Logotipo de HISPANA
Logotipo del Ministerio de Cultura
  • ¿Qué es Hispana?
  • Búsqueda
  • Directorio de colecciones
  • Contacto
  • es
    • Español
    • Euskara
    • English
    • Galego
    • Català
    • Valencià
Está en:  › Datos de registro
Linked Open Data
'From the mole to the molecule': ruthenium catalyzed nitroarene reduction studied with 'bench', high-throughput and single molecule fluorescence techniques
Identificadores del recurso
urn:issn:2044-4753
http://hdl.handle.net/10251/61429
info:doi:10.1039/c4cy00018h
urn:eissn:2044-4761
Procedencia
(RiuNet: Repositorio Institucional de la Universitat Politècnica de València)

Ficha

Título:
'From the mole to the molecule': ruthenium catalyzed nitroarene reduction studied with 'bench', high-throughput and single molecule fluorescence techniques
Tema:
HETEROGENEOUS CATALYSTS
GOLD NANOPARTICLES
COUPLING REACTIONS
REACTIVITY
COMPLEXES
ARYLATION
DYNAMICS
QUIMICA ANALITICA
QUIMICA ORGANICA
Descripción:
Single molecule fluorescence microscopy techniques are used to complement conventional catalysis and high-throughput experiments in order to gain a complete picture of a model reaction. In these experiments a model nitroarene is reduced to an amine where, upon reduction, a red shift in absorption/emission, as well as an increase in emission, is observed. The reaction is studied under bulk reaction conditions by NMR spectroscopy and the fluorescence activation makes it possible to also study this reaction at the single molecule level. Fluorescence correlation spectroscopy is a valuable technique in supporting the proposed reaction mechanism and understanding the nature and duration of molecular 'visits' to catalytic sites, where both the starting material, nitroarene, and the amine product have an affinity for the catalyst.
Thanks are due to the Natural Sciences and Engineering Council of Canada and the Canadian Foundation for Innovation for generous support. M. L. Marin thanks the Universitat Politecnica de Valencia (Programa de Apoyo a la Investigacion y Desarrollo) for financial support. Technical support from Roxanne Clement at uOttawa's Centre for Catalysis Research and Innovation is gratefully acknowledged.
Carrillo, AI.; Stamplecoskie, KG.; Marín García, ML.; Scaiano, JC. (2014). 'From the mole to the molecule': ruthenium catalyzed nitroarene reduction studied with 'bench', high-throughput and single molecule fluorescence techniques. Catalysis Science and Technology. 4(7):1989-1996. doi:10.1039/c4cy00018h
1989
1996
4
7
Stauffer, S. R., & Hartwig, J. F. (2003). Fluorescence Resonance Energy Transfer (FRET) as a High-Throughput Assay for Coupling Reactions. Arylation of Amines as a Case Study. Journal of the American Chemical Society, 125(23), 6977-6985. doi:10.1021/ja034161p
McNally, A., Prier, C. K., & MacMillan, D. W. C. (2011). Discovery of an  -Amino C-H Arylation Reaction Using the Strategy of Accelerated Serendipity. Science, 334(6059), 1114-1117. doi:10.1126/science.1213920
Roeffaers, M. â J., Deâ Cremer, G., Libeert, J., Ameloot, R., Dedecker, P., Bons, A.-J., … Hofkens, J. (2009). Super-Resolution Reactivity Mapping of Nanostructured Catalyst Particles. Angewandte Chemie International Edition, 48(49), 9285-9289. doi:10.1002/anie.200904944
Roeffaers, M. B. J., Hofkens, J., De Cremer, G., De Schryver, F. C., Jacobs, P. A., De Vos, D. E., & Sels, B. F. (2007). Fluorescence microscopy: Bridging the phase gap in catalysis. Catalysis Today, 126(1-2), 44-53. doi:10.1016/j.cattod.2007.03.007
Tachikawa, T., & Majima, T. (2012). Single-Molecule, Single-Particle Approaches for Exploring the Structure and Kinetics of Nanocatalysts. Langmuir, 28(24), 8933-8943. doi:10.1021/la300177h
Zhou, X., Xu, W., Liu, G., Panda, D., & Chen, P. (2010). Size-Dependent Catalytic Activity and Dynamics of Gold Nanoparticles at the Single-Molecule Level. Journal of the American Chemical Society, 132(1), 138-146. doi:10.1021/ja904307n
Wee, T.-L. (Erika), Schmidt, L. C., & Scaiano, J. C. (2012). Photooxidation of 9-Anthraldehyde Catalyzed by Gold Nanoparticles: Solution and Single Nanoparticle Studies Using Fluorescence Lifetime Imaging. The Journal of Physical Chemistry C, 116(45), 24373-24379. doi:10.1021/jp308956y
Carrillo, A. I., Schmidt, L. C., Marín, M. L., & Scaiano, J. C. (2014). Mild synthesis of mesoporous silica supported ruthenium nanoparticles as heterogeneous catalysts in oxidative Wittig coupling reactions. Catal. Sci. Technol., 4(2), 435-440. doi:10.1039/c3cy00773a
Del Pozo, C., Corma, A., Iglesias, M., & Sánchez, F. (2011). Recyclable mesoporous silica-supported chiral ruthenium-(NHC)NN-pincer catalysts for asymmetric reactions. Green Chemistry, 13(9), 2471. doi:10.1039/c1gc15412e
HAJEK, J. (2003). Ruthenium-modified MCM-41 mesoporous molecular sieve and Y zeolite catalysts for selective hydrogenation of cinnamaldehyde. Applied Catalysis A: General, 251(2), 385-396. doi:10.1016/s0926-860x(03)00345-4
Prier, C. K., Rankic, D. A., & MacMillan, D. W. C. (2013). Visible Light Photoredox Catalysis with Transition Metal Complexes: Applications in Organic Synthesis. Chemical Reviews, 113(7), 5322-5363. doi:10.1021/cr300503r
Szadkowska, A., Samojłowicz, C., & Grela, K. (2011). Enhancement of ruthenium-catalyzed olefin metathesis reactions: Searching for new catalyst or new reaction conditions? Pure and Applied Chemistry, 83(3), 553-563. doi:10.1351/pac-con-10-09-10
Lara, P., Philippot, K., & Chaudret, B. (2012). Organometallic Ruthenium Nanoparticles: A Comparative Study of the Influence of the Stabilizer on their Characteristics and Reactivity. ChemCatChem, 5(1), 28-45. doi:10.1002/cctc.201200666
R. H. Grubbs , Handbook of Metathesis, Wiley-VCH, Weinheim, 2003
Jansat, S., Picurelli, D., Pelzer, K., Philippot, K., Gómez, M., Muller, G., … Chaudret, B. (2006). Synthesis, characterization and catalytic reactivity of ruthenium nanoparticles stabilized by chiral N-donor ligands. New J. Chem., 30(1), 115-122. doi:10.1039/b509378c
Salas, G., Campbell, P. S., Santini, C. C., Philippot, K., Costa Gomes, M. F., & Pádua, A. A. H. (2012). Ligand effect on the catalytic activity of ruthenium nanoparticles in ionic liquids. Dalton Transactions, 41(45), 13919. doi:10.1039/c2dt31644g
Davies, I. W., Matty, L., Hughes, D. L., & Reider, P. J. (2001). Are Heterogeneous Catalysts Precursors to Homogeneous Catalysts? Journal of the American Chemical Society, 123(41), 10139-10140. doi:10.1021/ja016877v
Montoya, L. A., & Pluth, M. D. (2012). Selective turn-on fluorescent probes for imaging hydrogen sulfide in living cells. Chemical Communications, 48(39), 4767. doi:10.1039/c2cc30730h
Larsen, J. W., Freund, M., Kim, K. Y., Sidovar, M., & Stuart, J. L. (2000). Mechanism of the carbon catalyzed reduction of nitrobenzene by hydrazine. Carbon, 38(5), 655-661. doi:10.1016/s0008-6223(99)00155-4
Al-Soufi, W., Reija, B., Novo, M., Felekyan, S., Kühnemuth, R., & Seidel, C. A. M. (2005). Fluorescence Correlation Spectroscopy, a Tool to Investigate Supramolecular Dynamics:  Inclusion Complexes of Pyronines with Cyclodextrin. Journal of the American Chemical Society, 127(24), 8775-8784. doi:10.1021/ja0508976
Witham, C. A., Huang, W., Tsung, C.-K., Kuhn, J. N., Somorjai, G. A., & Toste, F. D. (2009). Converting homogeneous to heterogeneous in electrophilic catalysis using monodisperse metal nanoparticles. Nature Chemistry, 2(1), 36-41. doi:10.1038/nchem.468
Nishina, Y., Miyata, J., Kawai, R., & Gotoh, K. (2012). Recyclable Pd–graphene catalyst: mechanistic insights into heterogeneous and homogeneous catalysis. RSC Advances, 2(25), 9380. doi:10.1039/c2ra21185h
Nørskov, J. K., Bligaard, T., Rossmeisl, J., & Christensen, C. H. (2009). Towards the computational design of solid catalysts. Nature Chemistry, 1(1), 37-46. doi:10.1038/nchem.121
Idioma:
English
Relación:
Catalysis Science and Technology
http://dx.doi.org/10.1039/c4cy00018h
10.1021/ja034161p
10.1126/science.1213920
10.1002/anie.200904944
10.1016/j.cattod.2007.03.007
10.1021/la300177h
10.1021/ja904307n
10.1021/jp308956y
10.1039/C3CY00773A
10.1039/c1gc15412e
10.1016/S0926-860X(03)00345-4
10.1021/cr300503r
10.1351/PAC-CON-10-09-10
10.1002/cctc.201200666
10.1002/9783527619481
10.1039/B509378C
10.1039/c2dt31644g
10.1021/ja016877v
10.1039/c2cc30730h
10.1016/S0008-6223(99)00155-4
10.1021/ja0508976
10.1038/nchem.468
10.1039/c2ra21185h
10.1038/nchem.121
Autor/Productor:
Carrillo, Adela I.
Stamplecoskie, Kevin G.
Marín García, Mª Luisa
Scaiano, Juan C.
Editor:
Royal Society of Chemistry
Otros colaboradores/productores:
Universitat Politècnica de València. Departamento de Química - Departament de Química
Universitat Politècnica de València. Instituto Universitario Mixto Tecnológico de Informática - Institut Universitari Mixt Tecnològic d'Informàtica
Universitat Politècnica de València
Natural Sciences and Engineering Research Council of Canada
Canada Foundation for Innovation
Derechos:
http://rightsstatements.org/vocab/InC/1.0/
info:eu-repo/semantics/openAccess
Fecha:
2014
Tipo de recurso:
info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion

oai_dc

Descargar XML

    <?xml version="1.0" encoding="UTF-8" ?>

  1. <oai_dc:dc schemaLocation="http://www.openarchives.org/OAI/2.0/oai_dc/ http://www.openarchives.org/OAI/2.0/oai_dc.xsd">

    1. <dc:title>'From the mole to the molecule': ruthenium catalyzed nitroarene reduction studied with 'bench', high-throughput and single molecule fluorescence techniques</dc:title>

    2. <dc:creator>Carrillo, Adela I.</dc:creator>

    3. <dc:creator>Stamplecoskie, Kevin G.</dc:creator>

    4. <dc:creator>Marín García, Mª Luisa</dc:creator>

    5. <dc:creator>Scaiano, Juan C.</dc:creator>

    6. <dc:contributor>Universitat Politècnica de València. Departamento de Química - Departament de Química</dc:contributor>

    7. <dc:contributor>Universitat Politècnica de València. Instituto Universitario Mixto Tecnológico de Informática - Institut Universitari Mixt Tecnològic d'Informàtica</dc:contributor>

    8. <dc:contributor>Universitat Politècnica de València</dc:contributor>

    9. <dc:contributor>Natural Sciences and Engineering Research Council of Canada</dc:contributor>

    10. <dc:contributor>Canada Foundation for Innovation</dc:contributor>

    11. <dc:subject>HETEROGENEOUS CATALYSTS</dc:subject>

    12. <dc:subject>GOLD NANOPARTICLES</dc:subject>

    13. <dc:subject>COUPLING REACTIONS</dc:subject>

    14. <dc:subject>REACTIVITY</dc:subject>

    15. <dc:subject>COMPLEXES</dc:subject>

    16. <dc:subject>ARYLATION</dc:subject>

    17. <dc:subject>DYNAMICS</dc:subject>

    18. <dc:subject>QUIMICA ANALITICA</dc:subject>

    19. <dc:subject>QUIMICA ORGANICA</dc:subject>

    20. <dc:description>Single molecule fluorescence microscopy techniques are used to complement conventional catalysis and high-throughput experiments in order to gain a complete picture of a model reaction. In these experiments a model nitroarene is reduced to an amine where, upon reduction, a red shift in absorption/emission, as well as an increase in emission, is observed. The reaction is studied under bulk reaction conditions by NMR spectroscopy and the fluorescence activation makes it possible to also study this reaction at the single molecule level. Fluorescence correlation spectroscopy is a valuable technique in supporting the proposed reaction mechanism and understanding the nature and duration of molecular 'visits' to catalytic sites, where both the starting material, nitroarene, and the amine product have an affinity for the catalyst.</dc:description>

    21. <dc:description>Thanks are due to the Natural Sciences and Engineering Council of Canada and the Canadian Foundation for Innovation for generous support. M. L. Marin thanks the Universitat Politecnica de Valencia (Programa de Apoyo a la Investigacion y Desarrollo) for financial support. Technical support from Roxanne Clement at uOttawa's Centre for Catalysis Research and Innovation is gratefully acknowledged.</dc:description>

    22. <dc:description>Carrillo, AI.; Stamplecoskie, KG.; Marín García, ML.; Scaiano, JC. (2014). 'From the mole to the molecule': ruthenium catalyzed nitroarene reduction studied with 'bench', high-throughput and single molecule fluorescence techniques. Catalysis Science and Technology. 4(7):1989-1996. doi:10.1039/c4cy00018h</dc:description>

    23. <dc:description>1989</dc:description>

    24. <dc:description>1996</dc:description>

    25. <dc:description>4</dc:description>

    26. <dc:description>7</dc:description>

    27. <dc:description>Stauffer, S. R., & Hartwig, J. F. (2003). Fluorescence Resonance Energy Transfer (FRET) as a High-Throughput Assay for Coupling Reactions. Arylation of Amines as a Case Study. Journal of the American Chemical Society, 125(23), 6977-6985. doi:10.1021/ja034161p</dc:description>

    28. <dc:description>McNally, A., Prier, C. K., & MacMillan, D. W. C. (2011). Discovery of an  -Amino C-H Arylation Reaction Using the Strategy of Accelerated Serendipity. Science, 334(6059), 1114-1117. doi:10.1126/science.1213920</dc:description>

    29. <dc:description>Roeffaers, M. â J., Deâ Cremer, G., Libeert, J., Ameloot, R., Dedecker, P., Bons, A.-J., … Hofkens, J. (2009). Super-Resolution Reactivity Mapping of Nanostructured Catalyst Particles. Angewandte Chemie International Edition, 48(49), 9285-9289. doi:10.1002/anie.200904944</dc:description>

    30. <dc:description>Roeffaers, M. B. J., Hofkens, J., De Cremer, G., De Schryver, F. C., Jacobs, P. A., De Vos, D. E., & Sels, B. F. (2007). Fluorescence microscopy: Bridging the phase gap in catalysis. Catalysis Today, 126(1-2), 44-53. doi:10.1016/j.cattod.2007.03.007</dc:description>

    31. <dc:description>Tachikawa, T., & Majima, T. (2012). Single-Molecule, Single-Particle Approaches for Exploring the Structure and Kinetics of Nanocatalysts. Langmuir, 28(24), 8933-8943. doi:10.1021/la300177h</dc:description>

    32. <dc:description>Zhou, X., Xu, W., Liu, G., Panda, D., & Chen, P. (2010). Size-Dependent Catalytic Activity and Dynamics of Gold Nanoparticles at the Single-Molecule Level. Journal of the American Chemical Society, 132(1), 138-146. doi:10.1021/ja904307n</dc:description>

    33. <dc:description>Wee, T.-L. (Erika), Schmidt, L. C., & Scaiano, J. C. (2012). Photooxidation of 9-Anthraldehyde Catalyzed by Gold Nanoparticles: Solution and Single Nanoparticle Studies Using Fluorescence Lifetime Imaging. The Journal of Physical Chemistry C, 116(45), 24373-24379. doi:10.1021/jp308956y</dc:description>

    34. <dc:description>Carrillo, A. I., Schmidt, L. C., Marín, M. L., & Scaiano, J. C. (2014). Mild synthesis of mesoporous silica supported ruthenium nanoparticles as heterogeneous catalysts in oxidative Wittig coupling reactions. Catal. Sci. Technol., 4(2), 435-440. doi:10.1039/c3cy00773a</dc:description>

    35. <dc:description>Del Pozo, C., Corma, A., Iglesias, M., & Sánchez, F. (2011). Recyclable mesoporous silica-supported chiral ruthenium-(NHC)NN-pincer catalysts for asymmetric reactions. Green Chemistry, 13(9), 2471. doi:10.1039/c1gc15412e</dc:description>

    36. <dc:description>HAJEK, J. (2003). Ruthenium-modified MCM-41 mesoporous molecular sieve and Y zeolite catalysts for selective hydrogenation of cinnamaldehyde. Applied Catalysis A: General, 251(2), 385-396. doi:10.1016/s0926-860x(03)00345-4</dc:description>

    37. <dc:description>Prier, C. K., Rankic, D. A., & MacMillan, D. W. C. (2013). Visible Light Photoredox Catalysis with Transition Metal Complexes: Applications in Organic Synthesis. Chemical Reviews, 113(7), 5322-5363. doi:10.1021/cr300503r</dc:description>

    38. <dc:description>Szadkowska, A., Samojłowicz, C., & Grela, K. (2011). Enhancement of ruthenium-catalyzed olefin metathesis reactions: Searching for new catalyst or new reaction conditions? Pure and Applied Chemistry, 83(3), 553-563. doi:10.1351/pac-con-10-09-10</dc:description>

    39. <dc:description>Lara, P., Philippot, K., & Chaudret, B. (2012). Organometallic Ruthenium Nanoparticles: A Comparative Study of the Influence of the Stabilizer on their Characteristics and Reactivity. ChemCatChem, 5(1), 28-45. doi:10.1002/cctc.201200666</dc:description>

    40. <dc:description>R. H. Grubbs , Handbook of Metathesis, Wiley-VCH, Weinheim, 2003</dc:description>

    41. <dc:description>Jansat, S., Picurelli, D., Pelzer, K., Philippot, K., Gómez, M., Muller, G., … Chaudret, B. (2006). Synthesis, characterization and catalytic reactivity of ruthenium nanoparticles stabilized by chiral N-donor ligands. New J. Chem., 30(1), 115-122. doi:10.1039/b509378c</dc:description>

    42. <dc:description>Salas, G., Campbell, P. S., Santini, C. C., Philippot, K., Costa Gomes, M. F., & Pádua, A. A. H. (2012). Ligand effect on the catalytic activity of ruthenium nanoparticles in ionic liquids. Dalton Transactions, 41(45), 13919. doi:10.1039/c2dt31644g</dc:description>

    43. <dc:description>Davies, I. W., Matty, L., Hughes, D. L., & Reider, P. J. (2001). Are Heterogeneous Catalysts Precursors to Homogeneous Catalysts? Journal of the American Chemical Society, 123(41), 10139-10140. doi:10.1021/ja016877v</dc:description>

    44. <dc:description>Montoya, L. A., & Pluth, M. D. (2012). Selective turn-on fluorescent probes for imaging hydrogen sulfide in living cells. Chemical Communications, 48(39), 4767. doi:10.1039/c2cc30730h</dc:description>

    45. <dc:description>Larsen, J. W., Freund, M., Kim, K. Y., Sidovar, M., & Stuart, J. L. (2000). Mechanism of the carbon catalyzed reduction of nitrobenzene by hydrazine. Carbon, 38(5), 655-661. doi:10.1016/s0008-6223(99)00155-4</dc:description>

    46. <dc:description>Al-Soufi, W., Reija, B., Novo, M., Felekyan, S., Kühnemuth, R., & Seidel, C. A. M. (2005). Fluorescence Correlation Spectroscopy, a Tool to Investigate Supramolecular Dynamics:  Inclusion Complexes of Pyronines with Cyclodextrin. Journal of the American Chemical Society, 127(24), 8775-8784. doi:10.1021/ja0508976</dc:description>

    47. <dc:description>Witham, C. A., Huang, W., Tsung, C.-K., Kuhn, J. N., Somorjai, G. A., & Toste, F. D. (2009). Converting homogeneous to heterogeneous in electrophilic catalysis using monodisperse metal nanoparticles. Nature Chemistry, 2(1), 36-41. doi:10.1038/nchem.468</dc:description>

    48. <dc:description>Nishina, Y., Miyata, J., Kawai, R., & Gotoh, K. (2012). Recyclable Pd–graphene catalyst: mechanistic insights into heterogeneous and homogeneous catalysis. RSC Advances, 2(25), 9380. doi:10.1039/c2ra21185h</dc:description>

    49. <dc:description>Nørskov, J. K., Bligaard, T., Rossmeisl, J., & Christensen, C. H. (2009). Towards the computational design of solid catalysts. Nature Chemistry, 1(1), 37-46. doi:10.1038/nchem.121</dc:description>

    50. <dc:date>2014</dc:date>

    51. <dc:type>info:eu-repo/semantics/article</dc:type>

    52. <dc:type>info:eu-repo/semantics/publishedVersion</dc:type>

    53. <dc:identifier>urn:issn:2044-4753</dc:identifier>

    54. <dc:identifier>http://hdl.handle.net/10251/61429</dc:identifier>

    55. <dc:identifier>info:doi:10.1039/c4cy00018h</dc:identifier>

    56. <dc:identifier>urn:eissn:2044-4761</dc:identifier>

    57. <dc:language>eng</dc:language>

    58. <dc:relation>Catalysis Science and Technology</dc:relation>

    59. <dc:relation>http://dx.doi.org/10.1039/c4cy00018h</dc:relation>

    60. <dc:relation>10.1021/ja034161p</dc:relation>

    61. <dc:relation>10.1126/science.1213920</dc:relation>

    62. <dc:relation>10.1002/anie.200904944</dc:relation>

    63. <dc:relation>10.1016/j.cattod.2007.03.007</dc:relation>

    64. <dc:relation>10.1021/la300177h</dc:relation>

    65. <dc:relation>10.1021/ja904307n</dc:relation>

    66. <dc:relation>10.1021/jp308956y</dc:relation>

    67. <dc:relation>10.1039/C3CY00773A</dc:relation>

    68. <dc:relation>10.1039/c1gc15412e</dc:relation>

    69. <dc:relation>10.1016/S0926-860X(03)00345-4</dc:relation>

    70. <dc:relation>10.1021/cr300503r</dc:relation>

    71. <dc:relation>10.1351/PAC-CON-10-09-10</dc:relation>

    72. <dc:relation>10.1002/cctc.201200666</dc:relation>

    73. <dc:relation>10.1002/9783527619481</dc:relation>

    74. <dc:relation>10.1039/B509378C</dc:relation>

    75. <dc:relation>10.1039/c2dt31644g</dc:relation>

    76. <dc:relation>10.1021/ja016877v</dc:relation>

    77. <dc:relation>10.1039/c2cc30730h</dc:relation>

    78. <dc:relation>10.1016/S0008-6223(99)00155-4</dc:relation>

    79. <dc:relation>10.1021/ja0508976</dc:relation>

    80. <dc:relation>10.1038/nchem.468</dc:relation>

    81. <dc:relation>10.1039/c2ra21185h</dc:relation>

    82. <dc:relation>10.1038/nchem.121</dc:relation>

    83. <dc:rights>http://rightsstatements.org/vocab/InC/1.0/</dc:rights>

    84. <dc:rights>info:eu-repo/semantics/openAccess</dc:rights>

    85. <dc:publisher>Royal Society of Chemistry</dc:publisher>

    </oai_dc:dc>

edm

Descargar XML

    <?xml version="1.0" encoding="UTF-8" ?>

  1. <rdf:RDF schemaLocation="http://www.w3.org/1999/02/22-rdf-syntax-ns# http://www.europeana.eu/schemas/edm">

    1. <edm:ProvidedCHO about="http://hdl.handle.net/10251/61429">

      1. <dc:title>'From the mole to the molecule': ruthenium catalyzed nitroarene reduction studied with 'bench', high-throughput and single molecule fluorescence techniques</dc:title>

      2. <dc:creator>Carrillo, Adela I.</dc:creator>

      3. <dc:creator>Stamplecoskie, Kevin G.</dc:creator>

      4. <dc:creator>Marín García, Mª Luisa</dc:creator>

      5. <dc:creator>Scaiano, Juan C.</dc:creator>

      6. <dc:contributor>Universitat Politècnica de València. Departamento de Química - Departament de Química</dc:contributor>

      7. <dc:contributor>Universitat Politècnica de València. Instituto Universitario Mixto Tecnológico de Informática - Institut Universitari Mixt Tecnològic d'Informàtica</dc:contributor>

      8. <dc:contributor>Universitat Politècnica de València</dc:contributor>

      9. <dc:contributor>Natural Sciences and Engineering Research Council of Canada</dc:contributor>

      10. <dc:contributor>Canada Foundation for Innovation</dc:contributor>

      11. <dc:subject>HETEROGENEOUS CATALYSTS</dc:subject>

      12. <dc:subject>GOLD NANOPARTICLES</dc:subject>

      13. <dc:subject>COUPLING REACTIONS</dc:subject>

      14. <dc:subject>REACTIVITY</dc:subject>

      15. <dc:subject>COMPLEXES</dc:subject>

      16. <dc:subject>ARYLATION</dc:subject>

      17. <dc:subject>DYNAMICS</dc:subject>

      18. <dc:subject>QUIMICA ANALITICA</dc:subject>

      19. <dc:subject>QUIMICA ORGANICA</dc:subject>

      20. <dc:description>Single molecule fluorescence microscopy techniques are used to complement conventional catalysis and high-throughput experiments in order to gain a complete picture of a model reaction. In these experiments a model nitroarene is reduced to an amine where, upon reduction, a red shift in absorption/emission, as well as an increase in emission, is observed. The reaction is studied under bulk reaction conditions by NMR spectroscopy and the fluorescence activation makes it possible to also study this reaction at the single molecule level. Fluorescence correlation spectroscopy is a valuable technique in supporting the proposed reaction mechanism and understanding the nature and duration of molecular 'visits' to catalytic sites, where both the starting material, nitroarene, and the amine product have an affinity for the catalyst.</dc:description>

      21. <dcterms:issued>2014</dcterms:issued>

      22. <dc:type>info:eu-repo/semantics/article</dc:type>

      23. <dc:identifier>http://hdl.handle.net/10251/61429</dc:identifier>

      24. <dc:identifier>info:doi:10.1039/c4cy00018h</dc:identifier>

      25. <dc:language>eng</dc:language>

      26. <dcterms:isPartOf>Catalysis Science and Technology</dcterms:isPartOf>

      27. <dc:publisher>Royal Society of Chemistry</dc:publisher>

      28. <edm:type>TEXT</edm:type>

      </edm:ProvidedCHO>

    2. <ore:Aggregation about="http://hdl.handle.net/10251/61429">

      1. <edm:aggregatedCHO resource="http://hdl.handle.net/10251/61429" />
      2. <edm:dataProvider>Riunet (Universitat Politècnica de València)</edm:dataProvider>

      3. <edm:provider>Hispana</edm:provider>

      4. <edm:rights resource="http://rightsstatements.org/vocab/InC/1.0/" />
      5. <edm:isShownAt resource="http://hdl.handle.net/10251/61429" />
      6. <edm:isShownBy resource="https://riunet.upv.es/bitstream/10251/61429/4/CatSciTec-2014-4.pdf" />
      7. <edm:hasView resource="https://riunet.upv.es/bitstream/10251/61429/2/CatSciTech2014%2c4%2c1989.pdf" />
      8. <edm:object resource="https://riunet.upv.es/bitstream/10251/61429/15/CatSciTec-2014-4.pdf.jpg" />

      </ore:Aggregation>

    3. <edm:WebResource about="https://riunet.upv.es/bitstream/10251/61429/4/CatSciTec-2014-4.pdf">

      1. <edm:rights resource="http://rightsstatements.org/vocab/InC/1.0/" />

      </edm:WebResource>

    4. <edm:WebResource about="https://riunet.upv.es/bitstream/10251/61429/2/CatSciTech2014%2c4%2c1989.pdf">

      1. <edm:rights resource="http://rightsstatements.org/vocab/InC/1.0/" />

      </edm:WebResource>

    5. <edm:WebResource about="https://riunet.upv.es/bitstream/10251/61429/15/CatSciTec-2014-4.pdf.jpg">

      1. <edm:rights resource="http://rightsstatements.org/vocab/InC/1.0/" />

      </edm:WebResource>

    </rdf:RDF>

ese

Descargar XML

    <?xml version="1.0" encoding="UTF-8" ?>

  1. <europeana:record schemaLocation="http://www.europeana.eu/schemas/ese/ http://www.europeana.eu/schemas/ese/ESE-V3.4.xsd">

    1. <dc:title>'From the mole to the molecule': ruthenium catalyzed nitroarene reduction studied with 'bench', high-throughput and single molecule fluorescence techniques</dc:title>

    2. <dc:creator>Carrillo, Adela I.</dc:creator>

    3. <dc:creator>Stamplecoskie, Kevin G.</dc:creator>

    4. <dc:creator>Marín García, Mª Luisa</dc:creator>

    5. <dc:creator>Scaiano, Juan C.</dc:creator>

    6. <dc:contributor>Universitat Politècnica de València. Departamento de Química - Departament de Química</dc:contributor>

    7. <dc:contributor>Universitat Politècnica de València. Instituto Universitario Mixto Tecnológico de Informática - Institut Universitari Mixt Tecnològic d'Informàtica</dc:contributor>

    8. <dc:contributor>Universitat Politècnica de València</dc:contributor>

    9. <dc:contributor>Natural Sciences and Engineering Research Council of Canada</dc:contributor>

    10. <dc:contributor>Canada Foundation for Innovation</dc:contributor>

    11. <dc:subject>HETEROGENEOUS CATALYSTS</dc:subject>

    12. <dc:subject>GOLD NANOPARTICLES</dc:subject>

    13. <dc:subject>COUPLING REACTIONS</dc:subject>

    14. <dc:subject>REACTIVITY</dc:subject>

    15. <dc:subject>COMPLEXES</dc:subject>

    16. <dc:subject>ARYLATION</dc:subject>

    17. <dc:subject>DYNAMICS</dc:subject>

    18. <dc:subject>QUIMICA ANALITICA</dc:subject>

    19. <dc:subject>QUIMICA ORGANICA</dc:subject>

    20. <dc:description>Single molecule fluorescence microscopy techniques are used to complement conventional catalysis and high-throughput experiments in order to gain a complete picture of a model reaction. In these experiments a model nitroarene is reduced to an amine where, upon reduction, a red shift in absorption/emission, as well as an increase in emission, is observed. The reaction is studied under bulk reaction conditions by NMR spectroscopy and the fluorescence activation makes it possible to also study this reaction at the single molecule level. Fluorescence correlation spectroscopy is a valuable technique in supporting the proposed reaction mechanism and understanding the nature and duration of molecular 'visits' to catalytic sites, where both the starting material, nitroarene, and the amine product have an affinity for the catalyst.</dc:description>

    21. <dcterms:issued>2014</dcterms:issued>

    22. <dc:type>info:eu-repo/semantics/article</dc:type>

    23. <dc:identifier>urn:issn:2044-4753</dc:identifier>

    24. <dc:identifier>http://hdl.handle.net/10251/61429</dc:identifier>

    25. <dc:identifier>info:doi:10.1039/c4cy00018h</dc:identifier>

    26. <dc:identifier>urn:eissn:2044-4761</dc:identifier>

    27. <dc:language>eng</dc:language>

    28. <dc:rights>http://rightsstatements.org/vocab/InC/1.0/</dc:rights>

    29. <dc:rights>info:eu-repo/semantics/openAccess</dc:rights>

    30. <dc:publisher>Royal Society of Chemistry</dc:publisher>

    31. <europeana:object>https://riunet.upv.es/bitstream/10251/61429/15/CatSciTec-2014-4.pdf.jpg</europeana:object>

    32. <europeana:provider>Hispana</europeana:provider>

    33. <europeana:type>TEXT</europeana:type>

    34. <europeana:rights>http://www.europeana.eu/rights/rr-f/</europeana:rights>

    35. <europeana:dataProvider>Universitat Politècnica de València</europeana:dataProvider>

    36. <europeana:isShownBy>https://riunet.upv.es/bitstream/10251/61429/4/CatSciTec-2014-4.pdf</europeana:isShownBy>

    37. <europeana:isShownAt>http://hdl.handle.net/10251/61429</europeana:isShownAt>

    </europeana:record>

Hispana

Portal de acceso al patrimonio digital y el agregador nacional de contenidos a Europeana.

Contacto

Accede a nuestro formulario y te contestaremos con la mayor brevedad.

Contacto

X

Tweets by Hispana_roai

Facebook

HISPANA
© Ministerio de Cultura
  • Aviso Legal