:accessCondition type="useAndReproduction">(c) Mathematical Sciences Publishers (MSP), 2014</mods:accessCondition>
<mods:titleInfo>
<mods:title>$E_{1}$-Formality of complex algebraic varieties</mods:title>
</mods:titleInfo>
<mods:genre>info:eu-repo/semantics/article</mods:genre>
<mods:genre>info:eu-repo/semantics/publishedVersion</mods:genre>
</mods:mods>
<?xml version="1.0" encoding="UTF-8" ?>
<atom:entry schemaLocation="http://www.w3.org/2005/Atom http://www.kbcafe.com/rss/atom.xsd.xml">
<atom:id>http://hdl.handle.net/2445/62303/ore.xml</atom:id>
<atom:published>2015-02-03T11:38:45Z</atom:published>
<atom:updated>2015-02-03T11:38:45Z</atom:updated>
<atom:source>
<atom:generator>Dipòsit Digital de la Universitat de Barcelona</atom:generator>
</atom:source>
<atom:title>$E_{1}$-Formality of complex algebraic varieties</atom:title>
<atom:author>
<atom:name>Cirici, Joana</atom:name>
</atom:author>
<atom:author>
<atom:name>Guillén Santos, Francisco</atom:name>
</atom:author>
<oreatom:triples>
<rdf:Description about="http://hdl.handle.net/2445/62303/ore.xml#atom">
<dcterms:modified>2015-02-03T11:38:45Z</dcterms:modified>
</rdf:Description>
<rdf:Description about="http://diposit.ub.edu/dspace/bitstream/2445/62303/3/646269.pdf.txt">
<dcterms:description>TEXT</dcterms:description>
</rdf:Description>
<rdf:Description about="http://diposit.ub.edu/dspace/bitstream/2445/62303/1/646269.pdf">
<dcterms:description>ORIGINAL</dcterms:description>
</rdf:Description>
<rdf:Description about="http://diposit.ub.edu/dspace/bitstream/2445/62303/2/license.txt">
<dcterms:description>LICENSE</dcterms:description>
</rdf:Description>
</oreatom:triples>
</atom:entry>
<?xml version="1.0" encoding="UTF-8" ?>
<qdc:qualifieddc schemaLocation="http://purl.org/dc/elements/1.1/ http://dublincore.org/schemas/xmls/qdc/2006/01/06/dc.xsd http://purl.org/dc/terms/ http://dublincore.org/schemas/xmls/qdc/2006/01/06/dcterms.xsd http://dspace.org/qualifieddc/ http://www.ukoln.ac.uk/metadata/dcmi/xmlschema/qualifieddc.xsd">
<dc:title>$E_{1}$-Formality of complex algebraic varieties</dc:title>
<dc:creator>Cirici, Joana</dc:creator>
<dc:creator>Guillén Santos, Francisco</dc:creator>
<dc:subject.classification>Singularitats (Matemàtica)</dc:subject.classification>
<dc:subject.classification>Teoria de l'homotopia</dc:subject.classification>
<dc:subject.other>Singularities (Mathematics)</dc:subject.other>
<dc:subject.other>Homotopy theory</dc:subject.other>
<dcterms:abstract>Let $X$ be a smooth complex algebraic variety. Morgan showed that the rational homotopy type of $X$ is a formal consequence of the differential graded algebra defined by the first term $E_{1}(X,W)$ of its weight spectral sequence. In the present work, we generalize this result to arbitrary nilpotent complex algebraic varieties (possibly singular and/or non-compact) and to algebraic morphisms between them. In particular, our results generalize the formality theorem of Deligne, Griffiths, Morgan and Sullivan for morphisms of compact Kähler varieties, filling a gap in Morgan"s theory concerning functoriality over the rationals. As an application, we study the Hopf invariant of certain algebraic morphisms using intersection theory.</dcterms:abstract>
<dcterms:dateAccepted>2015-02-03T11:38:45Z</dcterms:dateAccepted>
<dcterms:available>2015-02-03T11:38:45Z</dcterms:available>
<dcterms:created>2015-02-03T11:38:45Z</dcterms:created>
<dcterms:issued>2014-11-05</dcterms:issued>
<dc:type>info:eu-repo/semantics/article</dc:type>
<dc:type>info:eu-repo/semantics/publishedVersion</dc:type>
<dc:identifier>1472-2747</dc:identifier>
<dc:identifier>http://hdl.handle.net/2445/62303</dc:identifier>
<dc:identifier>646269</dc:identifier>
<dc:identifier.issn>1472-2747</dc:identifier.issn>
<dc:language>eng</dc:language>
<dc:relation>Reproducció del document publicat a: http://dx.doi.org/10.2140/agt.2014.14.3049</dc:relation>
<dc:relation>Algebraic and Geometric Topology, 2014, vol. 14, p. 3049-3079</dc:relation>
<dc:relation>http://dx.doi.org/10.2140/agt.2014.14.3049</dc:relation>
<dc:rights>info:eu-repo/semantics/openAccess</dc:rights>
<dc:rights>(c) Mathematical Sciences Publishers (MSP), 2014</dc:rights>
<dc:publisher>Mathematical Sciences Publishers (MSP)</dc:publisher>
<dc:source>Articles publicats en revistes (Matemàtiques i Informàtica)</dc:source>
</qdc:qualifieddc>
<?xml version="1.0" encoding="UTF-8" ?>
<rdf:RDF schemaLocation="http://www.openarchives.org/OAI/2.0/rdf/ http://www.openarchives.org/OAI/2.0/rdf.xsd">
<ow:Publication about="oai:diposit.ub.edu:2445/62303">
<dc:title>$E_{1}$-Formality of complex algebraic varieties</dc:title>
<dc:creator>Cirici, Joana</dc:creator>
<dc:creator>Guillén Santos, Francisco</dc:creator>
<dc:description>Let $X$ be a smooth complex algebraic variety. Morgan showed that the rational homotopy type of $X$ is a formal consequence of the differential graded algebra defined by the first term $E_{1}(X,W)$ of its weight spectral sequence. In the present work, we generalize this result to arbitrary nilpotent complex algebraic varieties (possibly singular and/or non-compact) and to algebraic morphisms between them. In particular, our results generalize the formality theorem of Deligne, Griffiths, Morgan and Sullivan for morphisms of compact Kähler varieties, filling a gap in Morgan"s theory concerning functoriality over the rationals. As an application, we study the Hopf invariant of certain algebraic morphisms using intersection theory.</dc:description>
<dc:date>2015-02-03T11:38:45Z</dc:date>
<dc:date>2015-02-03T11:38:45Z</dc:date>
<dc:date>2014-11-05</dc:date>
<dc:date>2015-02-03T11:38:45Z</dc:date>
<dc:type>info:eu-repo/semantics/article</dc:type>
<dc:type>info:eu-repo/semantics/publishedVersion</dc:type>
<dc:identifier>1472-2747</dc:identifier>
<dc:identifier>http://hdl.handle.net/2445/62303</dc:identifier>
<dc:identifier>646269</dc:identifier>
<dc:language>eng</dc:language>
<dc:relation>Reproducció del document publicat a: http://dx.doi.org/10.2140/agt.2014.14.3049</dc:relation>
<dc:relation>Algebraic and Geometric Topology, 2014, vol. 14, p. 3049-3079</dc:relation>
<dc:relation>http://dx.doi.org/10.2140/agt.2014.14.3049</dc:relation>
<dc:rights>info:eu-repo/semantics/openAccess</dc:rights>
<dc:rights>(c) Mathematical Sciences Publishers (MSP), 2014</dc:rights>
<dc:publisher>Mathematical Sciences Publishers (MSP)</dc:publisher>
<dc:source>Articles publicats en revistes (Matemàtiques i Informàtica)</dc:source>
</ow:Publication>
</rdf:RDF>