<?xml version="1.0" encoding="UTF-8" ?>
<oai_dc:dc schemaLocation="http://www.openarchives.org/OAI/2.0/oai_dc/ http://www.openarchives.org/OAI/2.0/oai_dc.xsd">
<dc:title>3D reconstruction for plastic surgery simulation based on statistical shape models</dc:title>
<dc:creator>Ruiz Fernández, Guillermo</dc:creator>
<dc:contributor>González Ballester, Miguel Ángel</dc:contributor>
<dc:contributor>Sukno, Federico Mateo</dc:contributor>
<dc:contributor>Universitat Pompeu Fabra. Departament de Tecnologies de la Informació i les Comunicacions</dc:contributor>
<dc:subject>3D morphable models</dc:subject>
<dc:subject>3DMM</dc:subject>
<dc:subject>3D reconstruction</dc:subject>
<dc:subject>Breast imaging</dc:subject>
<dc:subject>Breast</dc:subject>
<dc:subject>Face</dc:subject>
<dc:subject>Plastic surgery</dc:subject>
<dc:subject>Reconstructive surgery</dc:subject>
<dc:subject>Shape constraints</dc:subject>
<dc:subject>Statistical shape models</dc:subject>
<dc:subject>ASM</dc:subject>
<dc:subject>Active Shape Models</dc:subject>
<dc:subject>Weighted regularized</dc:subject>
<dc:subject>62</dc:subject>
<dc:description>This thesis has been accomplished in Crisalix in collaboration with the Universitat Pompeu Fabra within the program of Doctorats Industrials. Crisalix has the mission of enhancing the communication between professionals of plastic surgery and patients by providing a solution to the most common question during the surgery planning process of ``How will I look after the surgery?''. The solution proposed by Crisalix is based in 3D imaging technology. This technology generates the 3D reconstruction that accurately represents the area of the patient that is going to be operated. This is followed by the possibility of creating multiple simulations of the plastic procedure, which results in the representation of the possible outcomes of the surgery. This thesis presents a framework capable to reconstruct 3D shapes of faces and breasts of plastic surgery patients from 2D images and 3D scans. The 3D reconstruction of an object is a challenging problem with many inherent ambiguities. Statistical model based methods are a powerful approach to overcome some of these ambiguities. We follow the intuition of maximizing the use of available prior information by introducing it into statistical model based methods to enhance their properties. First, we explore Active Shape Models (ASM) which are a well known method to perform 2D shapes alignment. However, it is challenging to maintain prior information (e.g. small set of given landmarks) unchanged once the statistical model constraints are applied. We propose a new weighted regularized projection into the parameter space which allows us to obtain shapes that at the same time fulfill the imposed shape constraints and are plausible according to the statistical model. Second, we extend this methodology to be applied to 3D Morphable Models (3DMM), which are a widespread method to perform 3D reconstruction. However, existing methods present some limitations. Some of them are based in non-linear optimizations computationally expensive that can get stuck in local minima. Another limitation is that not all the methods provide enough resolution to represent accurately the anatomy details needed for this application. Given the medical use of the application, the accuracy and robustness of the method, are important factors to take into consideration. We show how 3DMM initialization and 3DMM fitting can be improved using our weighted regularized projection. Finally, we present a framework capable to reconstruct 3D shapes of plastic surgery patients from two possible inputs: 2D images and 3D scans. Our method is used in different stages of the 3D reconstruction pipeline: shape alignment; 3DMM initialization and 3DMM fitting. The developed methods have been integrated in the production environment of Crisalix, proving their validity.</dc:description>
<dc:description>Aquesta tesi ha estat realitzada a Crisalix amb la col·laboració de la Universitat Pompeu Fabra sota el pla de Doctorats Industrials. Crisalix té com a objectiu la millora de la comunicació entre els professionals de la cirurgia plàstica i els pacients, proporcionant una solució a la pregunta que sorgeix més freqüentment durant el procés de planificació d'una operació quirúrgica ``Com em veuré després de la cirurgia?''. La solució proposada per Crisalix està basada en la tecnologia d'imatge 3D. Aquesta tecnologia genera la reconstrucció 3D de la zona del pacient operada, seguit de la possibilitat de crear múltiples simulacions obtenint la representació dels possibles resultats de la cirurgia. Aquesta tesi presenta un sistema capaç de reconstruir cares i pits de pacients de cirurgia plàstica a partir de fotos 2D i escanegis. La reconstrucció en 3D d'un objecte és un problema complicat degut a la presència d'ambigüitats. Els mètodes basats en models estadístics son adequats per mitigar-les. En aquest treball, hem seguit la intuïció de maximitzar l'ús d'informació prèvia, introduint-la al model estadístic per millorar les seves propietats. En primer lloc, explorem els Active Shape Models (ASM) que són un conegut mètode fet servir per alinear contorns d'objectes 2D. No obstant, un cop aplicades les correccions de forma del model estadístic, es difícil de mantenir informació de la que es disposava a priori (per exemple, un petit conjunt de punts donat) inalterada. Proposem una nova projecció ponderada amb un terme de regularització, que permet obtenir formes que compleixen les restriccions de forma imposades i alhora són plausibles en concordança amb el model estadístic. En segon lloc, ampliem la metodologia per aplicar-la als anomenats 3D Morphable Models (3DMM) que són un mètode extensivament utilitzat per fer reconstrucció 3D. No obstant, els mètodes de 3DMM existents presenten algunes limitacions. Alguns estan basats en optimitzacions no lineals, computacionalment costoses i que poden quedar atrapades en mínims locals. Una altra limitació, és que no tots el mètodes proporcionen la resolució adequada per representar amb precisió els detalls de l'anatomia. Donat l'ús mèdic de l'aplicació, la precisió i la robustesa són factors molt importants a tenir en compte. Mostrem com la inicialització i l'ajustament de 3DMM poden ser millorats fent servir la projecció ponderada amb regularització proposada. Finalment, es presenta un sistema capaç de reconstruir models 3D de pacients de cirurgia plàstica a partir de dos possibles tipus de dades: imatges 2D i escaneigs en 3D. El nostre mètode es fa servir en diverses etapes del procés de reconstrucció: alineament de formes en imatge, la inicialització i l'ajustament de 3DMM. Els mètodes desenvolupats han estat integrats a l'entorn de producció de Crisalix provant la seva validesa.</dc:description>
<dc:description>Programa de doctorat en Tecnologies de la Informació i les Comunicacions</dc:description>
<dc:date>2019-06-12T11:40:31Z</dc:date>
<dc:date>2019-06-12T11:40:31Z</dc:date>
<dc:date>2018-12-12</dc:date>
<dc:type>info:eu-repo/semantics/doctoralThesis</dc:type>
<dc:type>info:eu-repo/semantics/publishedVersion</dc:type>
<dc:identifier>http://hdl.handle.net/10803/667049</dc:identifier>
<dc:language>eng</dc:language>
<dc:rights>ADVERTIMENT. L'accés als continguts d'aquesta tesi doctoral i la seva utilització ha de respectar els drets de la persona autora. Pot ser utilitzada per a consulta o estudi personal, així com en activitats o materials d'investigació i docència en els termes establerts a l'art. 32 del Text Refós de la Llei de Propietat Intel·lectual (RDL 1/1996). Per altres utilitzacions es requereix l'autorització prèvia i expressa de la persona autora. En qualsevol cas, en la utilització dels seus continguts caldrà indicar de forma clara el nom i cognoms de la persona autora i el títol de la tesi doctoral. No s'autoritza la seva reproducció o altres formes d'explotació efectuades amb finalitats de lucre ni la seva comunicació pública des d'un lloc aliè al servei TDX. Tampoc s'autoritza la presentació del seu contingut en una finestra o marc aliè a TDX (framing). Aquesta reserva de drets afecta tant als continguts de la tesi com als seus resums i índexs.</dc:rights>
<dc:rights>info:eu-repo/semantics/openAccess</dc:rights>
<dc:format>134 p.</dc:format>
<dc:format>application/pdf</dc:format>
<dc:format>application/pdf</dc:format>
<dc:publisher>Universitat Pompeu Fabra</dc:publisher>
<dc:source>TDX (Tesis Doctorals en Xarxa)</dc:source>
</oai_dc:dc>
<?xml version="1.0" encoding="UTF-8" ?>
<dim:dim schemaLocation="http://www.dspace.org/xmlns/dspace/dim http://www.dspace.org/schema/dim.xsd">
<dim:field element="contributor" mdschema="dc">Universitat Pompeu Fabra. Departament de Tecnologies de la Informació i les Comunicacions</dim:field>
<dim:field authority="298e245b-b6d7-478d-9c07-4ad0df9b198a" confidence="-1" element="contributor" mdschema="dc" qualifier="author">Ruiz Fernández, Guillermo</dim:field>
<dim:field element="contributor" lang="en_US" mdschema="dc" qualifier="authoremail">guille10rf@gmail.com</dim:field>
<dim:field element="contributor" lang="en_US" mdschema="dc" qualifier="authoremailshow">true</dim:field>
<dim:field authority="78c25316-230f-4068-a273-f8eb8f116772" confidence="-1" element="contributor" mdschema="dc" qualifier="director">González Ballester, Miguel Ángel</dim:field>
<dim:field authority="8f517bbf-2dcd-43b4-9e86-23aef7d9f9a8" confidence="-1" element="contributor" mdschema="dc" qualifier="director">Sukno, Federico Mateo</dim:field>
<dim:field element="date" mdschema="dc" qualifier="accessioned">2019-06-12T11:40:31Z</dim:field>
<dim:field element="date" mdschema="dc" qualifier="available">2019-06-12T11:40:31Z</dim:field>
<dim:field element="date" mdschema="dc" qualifier="issued">2018-12-12</dim:field>
<dim:field element="identifier" mdschema="dc" qualifier="uri">http://hdl.handle.net/10803/667049</dim:field>
<dim:field element="description" lang="en_US" mdschema="dc" qualifier="abstract">This thesis has been accomplished in Crisalix in collaboration with the Universitat Pompeu Fabra within the program of Doctorats Industrials. Crisalix has the mission of enhancing the communication between professionals of plastic surgery and patients by providing a solution to the most common question during the surgery planning process of ``How will I look after the surgery?''. The solution proposed by Crisalix is based in 3D imaging technology. This technology generates the 3D reconstruction that accurately represents the area of the patient that is going to be operated. This is followed by the possibility of creating multiple simulations of the plastic procedure, which results in the representation of the possible outcomes of the surgery. This thesis presents a framework capable to reconstruct 3D shapes of faces and breasts of plastic surgery patients from 2D images and 3D scans. The 3D reconstruction of an object is a challenging problem with many inherent ambiguities. Statistical model based methods are a powerful approach to overcome some of these ambiguities. We follow the intuition of maximizing the use of available prior information by introducing it into statistical model based methods to enhance their properties. First, we explore Active Shape Models (ASM) which are a well known method to perform 2D shapes alignment. However, it is challenging to maintain prior information (e.g. small set of given landmarks) unchanged once the statistical model constraints are applied. We propose a new weighted regularized projection into the parameter space which allows us to obtain shapes that at the same time fulfill the imposed shape constraints and are plausible according to the statistical model. Second, we extend this methodology to be applied to 3D Morphable Models (3DMM), which are a widespread method to perform 3D reconstruction. However, existing methods present some limitations. Some of them are based in non-linear optimizations computationally expensive that can get stuck in local minima. Another limitation is that not all the methods provide enough resolution to represent accurately the anatomy details needed for this application. Given the medical use of the application, the accuracy and robustness of the method, are important factors to take into consideration. We show how 3DMM initialization and 3DMM fitting can be improved using our weighted regularized projection. Finally, we present a framework capable to reconstruct 3D shapes of plastic surgery patients from two possible inputs: 2D images and 3D scans. Our method is used in different stages of the 3D reconstruction pipeline: shape alignment; 3DMM initialization and 3DMM fitting. The developed methods have been integrated in the production environment of Crisalix, proving their validity.</dim:field>
<dim:field element="description" lang="en_US" mdschema="dc" qualifier="abstract">Aquesta tesi ha estat realitzada a Crisalix amb la col·laboració de la Universitat Pompeu Fabra sota el pla de Doctorats Industrials. Crisalix té com a objectiu la millora de la comunicació entre els professionals de la cirurgia plàstica i els pacients, proporcionant una solució a la pregunta que sorgeix més freqüentment durant el procés de planificació d'una operació quirúrgica ``Com em veuré després de la cirurgia?''. La solució proposada per Crisalix està basada en la tecnologia d'imatge 3D. Aquesta tecnologia genera la reconstrucció 3D de la zona del pacient operada, seguit de la possibilitat de crear múltiples simulacions obtenint la representació dels possibles resultats de la cirurgia. Aquesta tesi presenta un sistema capaç de reconstruir cares i pits de pacients de cirurgia plàstica a partir de fotos 2D i escanegis. La reconstrucció en 3D d'un objecte és un problema complicat degut a la presència d'ambigüitats. Els mètodes basats en models estadístics son adequats per mitigar-les. En aquest treball, hem seguit la intuïció de maximitzar l'ús d'informació prèvia, introduint-la al model estadístic per millorar les seves propietats. En primer lloc, explorem els Active Shape Models (ASM) que són un conegut mètode fet servir per alinear contorns d'objectes 2D. No obstant, un cop aplicades les correccions de forma del model estadístic, es difícil de mantenir informació de la que es disposava a priori (per exemple, un petit conjunt de punts donat) inalterada. Proposem una nova projecció ponderada amb un terme de regularització, que permet obtenir formes que compleixen les restriccions de forma imposades i alhora són plausibles en concordança amb el model estadístic. En segon lloc, ampliem la metodologia per aplicar-la als anomenats 3D Morphable Models (3DMM) que són un mètode extensivament utilitzat per fer reconstrucció 3D. No obstant, els mètodes de 3DMM existents presenten algunes limitacions. Alguns estan basats en optimitzacions no lineals, computacionalment costoses i que poden quedar atrapades en mínims locals. Una altra limitació, és que no tots el mètodes proporcionen la resolució adequada per representar amb precisió els detalls de l'anatomia. Donat l'ús mèdic de l'aplicació, la precisió i la robustesa són factors molt importants a tenir en compte. Mostrem com la inicialització i l'ajustament de 3DMM poden ser millorats fent servir la projecció ponderada amb regularització proposada. Finalment, es presenta un sistema capaç de reconstruir models 3D de pacients de cirurgia plàstica a partir de dos possibles tipus de dades: imatges 2D i escaneigs en 3D. El nostre mètode es fa servir en diverses etapes del procés de reconstrucció: alineament de formes en imatge, la inicialització i l'ajustament de 3DMM. Els mètodes desenvolupats han estat integrats a l'entorn de producció de Crisalix provant la seva validesa.</dim:field>
<dim:field element="description" mdschema="dc" qualifier="degree">Programa de doctorat en Tecnologies de la Informació i les Comunicacions</dim:field>
<dim:field element="format" lang="en_US" mdschema="dc" qualifier="extent">134 p.</dim:field>
<dim:field element="format" mdschema="dc" qualifier="mimetype">application/pdf</dim:field>
<dim:field element="language" lang="en_US" mdschema="dc" qualifier="iso">eng</dim:field>
<dim:field element="publisher" mdschema="dc">Universitat Pompeu Fabra</dim:field>
<dim:field element="rights" mdschema="dc" qualifier="license">ADVERTIMENT. L'accés als continguts d'aquesta tesi doctoral i la seva utilització ha de respectar els drets de la persona autora. Pot ser utilitzada per a consulta o estudi personal, així com en activitats o materials d'investigació i docència en els termes establerts a l'art. 32 del Text Refós de la Llei de Propietat Intel·lectual (RDL 1/1996). Per altres utilitzacions es requereix l'autorització prèvia i expressa de la persona autora. En qualsevol cas, en la utilització dels seus continguts caldrà indicar de forma clara el nom i cognoms de la persona autora i el títol de la tesi doctoral. No s'autoritza la seva reproducció o altres formes d'explotació efectuades amb finalitats de lucre ni la seva comunicació pública des d'un lloc aliè al servei TDX. Tampoc s'autoritza la presentació del seu contingut en una finestra o marc aliè a TDX (framing). Aquesta reserva de drets afecta tant als continguts de la tesi com als seus resums i índexs.</dim:field>
<dim:field element="rights" mdschema="dc" qualifier="accessLevel">info:eu-repo/semantics/openAccess</dim:field>
<dim:field element="source" mdschema="dc">TDX (Tesis Doctorals en Xarxa)</dim:field>
<dim:field element="subject" lang="en_US" mdschema="dc">3D morphable models</dim:field>
<dim:field element="subject" lang="en_US" mdschema="dc">3DMM</dim:field>
<dim:field element="subject" lang="en_US" mdschema="dc">3D reconstruction</dim:field>
<dim:field element="subject" lang="en_US" mdschema="dc">Breast imaging</dim:field>
<dim:field element="subject" lang="en_US" mdschema="dc">Breast</dim:field>
<dim:field element="subject" lang="en_US" mdschema="dc">Face</dim:field>
<dim:field element="subject" lang="en_US" mdschema="dc">Plastic surgery</dim:field>
<dim:field element="subject" lang="en_US" mdschema="dc">Reconstructive surgery</dim:field>
<dim:field element="subject" lang="en_US" mdschema="dc">Shape constraints</dim:field>
<dim:field element="subject" lang="en_US" mdschema="dc">Statistical shape models</dim:field>
<dim:field element="subject" lang="en_US" mdschema="dc">ASM</dim:field>
<dim:field element="subject" lang="en_US" mdschema="dc">Active Shape Models</dim:field>
<dim:field element="subject" lang="en_US" mdschema="dc">Weighted regularized</dim:field>
<dim:field element="subject" lang="en_US" mdschema="dc" qualifier="udc">62</dim:field>
<dim:field element="title" lang="en_US" mdschema="dc">3D reconstruction for plastic surgery simulation based on statistical shape models</dim:field>
<dim:field element="type" mdschema="dc">info:eu-repo/semantics/doctoralThesis</dim:field>
<dim:field element="type" mdschema="dc">info:eu-repo/semantics/publishedVersion</dim:field>
<dim:field element="embargo" lang="en_US" mdschema="dc" qualifier="terms">cap</dim:field>
</dim:dim>
<?xml version="1.0" encoding="UTF-8" ?>
<thesis schemaLocation="http://www.ndltd.org/standards/metadata/etdms/1.0/ http://www.ndltd.org/standards/metadata/etdms/1.0/etdms.xsd">
<title>3D reconstruction for plastic surgery simulation based on statistical shape models</title>
<creator>Ruiz Fernández, Guillermo</creator>
<contributor>guille10rf@gmail.com</contributor>
<contributor>true</contributor>
<contributor>González Ballester, Miguel Ángel</contributor>
<contributor>Sukno, Federico Mateo</contributor>
<subject>3D morphable models</subject>
<subject>3DMM</subject>
<subject>3D reconstruction</subject>
<subject>Breast imaging</subject>
<subject>Breast</subject>
<subject>Face</subject>
<subject>Plastic surgery</subject>
<subject>Reconstructive surgery</subject>
<subject>Shape constraints</subject>
<subject>Statistical shape models</subject>
<subject>ASM</subject>
<subject>Active Shape Models</subject>
<subject>Weighted regularized</subject>
<description>This thesis has been accomplished in Crisalix in collaboration with the Universitat Pompeu Fabra within the program of Doctorats Industrials. Crisalix has the mission of enhancing the communication between professionals of plastic surgery and patients by providing a solution to the most common question during the surgery planning process of ``How will I look after the surgery?''. The solution proposed by Crisalix is based in 3D imaging technology. This technology generates the 3D reconstruction that accurately represents the area of the patient that is going to be operated. This is followed by the possibility of creating multiple simulations of the plastic procedure, which results in the representation of the possible outcomes of the surgery. This thesis presents a framework capable to reconstruct 3D shapes of faces and breasts of plastic surgery patients from 2D images and 3D scans. The 3D reconstruction of an object is a challenging problem with many inherent ambiguities. Statistical model based methods are a powerful approach to overcome some of these ambiguities. We follow the intuition of maximizing the use of available prior information by introducing it into statistical model based methods to enhance their properties. First, we explore Active Shape Models (ASM) which are a well known method to perform 2D shapes alignment. However, it is challenging to maintain prior information (e.g. small set of given landmarks) unchanged once the statistical model constraints are applied. We propose a new weighted regularized projection into the parameter space which allows us to obtain shapes that at the same time fulfill the imposed shape constraints and are plausible according to the statistical model. Second, we extend this methodology to be applied to 3D Morphable Models (3DMM), which are a widespread method to perform 3D reconstruction. However, existing methods present some limitations. Some of them are based in non-linear optimizations computationally expensive that can get stuck in local minima. Another limitation is that not all the methods provide enough resolution to represent accurately the anatomy details needed for this application. Given the medical use of the application, the accuracy and robustness of the method, are important factors to take into consideration. We show how 3DMM initialization and 3DMM fitting can be improved using our weighted regularized projection. Finally, we present a framework capable to reconstruct 3D shapes of plastic surgery patients from two possible inputs: 2D images and 3D scans. Our method is used in different stages of the 3D reconstruction pipeline: shape alignment; 3DMM initialization and 3DMM fitting. The developed methods have been integrated in the production environment of Crisalix, proving their validity.</description>
<description>Aquesta tesi ha estat realitzada a Crisalix amb la col·laboració de la Universitat Pompeu Fabra sota el pla de Doctorats Industrials. Crisalix té com a objectiu la millora de la comunicació entre els professionals de la cirurgia plàstica i els pacients, proporcionant una solució a la pregunta que sorgeix més freqüentment durant el procés de planificació d'una operació quirúrgica ``Com em veuré després de la cirurgia?''. La solució proposada per Crisalix està basada en la tecnologia d'imatge 3D. Aquesta tecnologia genera la reconstrucció 3D de la zona del pacient operada, seguit de la possibilitat de crear múltiples simulacions obtenint la representació dels possibles resultats de la cirurgia. Aquesta tesi presenta un sistema capaç de reconstruir cares i pits de pacients de cirurgia plàstica a partir de fotos 2D i escanegis. La reconstrucció en 3D d'un objecte és un problema complicat degut a la presència d'ambigüitats. Els mètodes basats en models estadístics son adequats per mitigar-les. En aquest treball, hem seguit la intuïció de maximitzar l'ús d'informació prèvia, introduint-la al model estadístic per millorar les seves propietats. En primer lloc, explorem els Active Shape Models (ASM) que són un conegut mètode fet servir per alinear contorns d'objectes 2D. No obstant, un cop aplicades les correccions de forma del model estadístic, es difícil de mantenir informació de la que es disposava a priori (per exemple, un petit conjunt de punts donat) inalterada. Proposem una nova projecció ponderada amb un terme de regularització, que permet obtenir formes que compleixen les restriccions de forma imposades i alhora són plausibles en concordança amb el model estadístic. En segon lloc, ampliem la metodologia per aplicar-la als anomenats 3D Morphable Models (3DMM) que són un mètode extensivament utilitzat per fer reconstrucció 3D. No obstant, els mètodes de 3DMM existents presenten algunes limitacions. Alguns estan basats en optimitzacions no lineals, computacionalment costoses i que poden quedar atrapades en mínims locals. Una altra limitació, és que no tots el mètodes proporcionen la resolució adequada per representar amb precisió els detalls de l'anatomia. Donat l'ús mèdic de l'aplicació, la precisió i la robustesa són factors molt importants a tenir en compte. Mostrem com la inicialització i l'ajustament de 3DMM poden ser millorats fent servir la projecció ponderada amb regularització proposada. Finalment, es presenta un sistema capaç de reconstruir models 3D de pacients de cirurgia plàstica a partir de dos possibles tipus de dades: imatges 2D i escaneigs en 3D. El nostre mètode es fa servir en diverses etapes del procés de reconstrucció: alineament de formes en imatge, la inicialització i l'ajustament de 3DMM. Els mètodes desenvolupats han estat integrats a l'entorn de producció de Crisalix provant la seva validesa.</description>
<date>2019-06-12</date>
<date>2019-06-12</date>
<date>2018-12-12</date>
<type>info:eu-repo/semantics/doctoralThesis</type>
<type>info:eu-repo/semantics/publishedVersion</type>
<identifier>http://hdl.handle.net/10803/667049</identifier>
<language>eng</language>
<rights>ADVERTIMENT. L'accés als continguts d'aquesta tesi doctoral i la seva utilització ha de respectar els drets de la persona autora. Pot ser utilitzada per a consulta o estudi personal, així com en activitats o materials d'investigació i docència en els termes establerts a l'art. 32 del Text Refós de la Llei de Propietat Intel·lectual (RDL 1/1996). Per altres utilitzacions es requereix l'autorització prèvia i expressa de la persona autora. En qualsevol cas, en la utilització dels seus continguts caldrà indicar de forma clara el nom i cognoms de la persona autora i el títol de la tesi doctoral. No s'autoritza la seva reproducció o altres formes d'explotació efectuades amb finalitats de lucre ni la seva comunicació pública des d'un lloc aliè al servei TDX. Tampoc s'autoritza la presentació del seu contingut en una finestra o marc aliè a TDX (framing). Aquesta reserva de drets afecta tant als continguts de la tesi com als seus resums i índexs.</rights>
<rights>info:eu-repo/semantics/openAccess</rights>
<publisher>Universitat Pompeu Fabra</publisher>
<source>TDX (Tesis Doctorals en Xarxa)</source>
</thesis>
<?xml version="1.0" encoding="UTF-8" ?>
<record schemaLocation="http://www.loc.gov/MARC21/slim http://www.loc.gov/standards/marcxml/schema/MARC21slim.xsd">
<leader>00925njm 22002777a 4500</leader>
<datafield ind1=" " ind2=" " tag="042">
<subfield code="a">dc</subfield>
</datafield>
<datafield ind1=" " ind2=" " tag="720">
<subfield code="a">Ruiz Fernández, Guillermo</subfield>
<subfield code="e">author</subfield>
</datafield>
<datafield ind1=" " ind2=" " tag="260">
<subfield code="c">2018-12-12</subfield>
</datafield>
<datafield ind1=" " ind2=" " tag="520">
<subfield code="a">This thesis has been accomplished in Crisalix in collaboration with the Universitat Pompeu Fabra within the program of Doctorats Industrials. Crisalix has the mission of enhancing the communication between professionals of plastic surgery and patients by providing a solution to the most common question during the surgery planning process of ``How will I look after the surgery?''. The solution proposed by Crisalix is based in 3D imaging technology. This technology generates the 3D reconstruction that accurately represents the area of the patient that is going to be operated. This is followed by the possibility of creating multiple simulations of the plastic procedure, which results in the representation of the possible outcomes of the surgery. This thesis presents a framework capable to reconstruct 3D shapes of faces and breasts of plastic surgery patients from 2D images and 3D scans. The 3D reconstruction of an object is a challenging problem with many inherent ambiguities. Statistical model based methods are a powerful approach to overcome some of these ambiguities. We follow the intuition of maximizing the use of available prior information by introducing it into statistical model based methods to enhance their properties. First, we explore Active Shape Models (ASM) which are a well known method to perform 2D shapes alignment. However, it is challenging to maintain prior information (e.g. small set of given landmarks) unchanged once the statistical model constraints are applied. We propose a new weighted regularized projection into the parameter space which allows us to obtain shapes that at the same time fulfill the imposed shape constraints and are plausible according to the statistical model. Second, we extend this methodology to be applied to 3D Morphable Models (3DMM), which are a widespread method to perform 3D reconstruction. However, existing methods present some limitations. Some of them are based in non-linear optimizations computationally expensive that can get stuck in local minima. Another limitation is that not all the methods provide enough resolution to represent accurately the anatomy details needed for this application. Given the medical use of the application, the accuracy and robustness of the method, are important factors to take into consideration. We show how 3DMM initialization and 3DMM fitting can be improved using our weighted regularized projection. Finally, we present a framework capable to reconstruct 3D shapes of plastic surgery patients from two possible inputs: 2D images and 3D scans. Our method is used in different stages of the 3D reconstruction pipeline: shape alignment; 3DMM initialization and 3DMM fitting. The developed methods have been integrated in the production environment of Crisalix, proving their validity.</subfield>
</datafield>
<datafield ind1=" " ind2=" " tag="520">
<subfield code="a">Aquesta tesi ha estat realitzada a Crisalix amb la col·laboració de la Universitat Pompeu Fabra sota el pla de Doctorats Industrials. Crisalix té com a objectiu la millora de la comunicació entre els professionals de la cirurgia plàstica i els pacients, proporcionant una solució a la pregunta que sorgeix més freqüentment durant el procés de planificació d'una operació quirúrgica ``Com em veuré després de la cirurgia?''. La solució proposada per Crisalix està basada en la tecnologia d'imatge 3D. Aquesta tecnologia genera la reconstrucció 3D de la zona del pacient operada, seguit de la possibilitat de crear múltiples simulacions obtenint la representació dels possibles resultats de la cirurgia. Aquesta tesi presenta un sistema capaç de reconstruir cares i pits de pacients de cirurgia plàstica a partir de fotos 2D i escanegis. La reconstrucció en 3D d'un objecte és un problema complicat degut a la presència d'ambigüitats. Els mètodes basats en models estadístics son adequats per mitigar-les. En aquest treball, hem seguit la intuïció de maximitzar l'ús d'informació prèvia, introduint-la al model estadístic per millorar les seves propietats. En primer lloc, explorem els Active Shape Models (ASM) que són un conegut mètode fet servir per alinear contorns d'objectes 2D. No obstant, un cop aplicades les correccions de forma del model estadístic, es difícil de mantenir informació de la que es disposava a priori (per exemple, un petit conjunt de punts donat) inalterada. Proposem una nova projecció ponderada amb un terme de regularització, que permet obtenir formes que compleixen les restriccions de forma imposades i alhora són plausibles en concordança amb el model estadístic. En segon lloc, ampliem la metodologia per aplicar-la als anomenats 3D Morphable Models (3DMM) que són un mètode extensivament utilitzat per fer reconstrucció 3D. No obstant, els mètodes de 3DMM existents presenten algunes limitacions. Alguns estan basats en optimitzacions no lineals, computacionalment costoses i que poden quedar atrapades en mínims locals. Una altra limitació, és que no tots el mètodes proporcionen la resolució adequada per representar amb precisió els detalls de l'anatomia. Donat l'ús mèdic de l'aplicació, la precisió i la robustesa són factors molt importants a tenir en compte. Mostrem com la inicialització i l'ajustament de 3DMM poden ser millorats fent servir la projecció ponderada amb regularització proposada. Finalment, es presenta un sistema capaç de reconstruir models 3D de pacients de cirurgia plàstica a partir de dos possibles tipus de dades: imatges 2D i escaneigs en 3D. El nostre mètode es fa servir en diverses etapes del procés de reconstrucció: alineament de formes en imatge, la inicialització i l'ajustament de 3DMM. Els mètodes desenvolupats han estat integrats a l'entorn de producció de Crisalix provant la seva validesa.</subfield>
</datafield>
<datafield ind1="8" ind2=" " tag="024">
<subfield code="a">http://hdl.handle.net/10803/667049</subfield>
</datafield>
<datafield ind1=" " ind2=" " tag="653">
<subfield code="a">3D morphable models</subfield>
</datafield>
<datafield ind1=" " ind2=" " tag="653">
<subfield code="a">3DMM</subfield>
</datafield>
<datafield ind1=" " ind2=" " tag="653">
<subfield code="a">3D reconstruction</subfield>
</datafield>
<datafield ind1=" " ind2=" " tag="653">
<subfield code="a">Breast imaging</subfield>
</datafield>
<datafield ind1=" " ind2=" " tag="653">
<subfield code="a">Breast</subfield>
</datafield>
<datafield ind1=" " ind2=" " tag="653">
<subfield code="a">Face</subfield>
</datafield>
<datafield ind1=" " ind2=" " tag="653">
<subfield code="a">Plastic surgery</subfield>
</datafield>
<datafield ind1=" " ind2=" " tag="653">
<subfield code="a">Reconstructive surgery</subfield>
</datafield>
<datafield ind1=" " ind2=" " tag="653">
<subfield code="a">Shape constraints</subfield>
</datafield>
<datafield ind1=" " ind2=" " tag="653">
<subfield code="a">Statistical shape models</subfield>
</datafield>
<datafield ind1=" " ind2=" " tag="653">
<subfield code="a">ASM</subfield>
</datafield>
<datafield ind1=" " ind2=" " tag="653">
<subfield code="a">Active Shape Models</subfield>
</datafield>
<datafield ind1=" " ind2=" " tag="653">
<subfield code="a">Weighted regularized</subfield>
</datafield>
<datafield ind1="0" ind2="0" tag="245">
<subfield code="a">3D reconstruction for plastic surgery simulation based on statistical shape models</subfield>
</datafield>
</record>
<?xml version="1.0" encoding="UTF-8" ?>
<record schemaLocation="http://www.loc.gov/MARC21/slim http://www.loc.gov/standards/marcxml/schema/MARC21slim.xsd">
<leader>nam a 5i 4500</leader>
<datafield ind1=" " ind2=" " tag="653">
<subfield code="a">3D morphable models</subfield>
</datafield>
<datafield ind1=" " ind2=" " tag="653">
<subfield code="a">3DMM</subfield>
</datafield>
<datafield ind1=" " ind2=" " tag="653">
<subfield code="a">3D reconstruction</subfield>
</datafield>
<datafield ind1=" " ind2=" " tag="653">
<subfield code="a">Breast imaging</subfield>
</datafield>
<datafield ind1=" " ind2=" " tag="653">
<subfield code="a">Breast</subfield>
</datafield>
<datafield ind1=" " ind2=" " tag="653">
<subfield code="a">Face</subfield>
</datafield>
<datafield ind1=" " ind2=" " tag="653">
<subfield code="a">Plastic surgery</subfield>
</datafield>
<datafield ind1=" " ind2=" " tag="653">
<subfield code="a">Reconstructive surgery</subfield>
</datafield>
<datafield ind1=" " ind2=" " tag="653">
<subfield code="a">Shape constraints</subfield>
</datafield>
<datafield ind1=" " ind2=" " tag="653">
<subfield code="a">Statistical shape models</subfield>
</datafield>
<datafield ind1=" " ind2=" " tag="653">
<subfield code="a">ASM</subfield>
</datafield>
<datafield ind1=" " ind2=" " tag="653">
<subfield code="a">Active Shape Models</subfield>
</datafield>
<datafield ind1=" " ind2=" " tag="653">
<subfield code="a">Weighted regularized</subfield>
</datafield>
<datafield ind1="1" ind2="0" tag="245">
<subfield code="a">3D reconstruction for plastic surgery simulation based on statistical shape models</subfield>
</datafield>
<datafield ind1=" " ind2="1" tag="264">
<subfield code="a">[Barcelona] :</subfield>
<subfield code="b">Universitat Pompeu Fabra,</subfield>
<subfield code="c">2019</subfield>
</datafield>
<datafield ind1="4" ind2="0" tag="856">
<subfield code="z">Accés lliure</subfield>
<subfield code="u">http://hdl.handle.net/10803/667049</subfield>
</datafield>
<controlfield tag="007">cr |||||||||||</controlfield>
<controlfield tag="008">AAMMDDs2019 sp ||||fsm||||0|| 0 eng|c</controlfield>
<datafield ind1="1" ind2=" " tag="100">
<subfield code="a">Ruiz Fernández, Guillermo,</subfield>
<subfield code="e">autor</subfield>
</datafield>
<datafield ind1="1" ind2=" " tag="100">
<subfield code="a">Programa de doctorat en Tecnologies de la Informació i les Comunicacions,</subfield>
<subfield code="e">degree</subfield>
</datafield>
<datafield ind1=" " ind2=" " tag="300">
<subfield code="a">1 recurs en línia (134 pàgines)</subfield>
</datafield>
<datafield ind1=" " ind2=" " tag="502">
<subfield code="g">Tesi</subfield>
<subfield code="b">Doctorat</subfield>
<subfield code="c">Universitat Pompeu Fabra. Departament de Tecnologies de la Informació i les Comunicacions</subfield>
<subfield code="d">2018</subfield>
</datafield>
<datafield ind1="2" ind2=" " tag="710">
<subfield code="a">Universitat Pompeu Fabra. Departament de Tecnologies de la Informació i les Comunicacions</subfield>
</datafield>
<datafield ind1=" " ind2="4" tag="655">
<subfield code="a">Tesis i dissertacions electròniques</subfield>
</datafield>
<datafield ind1="1" ind2=" " tag="700">
<subfield code="a">González Ballester, Miguel Ángel,</subfield>
<subfield code="e">supervisor acadèmic</subfield>
</datafield>
<datafield ind1="1" ind2=" " tag="700">
<subfield code="a">Sukno, Federico Mateo,</subfield>
<subfield code="e">supervisor acadèmic</subfield>
</datafield>
<datafield ind1="0" ind2=" " tag="730">
<subfield code="a">TDX</subfield>
</datafield>
<datafield ind1=" " ind2=" " tag="520">
<subfield code="a">This thesis has been accomplished in Crisalix in collaboration with the Universitat Pompeu Fabra within the program of Doctorats Industrials. Crisalix has the mission of enhancing the communication between professionals of plastic surgery and patients by providing a solution to the most common question during the surgery planning process of ``How will I look after the surgery?''. The solution proposed by Crisalix is based in 3D imaging technology. This technology generates the 3D reconstruction that accurately represents the area of the patient that is going to be operated. This is followed by the possibility of creating multiple simulations of the plastic procedure, which results in the representation of the possible outcomes of the surgery. This thesis presents a framework capable to reconstruct 3D shapes of faces and breasts of plastic surgery patients from 2D images and 3D scans. The 3D reconstruction of an object is a challenging problem with many inherent ambiguities. Statistical model based methods are a powerful approach to overcome some of these ambiguities. We follow the intuition of maximizing the use of available prior information by introducing it into statistical model based methods to enhance their properties. First, we explore Active Shape Models (ASM) which are a well known method to perform 2D shapes alignment. However, it is challenging to maintain prior information (e.g. small set of given landmarks) unchanged once the statistical model constraints are applied. We propose a new weighted regularized projection into the parameter space which allows us to obtain shapes that at the same time fulfill the imposed shape constraints and are plausible according to the statistical model. Second, we extend this methodology to be applied to 3D Morphable Models (3DMM), which are a widespread method to perform 3D reconstruction. However, existing methods present some limitations. Some of them are based in non-linear optimizations computationally expensive that can get stuck in local minima. Another limitation is that not all the methods provide enough resolution to represent accurately the anatomy details needed for this application. Given the medical use of the application, the accuracy and robustness of the method, are important factors to take into consideration. We show how 3DMM initialization and 3DMM fitting can be improved using our weighted regularized projection. Finally, we present a framework capable to reconstruct 3D shapes of plastic surgery patients from two possible inputs: 2D images and 3D scans. Our method is used in different stages of the 3D reconstruction pipeline: shape alignment; 3DMM initialization and 3DMM fitting. The developed methods have been integrated in the production environment of Crisalix, proving their validity.</subfield>
</datafield>
<datafield ind1=" " ind2=" " tag="998">
<subfield code="a">f</subfield>
</datafield>
<datafield ind1=" " ind2=" " tag="040">
<subfield code="a">ES-BaCBU</subfield>
<subfield code="b">cat</subfield>
<subfield code="e">rda</subfield>
<subfield code="c">ES-BaCBU</subfield>
</datafield>
<datafield ind1=" " ind2=" " tag="336">
<subfield code="a">text</subfield>
<subfield code="b">txt</subfield>
<subfield code="2">rdacontent</subfield>
</datafield>
<datafield ind1=" " ind2=" " tag="337">
<subfield code="a">informàtic</subfield>
<subfield code="b">c</subfield>
<subfield code="2">rdamedia</subfield>
</datafield>
<datafield ind1=" " ind2=" " tag="338">
<subfield code="a">recurs en línia</subfield>
<subfield code="b">cr</subfield>
<subfield code="2">rdacarrier</subfield>
</datafield>
</record>
<?xml version="1.0" encoding="UTF-8" ?>
<mets ID=" DSpace_ITEM_10803-667049" OBJID=" hdl:10803/667049" PROFILE="DSpace METS SIP Profile 1.0" TYPE="DSpace ITEM" schemaLocation="http://www.loc.gov/METS/ http://www.loc.gov/standards/mets/mets.xsd">
<metsHdr CREATEDATE="2024-09-07T05:48:56Z">
<agent ROLE="CUSTODIAN" TYPE="ORGANIZATION">
<name>TDX (Tesis Doctorals en Xarxa)</name>
</agent>
</metsHdr>
<dmdSec ID="DMD_10803_667049">
<mdWrap MDTYPE="MODS">
<xmlData schemaLocation="http://www.loc.gov/mods/v3 http://www.loc.gov/standards/mods/v3/mods-3-1.xsd">
<mods:mods schemaLocation="http://www.loc.gov/mods/v3 http://www.loc.gov/standards/mods/v3/mods-3-1.xsd">
<mods:name>
<mods:role>
<mods:roleTerm type="text">author</mods:roleTerm>
</mods:role>
<mods:namePart>Ruiz Fernández, Guillermo</mods:namePart>
</mods:name>
<mods:name>
<mods:role>
<mods:roleTerm type="text">authoremail</mods:roleTerm>
</mods:role>
<mods:namePart>guille10rf@gmail.com</mods:namePart>
</mods:name>
<mods:name>
<mods:role>
<mods:roleTerm type="text">authoremailshow</mods:roleTerm>
</mods:role>
<mods:namePart>true</mods:namePart>
</mods:name>
<mods:name>
<mods:role>
<mods:roleTerm type="text">director</mods:roleTerm>
</mods:role>
<mods:namePart>González Ballester, Miguel Ángel</mods:namePart>
</mods:name>
<mods:name>
<mods:role>
<mods:roleTerm type="text">director</mods:roleTerm>
</mods:role>
<mods:namePart>Sukno, Federico Mateo</mods:namePart>
</mods:name>
<mods:extension>
<mods:dateAccessioned encoding="iso8601">2019-06-12T11:40:31Z</mods:dateAccessioned>
</mods:extension>
<mods:extension>
<mods:dateAvailable encoding="iso8601">2019-06-12T11:40:31Z</mods:dateAvailable>
</mods:extension>
<mods:originInfo>
<mods:dateIssued encoding="iso8601">2018-12-12</mods:dateIssued>
</mods:originInfo>
<mods:identifier type="uri">http://hdl.handle.net/10803/667049</mods:identifier>
<mods:abstract>This thesis has been accomplished in Crisalix in collaboration with the Universitat Pompeu Fabra within the program of Doctorats Industrials. Crisalix has the mission of enhancing the communication between professionals of plastic surgery and patients by providing a solution to the most common question during the surgery planning process of ``How will I look after the surgery?''. The solution proposed by Crisalix is based in 3D imaging technology. This technology generates the 3D reconstruction that accurately represents the area of the patient that is going to be operated. This is followed by the possibility of creating multiple simulations of the plastic procedure, which results in the representation of the possible outcomes of the surgery. This thesis presents a framework capable to reconstruct 3D shapes of faces and breasts of plastic surgery patients from 2D images and 3D scans. The 3D reconstruction of an object is a challenging problem with many inherent ambiguities. Statistical model based methods are a powerful approach to overcome some of these ambiguities. We follow the intuition of maximizing the use of available prior information by introducing it into statistical model based methods to enhance their properties. First, we explore Active Shape Models (ASM) which are a well known method to perform 2D shapes alignment. However, it is challenging to maintain prior information (e.g. small set of given landmarks) unchanged once the statistical model constraints are applied. We propose a new weighted regularized projection into the parameter space which allows us to obtain shapes that at the same time fulfill the imposed shape constraints and are plausible according to the statistical model. Second, we extend this methodology to be applied to 3D Morphable Models (3DMM), which are a widespread method to perform 3D reconstruction. However, existing methods present some limitations. Some of them are based in non-linear optimizations computationally expensive that can get stuck in local minima. Another limitation is that not all the methods provide enough resolution to represent accurately the anatomy details needed for this application. Given the medical use of the application, the accuracy and robustness of the method, are important factors to take into consideration. We show how 3DMM initialization and 3DMM fitting can be improved using our weighted regularized projection. Finally, we present a framework capable to reconstruct 3D shapes of plastic surgery patients from two possible inputs: 2D images and 3D scans. Our method is used in different stages of the 3D reconstruction pipeline: shape alignment; 3DMM initialization and 3DMM fitting. The developed methods have been integrated in the production environment of Crisalix, proving their validity.Aquesta tesi ha estat realitzada a Crisalix amb la col·laboració de la Universitat Pompeu Fabra sota el pla de Doctorats Industrials. Crisalix té com a objectiu la millora de la comunicació entre els professionals de la cirurgia plàstica i els pacients, proporcionant una solució a la pregunta que sorgeix més freqüentment durant el procés de planificació d'una operació quirúrgica ``Com em veuré després de la cirurgia?''. La solució proposada per Crisalix està basada en la tecnologia d'imatge 3D. Aquesta tecnologia genera la reconstrucció 3D de la zona del pacient operada, seguit de la possibilitat de crear múltiples simulacions obtenint la representació dels possibles resultats de la cirurgia. Aquesta tesi presenta un sistema capaç de reconstruir cares i pits de pacients de cirurgia plàstica a partir de fotos 2D i escanegis. La reconstrucció en 3D d'un objecte és un problema complicat degut a la presència d'ambigüitats. Els mètodes basats en models estadístics son adequats per mitigar-les. En aquest treball, hem seguit la intuïció de maximitzar l'ús d'informació prèvia, introduint-la al model estadístic per millorar les seves propietats. En primer lloc, explorem els Active Shape Models (ASM) que són un conegut mètode fet servir per alinear contorns d'objectes 2D. No obstant, un cop aplicades les correccions de forma del model estadístic, es difícil de mantenir informació de la que es disposava a priori (per exemple, un petit conjunt de punts donat) inalterada. Proposem una nova projecció ponderada amb un terme de regularització, que permet obtenir formes que compleixen les restriccions de forma imposades i alhora són plausibles en concordança amb el model estadístic. En segon lloc, ampliem la metodologia per aplicar-la als anomenats 3D Morphable Models (3DMM) que són un mètode extensivament utilitzat per fer reconstrucció 3D. No obstant, els mètodes de 3DMM existents presenten algunes limitacions. Alguns estan basats en optimitzacions no lineals, computacionalment costoses i que poden quedar atrapades en mínims locals. Una altra limitació, és que no tots el mètodes proporcionen la resolució adequada per representar amb precisió els detalls de l'anatomia. Donat l'ús mèdic de l'aplicació, la precisió i la robustesa són factors molt importants a tenir en compte. Mostrem com la inicialització i l'ajustament de 3DMM poden ser millorats fent servir la projecció ponderada amb regularització proposada. Finalment, es presenta un sistema capaç de reconstruir models 3D de pacients de cirurgia plàstica a partir de dos possibles tipus de dades: imatges 2D i escaneigs en 3D. El nostre mètode es fa servir en diverses etapes del procés de reconstrucció: alineament de formes en imatge, la inicialització i l'ajustament de 3DMM. Els mètodes desenvolupats han estat integrats a l'entorn de producció de Crisalix provant la seva validesa.</mods:abstract>
<mods:language>
<mods:languageTerm authority="rfc3066">eng</mods:languageTerm>
</mods:language>
<mods:subject>
<mods:topic>3D morphable models</mods:topic>
</mods:subject>
<mods:subject>
<mods:topic>3DMM</mods:topic>
</mods:subject>
<mods:subject>
<mods:topic>3D reconstruction</mods:topic>
</mods:subject>
<mods:subject>
<mods:topic>Breast imaging</mods:topic>
</mods:subject>
<mods:subject>
<mods:topic>Breast</mods:topic>
</mods:subject>
<mods:subject>
<mods:topic>Face</mods:topic>
</mods:subject>
<mods:subject>
<mods:topic>Plastic surgery</mods:topic>
</mods:subject>
<mods:subject>
<mods:topic>Reconstructive surgery</mods:topic>
</mods:subject>
<mods:subject>
<mods:topic>Shape constraints</mods:topic>
</mods:subject>
<mods:subject>
<mods:topic>Statistical shape models</mods:topic>
</mods:subject>
<mods:subject>
<mods:topic>ASM</mods:topic>
</mods:subject>
<mods:subject>
<mods:topic>Active Shape Models</mods:topic>
</mods:subject>
<mods:subject>
<mods:topic>Weighted regularized</mods:topic>
</mods:subject>
<mods:titleInfo>
<mods:title>3D reconstruction for plastic surgery simulation based on statistical shape models</mods:title>
</mods:titleInfo>
<mods:genre>info:eu-repo/semantics/doctoralThesis info:eu-repo/semantics/publishedVersion</mods:genre>
</mods:mods>
</xmlData>
</mdWrap>
</dmdSec>
<amdSec ID="FO_10803_667049_3">
<techMD ID="TECH_O_10803_667049_3">
<mdWrap MDTYPE="PREMIS">
<xmlData schemaLocation="http://www.loc.gov/standards/premis http://www.loc.gov/standards/premis/PREMIS-v1-0.xsd">
<premis:premis>
<premis:object>
<premis:objectIdentifier>
<premis:objectIdentifierType>URL</premis:objectIdentifierType>
<premis:objectIdentifierValue>https://www.tdx.cat/bitstream/10803/667049/3/tgrfII.pdf</premis:objectIdentifierValue>
</premis:objectIdentifier>
<premis:objectCategory>File</premis:objectCategory>
<premis:objectCharacteristics>
<premis:fixity>
<premis:messageDigestAlgorithm>MD5</premis:messageDigestAlgorithm>
<premis:messageDigest>71e34c0a48508f960104e55e8d4ed13a</premis:messageDigest>
</premis:fixity>
<premis:size>19115423</premis:size>
<premis:format>
<premis:formatDesignation>
<premis:formatName>application/pdf</premis:formatName>
</premis:formatDesignation>
</premis:format>
</premis:objectCharacteristics>
<premis:originalName>tgrfII.pdf</premis:originalName>
</premis:object>
</premis:premis>
</xmlData>
</mdWrap>
</techMD>
</amdSec>
<amdSec ID="FT_10803_667049_5">
<techMD ID="TECH_T_10803_667049_5">
<mdWrap MDTYPE="PREMIS">
<xmlData schemaLocation="http://www.loc.gov/standards/premis http://www.loc.gov/standards/premis/PREMIS-v1-0.xsd">
<premis:premis>
<premis:object>
<premis:objectIdentifier>
<premis:objectIdentifierType>URL</premis:objectIdentifierType>
<premis:objectIdentifierValue>https://www.tdx.cat/bitstream/10803/667049/5/tgrfII.pdf.txt</premis:objectIdentifierValue>
</premis:objectIdentifier>
<premis:objectCategory>File</premis:objectCategory>
<premis:objectCharacteristics>
<premis:fixity>
<premis:messageDigestAlgorithm>MD5</premis:messageDigestAlgorithm>
<premis:messageDigest>2ef1fd21dd17227509f907c0b94a4e47</premis:messageDigest>
</premis:fixity>
<premis:size>166461</premis:size>
<premis:format>
<premis:formatDesignation>
<premis:formatName>text/plain</premis:formatName>
</premis:formatDesignation>
</premis:format>
</premis:objectCharacteristics>
<premis:originalName>tgrfII.pdf.txt</premis:originalName>
</premis:object>
</premis:premis>
</xmlData>
</mdWrap>
</techMD>
</amdSec>
<fileSec>
<fileGrp USE="ORIGINAL">
<file ADMID="FO_10803_667049_3" CHECKSUM="71e34c0a48508f960104e55e8d4ed13a" CHECKSUMTYPE="MD5" GROUPID="GROUP_BITSTREAM_10803_667049_3" ID="BITSTREAM_ORIGINAL_10803_667049_3" MIMETYPE="application/pdf" SEQ="3" SIZE="19115423">
</file>
</fileGrp>
<fileGrp USE="TEXT">
<file ADMID="FT_10803_667049_5" CHECKSUM="2ef1fd21dd17227509f907c0b94a4e47" CHECKSUMTYPE="MD5" GROUPID="GROUP_BITSTREAM_10803_667049_5" ID="BITSTREAM_TEXT_10803_667049_5" MIMETYPE="text/plain" SEQ="5" SIZE="166461">
</file>
</fileGrp>
</fileSec>
<structMap LABEL="DSpace Object" TYPE="LOGICAL">
<div ADMID="DMD_10803_667049" TYPE="DSpace Object Contents">
<div TYPE="DSpace BITSTREAM">
</div>
</div>
</structMap>
</mets>
<?xml version="1.0" encoding="UTF-8" ?>
<mods:mods schemaLocation="http://www.loc.gov/mods/v3 http://www.loc.gov/standards/mods/v3/mods-3-1.xsd">
<mods:name>
<mods:namePart>Ruiz Fernández, Guillermo</mods:namePart>
</mods:name>
<mods:extension>
<mods:dateAvailable encoding="iso8601">2019-06-12T11:40:31Z</mods:dateAvailable>
</mods:extension>
<mods:extension>
<mods:dateAccessioned encoding="iso8601">2019-06-12T11:40:31Z</mods:dateAccessioned>
</mods:extension>
<mods:originInfo>
<mods:dateIssued encoding="iso8601">2018-12-12</mods:dateIssued>
</mods:originInfo>
<mods:identifier type="uri">http://hdl.handle.net/10803/667049</mods:identifier>
<mods:abstract>This thesis has been accomplished in Crisalix in collaboration with the Universitat Pompeu Fabra within the program of Doctorats Industrials. Crisalix has the mission of enhancing the communication between professionals of plastic surgery and patients by providing a solution to the most common question during the surgery planning process of ``How will I look after the surgery?''. The solution proposed by Crisalix is based in 3D imaging technology. This technology generates the 3D reconstruction that accurately represents the area of the patient that is going to be operated. This is followed by the possibility of creating multiple simulations of the plastic procedure, which results in the representation of the possible outcomes of the surgery. This thesis presents a framework capable to reconstruct 3D shapes of faces and breasts of plastic surgery patients from 2D images and 3D scans. The 3D reconstruction of an object is a challenging problem with many inherent ambiguities. Statistical model based methods are a powerful approach to overcome some of these ambiguities. We follow the intuition of maximizing the use of available prior information by introducing it into statistical model based methods to enhance their properties. First, we explore Active Shape Models (ASM) which are a well known method to perform 2D shapes alignment. However, it is challenging to maintain prior information (e.g. small set of given landmarks) unchanged once the statistical model constraints are applied. We propose a new weighted regularized projection into the parameter space which allows us to obtain shapes that at the same time fulfill the imposed shape constraints and are plausible according to the statistical model. Second, we extend this methodology to be applied to 3D Morphable Models (3DMM), which are a widespread method to perform 3D reconstruction. However, existing methods present some limitations. Some of them are based in non-linear optimizations computationally expensive that can get stuck in local minima. Another limitation is that not all the methods provide enough resolution to represent accurately the anatomy details needed for this application. Given the medical use of the application, the accuracy and robustness of the method, are important factors to take into consideration. We show how 3DMM initialization and 3DMM fitting can be improved using our weighted regularized projection. Finally, we present a framework capable to reconstruct 3D shapes of plastic surgery patients from two possible inputs: 2D images and 3D scans. Our method is used in different stages of the 3D reconstruction pipeline: shape alignment; 3DMM initialization and 3DMM fitting. The developed methods have been integrated in the production environment of Crisalix, proving their validity.</mods:abstract>
<mods:abstract>Aquesta tesi ha estat realitzada a Crisalix amb la col·laboració de la Universitat Pompeu Fabra sota el pla de Doctorats Industrials. Crisalix té com a objectiu la millora de la comunicació entre els professionals de la cirurgia plàstica i els pacients, proporcionant una solució a la pregunta que sorgeix més freqüentment durant el procés de planificació d'una operació quirúrgica ``Com em veuré després de la cirurgia?''. La solució proposada per Crisalix està basada en la tecnologia d'imatge 3D. Aquesta tecnologia genera la reconstrucció 3D de la zona del pacient operada, seguit de la possibilitat de crear múltiples simulacions obtenint la representació dels possibles resultats de la cirurgia. Aquesta tesi presenta un sistema capaç de reconstruir cares i pits de pacients de cirurgia plàstica a partir de fotos 2D i escanegis. La reconstrucció en 3D d'un objecte és un problema complicat degut a la presència d'ambigüitats. Els mètodes basats en models estadístics son adequats per mitigar-les. En aquest treball, hem seguit la intuïció de maximitzar l'ús d'informació prèvia, introduint-la al model estadístic per millorar les seves propietats. En primer lloc, explorem els Active Shape Models (ASM) que són un conegut mètode fet servir per alinear contorns d'objectes 2D. No obstant, un cop aplicades les correccions de forma del model estadístic, es difícil de mantenir informació de la que es disposava a priori (per exemple, un petit conjunt de punts donat) inalterada. Proposem una nova projecció ponderada amb un terme de regularització, que permet obtenir formes que compleixen les restriccions de forma imposades i alhora són plausibles en concordança amb el model estadístic. En segon lloc, ampliem la metodologia per aplicar-la als anomenats 3D Morphable Models (3DMM) que són un mètode extensivament utilitzat per fer reconstrucció 3D. No obstant, els mètodes de 3DMM existents presenten algunes limitacions. Alguns estan basats en optimitzacions no lineals, computacionalment costoses i que poden quedar atrapades en mínims locals. Una altra limitació, és que no tots el mètodes proporcionen la resolució adequada per representar amb precisió els detalls de l'anatomia. Donat l'ús mèdic de l'aplicació, la precisió i la robustesa són factors molt importants a tenir en compte. Mostrem com la inicialització i l'ajustament de 3DMM poden ser millorats fent servir la projecció ponderada amb regularització proposada. Finalment, es presenta un sistema capaç de reconstruir models 3D de pacients de cirurgia plàstica a partir de dos possibles tipus de dades: imatges 2D i escaneigs en 3D. El nostre mètode es fa servir en diverses etapes del procés de reconstrucció: alineament de formes en imatge, la inicialització i l'ajustament de 3DMM. Els mètodes desenvolupats han estat integrats a l'entorn de producció de Crisalix provant la seva validesa.</mods:abstract>
<mods:language>
<mods:languageTerm>eng</mods:languageTerm>
</mods:language>
<mods:accessCondition type="useAndReproduction">ADVERTIMENT. L'accés als continguts d'aquesta tesi doctoral i la seva utilització ha de respectar els drets de la persona autora. Pot ser utilitzada per a consulta o estudi personal, així com en activitats o materials d'investigació i docència en els termes establerts a l'art. 32 del Text Refós de la Llei de Propietat Intel·lectual (RDL 1/1996). Per altres utilitzacions es requereix l'autorització prèvia i expressa de la persona autora. En qualsevol cas, en la utilització dels seus continguts caldrà indicar de forma clara el nom i cognoms de la persona autora i el títol de la tesi doctoral. No s'autoritza la seva reproducció o altres formes d'explotació efectuades amb finalitats de lucre ni la seva comunicació pública des d'un lloc aliè al servei TDX. Tampoc s'autoritza la presentació del seu contingut en una finestra o marc aliè a TDX (framing). Aquesta reserva de drets afecta tant als continguts de la tesi com als seus resums i índexs.</mods:accessCondition>
<mods:accessCondition type="useAndReproduction">info:eu-repo/semantics/openAccess</mods:accessCondition>
<mods:subject>
<mods:topic>3D morphable models</mods:topic>
</mods:subject>
<mods:subject>
<mods:topic>3DMM</mods:topic>
</mods:subject>
<mods:subject>
<mods:topic>3D reconstruction</mods:topic>
</mods:subject>
<mods:subject>
<mods:topic>Breast imaging</mods:topic>
</mods:subject>
<mods:subject>
<mods:topic>Breast</mods:topic>
</mods:subject>
<mods:subject>
<mods:topic>Face</mods:topic>
</mods:subject>
<mods:subject>
<mods:topic>Plastic surgery</mods:topic>
</mods:subject>
<mods:subject>
<mods:topic>Reconstructive surgery</mods:topic>
</mods:subject>
<mods:subject>
<mods:topic>Shape constraints</mods:topic>
</mods:subject>
<mods:subject>
<mods:topic>Statistical shape models</mods:topic>
</mods:subject>
<mods:subject>
<mods:topic>ASM</mods:topic>
</mods:subject>
<mods:subject>
<mods:topic>Active Shape Models</mods:topic>
</mods:subject>
<mods:subject>
<mods:topic>Weighted regularized</mods:topic>
</mods:subject>
<mods:titleInfo>
<mods:title>3D reconstruction for plastic surgery simulation based on statistical shape models</mods:title>
</mods:titleInfo>
<mods:genre>info:eu-repo/semantics/doctoralThesis</mods:genre>
<mods:genre>info:eu-repo/semantics/publishedVersion</mods:genre>
</mods:mods>
<?xml version="1.0" encoding="UTF-8" ?>
<oaire:record schemaLocation="http://namespaceopenaire.eu/schema/oaire/">
<dc:title>3D reconstruction for plastic surgery simulation based on statistical shape models</dc:title>
<datacite:creator>
<datacite:creatorName>Ruiz Fernández, Guillermo</datacite:creatorName>
</datacite:creator>
<datacite:contributor>guille10rf@gmail.com</datacite:contributor>
<datacite:contributor>true</datacite:contributor>
<datacite:contributor>González Ballester, Miguel Ángel</datacite:contributor>
<datacite:contributor>Sukno, Federico Mateo</datacite:contributor>
<datacite:contributor>Universitat Pompeu Fabra. Departament de Tecnologies de la Informació i les Comunicacions</datacite:contributor>
<dc:subject>3D morphable models</dc:subject>
<dc:subject>3DMM</dc:subject>
<dc:subject>3D reconstruction</dc:subject>
<dc:subject>Breast imaging</dc:subject>
<dc:subject>Breast</dc:subject>
<dc:subject>Face</dc:subject>
<dc:subject>Plastic surgery</dc:subject>
<dc:subject>Reconstructive surgery</dc:subject>
<dc:subject>Shape constraints</dc:subject>
<dc:subject>Statistical shape models</dc:subject>
<dc:subject>ASM</dc:subject>
<dc:subject>Active Shape Models</dc:subject>
<dc:subject>Weighted regularized</dc:subject>
<dc:subject>62</dc:subject>
<dc:description>This thesis has been accomplished in Crisalix in collaboration with the Universitat Pompeu Fabra within the program of Doctorats Industrials. Crisalix has the mission of enhancing the communication between professionals of plastic surgery and patients by providing a solution to the most common question during the surgery planning process of ``How will I look after the surgery?''. The solution proposed by Crisalix is based in 3D imaging technology. This technology generates the 3D reconstruction that accurately represents the area of the patient that is going to be operated. This is followed by the possibility of creating multiple simulations of the plastic procedure, which results in the representation of the possible outcomes of the surgery. This thesis presents a framework capable to reconstruct 3D shapes of faces and breasts of plastic surgery patients from 2D images and 3D scans. The 3D reconstruction of an object is a challenging problem with many inherent ambiguities. Statistical model based methods are a powerful approach to overcome some of these ambiguities. We follow the intuition of maximizing the use of available prior information by introducing it into statistical model based methods to enhance their properties. First, we explore Active Shape Models (ASM) which are a well known method to perform 2D shapes alignment. However, it is challenging to maintain prior information (e.g. small set of given landmarks) unchanged once the statistical model constraints are applied. We propose a new weighted regularized projection into the parameter space which allows us to obtain shapes that at the same time fulfill the imposed shape constraints and are plausible according to the statistical model. Second, we extend this methodology to be applied to 3D Morphable Models (3DMM), which are a widespread method to perform 3D reconstruction. However, existing methods present some limitations. Some of them are based in non-linear optimizations computationally expensive that can get stuck in local minima. Another limitation is that not all the methods provide enough resolution to represent accurately the anatomy details needed for this application. Given the medical use of the application, the accuracy and robustness of the method, are important factors to take into consideration. We show how 3DMM initialization and 3DMM fitting can be improved using our weighted regularized projection. Finally, we present a framework capable to reconstruct 3D shapes of plastic surgery patients from two possible inputs: 2D images and 3D scans. Our method is used in different stages of the 3D reconstruction pipeline: shape alignment; 3DMM initialization and 3DMM fitting. The developed methods have been integrated in the production environment of Crisalix, proving their validity.</dc:description>
<dc:description>Aquesta tesi ha estat realitzada a Crisalix amb la col·laboració de la Universitat Pompeu Fabra sota el pla de Doctorats Industrials. Crisalix té com a objectiu la millora de la comunicació entre els professionals de la cirurgia plàstica i els pacients, proporcionant una solució a la pregunta que sorgeix més freqüentment durant el procés de planificació d'una operació quirúrgica ``Com em veuré després de la cirurgia?''. La solució proposada per Crisalix està basada en la tecnologia d'imatge 3D. Aquesta tecnologia genera la reconstrucció 3D de la zona del pacient operada, seguit de la possibilitat de crear múltiples simulacions obtenint la representació dels possibles resultats de la cirurgia. Aquesta tesi presenta un sistema capaç de reconstruir cares i pits de pacients de cirurgia plàstica a partir de fotos 2D i escanegis. La reconstrucció en 3D d'un objecte és un problema complicat degut a la presència d'ambigüitats. Els mètodes basats en models estadístics son adequats per mitigar-les. En aquest treball, hem seguit la intuïció de maximitzar l'ús d'informació prèvia, introduint-la al model estadístic per millorar les seves propietats. En primer lloc, explorem els Active Shape Models (ASM) que són un conegut mètode fet servir per alinear contorns d'objectes 2D. No obstant, un cop aplicades les correccions de forma del model estadístic, es difícil de mantenir informació de la que es disposava a priori (per exemple, un petit conjunt de punts donat) inalterada. Proposem una nova projecció ponderada amb un terme de regularització, que permet obtenir formes que compleixen les restriccions de forma imposades i alhora són plausibles en concordança amb el model estadístic. En segon lloc, ampliem la metodologia per aplicar-la als anomenats 3D Morphable Models (3DMM) que són un mètode extensivament utilitzat per fer reconstrucció 3D. No obstant, els mètodes de 3DMM existents presenten algunes limitacions. Alguns estan basats en optimitzacions no lineals, computacionalment costoses i que poden quedar atrapades en mínims locals. Una altra limitació, és que no tots el mètodes proporcionen la resolució adequada per representar amb precisió els detalls de l'anatomia. Donat l'ús mèdic de l'aplicació, la precisió i la robustesa són factors molt importants a tenir en compte. Mostrem com la inicialització i l'ajustament de 3DMM poden ser millorats fent servir la projecció ponderada amb regularització proposada. Finalment, es presenta un sistema capaç de reconstruir models 3D de pacients de cirurgia plàstica a partir de dos possibles tipus de dades: imatges 2D i escaneigs en 3D. El nostre mètode es fa servir en diverses etapes del procés de reconstrucció: alineament de formes en imatge, la inicialització i l'ajustament de 3DMM. Els mètodes desenvolupats han estat integrats a l'entorn de producció de Crisalix provant la seva validesa.</dc:description>
<dc:description>Programa de doctorat en Tecnologies de la Informació i les Comunicacions</dc:description>
<dc:date>2019-06-12T11:40:31Z</dc:date>
<dc:date>2019-06-12T11:40:31Z</dc:date>
<dc:date>2018-12-12</dc:date>
<dc:type>info:eu-repo/semantics/doctoralThesis</dc:type>
<dc:type>info:eu-repo/semantics/publishedVersion</dc:type>
<datacite:alternateIdentifier>http://hdl.handle.net/10803/667049</datacite:alternateIdentifier>
<dc:language>eng</dc:language>
<dc:rights>ADVERTIMENT. L'accés als continguts d'aquesta tesi doctoral i la seva utilització ha de respectar els drets de la persona autora. Pot ser utilitzada per a consulta o estudi personal, així com en activitats o materials d'investigació i docència en els termes establerts a l'art. 32 del Text Refós de la Llei de Propietat Intel·lectual (RDL 1/1996). Per altres utilitzacions es requereix l'autorització prèvia i expressa de la persona autora. En qualsevol cas, en la utilització dels seus continguts caldrà indicar de forma clara el nom i cognoms de la persona autora i el títol de la tesi doctoral. No s'autoritza la seva reproducció o altres formes d'explotació efectuades amb finalitats de lucre ni la seva comunicació pública des d'un lloc aliè al servei TDX. Tampoc s'autoritza la presentació del seu contingut en una finestra o marc aliè a TDX (framing). Aquesta reserva de drets afecta tant als continguts de la tesi com als seus resums i índexs.</dc:rights>
<dc:rights>info:eu-repo/semantics/openAccess</dc:rights>
<dc:format>134 p.</dc:format>
<dc:format>application/pdf</dc:format>
<dc:format>application/pdf</dc:format>
<dc:publisher>Universitat Pompeu Fabra</dc:publisher>
<dc:source>TDX (Tesis Doctorals en Xarxa)</dc:source>
<oaire:file>https://www.tdx.cat/bitstream/10803/667049/3/tgrfII.pdf</oaire:file>
</oaire:record>
<?xml version="1.0" encoding="UTF-8" ?>
<atom:entry schemaLocation="http://www.w3.org/2005/Atom http://www.kbcafe.com/rss/atom.xsd.xml">
<atom:id>http://hdl.handle.net/10803/667049/ore.xml</atom:id>
<atom:published>2019-06-12T11:40:31Z</atom:published>
<atom:updated>2019-06-12T11:40:31Z</atom:updated>
<atom:source>
<atom:generator>TDX (Tesis Doctorals en Xarxa)</atom:generator>
</atom:source>
<atom:title>3D reconstruction for plastic surgery simulation based on statistical shape models</atom:title>
<atom:author>
<atom:name>Ruiz Fernández, Guillermo</atom:name>
</atom:author>
<oreatom:triples>
<rdf:Description about="http://hdl.handle.net/10803/667049/ore.xml#atom">
<dcterms:modified>2019-06-12T11:40:31Z</dcterms:modified>
</rdf:Description>
<rdf:Description about="https://www.tdx.cat/bitstream/10803/667049/5/tgrfII.pdf.txt">
<dcterms:description>TEXT</dcterms:description>
</rdf:Description>
<rdf:Description about="https://www.tdx.cat/bitstream/10803/667049/3/tgrfII.pdf">
<dcterms:description>ORIGINAL</dcterms:description>
</rdf:Description>
<rdf:Description about="https://www.tdx.cat/bitstream/10803/667049/4/tgrfII.pdf.xml">
<dcterms:description>MEDIA_DOCUMENT</dcterms:description>
</rdf:Description>
</oreatom:triples>
</atom:entry>
<?xml version="1.0" encoding="UTF-8" ?>
<qdc:qualifieddc schemaLocation="http://purl.org/dc/elements/1.1/ http://dublincore.org/schemas/xmls/qdc/2006/01/06/dc.xsd http://purl.org/dc/terms/ http://dublincore.org/schemas/xmls/qdc/2006/01/06/dcterms.xsd http://dspace.org/qualifieddc/ http://www.ukoln.ac.uk/metadata/dcmi/xmlschema/qualifieddc.xsd">
<dc:title>3D reconstruction for plastic surgery simulation based on statistical shape models</dc:title>
<dc:creator>Ruiz Fernández, Guillermo</dc:creator>
<dc:contributor>González Ballester, Miguel Ángel</dc:contributor>
<dc:contributor>Sukno, Federico Mateo</dc:contributor>
<dc:subject>3D morphable models</dc:subject>
<dc:subject>3DMM</dc:subject>
<dc:subject>3D reconstruction</dc:subject>
<dc:subject>Breast imaging</dc:subject>
<dc:subject>Breast</dc:subject>
<dc:subject>Face</dc:subject>
<dc:subject>Plastic surgery</dc:subject>
<dc:subject>Reconstructive surgery</dc:subject>
<dc:subject>Shape constraints</dc:subject>
<dc:subject>Statistical shape models</dc:subject>
<dc:subject>ASM</dc:subject>
<dc:subject>Active Shape Models</dc:subject>
<dc:subject>Weighted regularized</dc:subject>
<dcterms:abstract>This thesis has been accomplished in Crisalix in collaboration with the Universitat Pompeu Fabra within the program of Doctorats Industrials. Crisalix has the mission of enhancing the communication between professionals of plastic surgery and patients by providing a solution to the most common question during the surgery planning process of ``How will I look after the surgery?''. The solution proposed by Crisalix is based in 3D imaging technology. This technology generates the 3D reconstruction that accurately represents the area of the patient that is going to be operated. This is followed by the possibility of creating multiple simulations of the plastic procedure, which results in the representation of the possible outcomes of the surgery. This thesis presents a framework capable to reconstruct 3D shapes of faces and breasts of plastic surgery patients from 2D images and 3D scans. The 3D reconstruction of an object is a challenging problem with many inherent ambiguities. Statistical model based methods are a powerful approach to overcome some of these ambiguities. We follow the intuition of maximizing the use of available prior information by introducing it into statistical model based methods to enhance their properties. First, we explore Active Shape Models (ASM) which are a well known method to perform 2D shapes alignment. However, it is challenging to maintain prior information (e.g. small set of given landmarks) unchanged once the statistical model constraints are applied. We propose a new weighted regularized projection into the parameter space which allows us to obtain shapes that at the same time fulfill the imposed shape constraints and are plausible according to the statistical model. Second, we extend this methodology to be applied to 3D Morphable Models (3DMM), which are a widespread method to perform 3D reconstruction. However, existing methods present some limitations. Some of them are based in non-linear optimizations computationally expensive that can get stuck in local minima. Another limitation is that not all the methods provide enough resolution to represent accurately the anatomy details needed for this application. Given the medical use of the application, the accuracy and robustness of the method, are important factors to take into consideration. We show how 3DMM initialization and 3DMM fitting can be improved using our weighted regularized projection. Finally, we present a framework capable to reconstruct 3D shapes of plastic surgery patients from two possible inputs: 2D images and 3D scans. Our method is used in different stages of the 3D reconstruction pipeline: shape alignment; 3DMM initialization and 3DMM fitting. The developed methods have been integrated in the production environment of Crisalix, proving their validity.</dcterms:abstract>
<dcterms:abstract>Aquesta tesi ha estat realitzada a Crisalix amb la col·laboració de la Universitat Pompeu Fabra sota el pla de Doctorats Industrials. Crisalix té com a objectiu la millora de la comunicació entre els professionals de la cirurgia plàstica i els pacients, proporcionant una solució a la pregunta que sorgeix més freqüentment durant el procés de planificació d'una operació quirúrgica ``Com em veuré després de la cirurgia?''. La solució proposada per Crisalix està basada en la tecnologia d'imatge 3D. Aquesta tecnologia genera la reconstrucció 3D de la zona del pacient operada, seguit de la possibilitat de crear múltiples simulacions obtenint la representació dels possibles resultats de la cirurgia. Aquesta tesi presenta un sistema capaç de reconstruir cares i pits de pacients de cirurgia plàstica a partir de fotos 2D i escanegis. La reconstrucció en 3D d'un objecte és un problema complicat degut a la presència d'ambigüitats. Els mètodes basats en models estadístics son adequats per mitigar-les. En aquest treball, hem seguit la intuïció de maximitzar l'ús d'informació prèvia, introduint-la al model estadístic per millorar les seves propietats. En primer lloc, explorem els Active Shape Models (ASM) que són un conegut mètode fet servir per alinear contorns d'objectes 2D. No obstant, un cop aplicades les correccions de forma del model estadístic, es difícil de mantenir informació de la que es disposava a priori (per exemple, un petit conjunt de punts donat) inalterada. Proposem una nova projecció ponderada amb un terme de regularització, que permet obtenir formes que compleixen les restriccions de forma imposades i alhora són plausibles en concordança amb el model estadístic. En segon lloc, ampliem la metodologia per aplicar-la als anomenats 3D Morphable Models (3DMM) que són un mètode extensivament utilitzat per fer reconstrucció 3D. No obstant, els mètodes de 3DMM existents presenten algunes limitacions. Alguns estan basats en optimitzacions no lineals, computacionalment costoses i que poden quedar atrapades en mínims locals. Una altra limitació, és que no tots el mètodes proporcionen la resolució adequada per representar amb precisió els detalls de l'anatomia. Donat l'ús mèdic de l'aplicació, la precisió i la robustesa són factors molt importants a tenir en compte. Mostrem com la inicialització i l'ajustament de 3DMM poden ser millorats fent servir la projecció ponderada amb regularització proposada. Finalment, es presenta un sistema capaç de reconstruir models 3D de pacients de cirurgia plàstica a partir de dos possibles tipus de dades: imatges 2D i escaneigs en 3D. El nostre mètode es fa servir en diverses etapes del procés de reconstrucció: alineament de formes en imatge, la inicialització i l'ajustament de 3DMM. Els mètodes desenvolupats han estat integrats a l'entorn de producció de Crisalix provant la seva validesa.</dcterms:abstract>
<dcterms:dateAccepted>2019-06-12T11:40:31Z</dcterms:dateAccepted>
<dcterms:available>2019-06-12T11:40:31Z</dcterms:available>
<dcterms:created>2019-06-12T11:40:31Z</dcterms:created>
<dcterms:issued>2018-12-12</dcterms:issued>
<dc:type>info:eu-repo/semantics/doctoralThesis</dc:type>
<dc:type>info:eu-repo/semantics/publishedVersion</dc:type>
<dc:identifier>http://hdl.handle.net/10803/667049</dc:identifier>
<dc:language>eng</dc:language>
<dc:rights>ADVERTIMENT. L'accés als continguts d'aquesta tesi doctoral i la seva utilització ha de respectar els drets de la persona autora. Pot ser utilitzada per a consulta o estudi personal, així com en activitats o materials d'investigació i docència en els termes establerts a l'art. 32 del Text Refós de la Llei de Propietat Intel·lectual (RDL 1/1996). Per altres utilitzacions es requereix l'autorització prèvia i expressa de la persona autora. En qualsevol cas, en la utilització dels seus continguts caldrà indicar de forma clara el nom i cognoms de la persona autora i el títol de la tesi doctoral. No s'autoritza la seva reproducció o altres formes d'explotació efectuades amb finalitats de lucre ni la seva comunicació pública des d'un lloc aliè al servei TDX. Tampoc s'autoritza la presentació del seu contingut en una finestra o marc aliè a TDX (framing). Aquesta reserva de drets afecta tant als continguts de la tesi com als seus resums i índexs.</dc:rights>
<dc:rights>info:eu-repo/semantics/openAccess</dc:rights>
<dc:publisher>Universitat Pompeu Fabra</dc:publisher>
<dc:source>TDX (Tesis Doctorals en Xarxa)</dc:source>
</qdc:qualifieddc>
<?xml version="1.0" encoding="UTF-8" ?>
<rdf:RDF schemaLocation="http://www.openarchives.org/OAI/2.0/rdf/ http://www.openarchives.org/OAI/2.0/rdf.xsd">
<ow:Publication about="oai:www.tdx.cat:10803/667049">
<dc:title>3D reconstruction for plastic surgery simulation based on statistical shape models</dc:title>
<dc:creator>Ruiz Fernández, Guillermo</dc:creator>
<dc:contributor>guille10rf@gmail.com</dc:contributor>
<dc:contributor>true</dc:contributor>
<dc:contributor>González Ballester, Miguel Ángel</dc:contributor>
<dc:contributor>Sukno, Federico Mateo</dc:contributor>
<dc:subject>3D morphable models</dc:subject>
<dc:subject>3DMM</dc:subject>
<dc:subject>3D reconstruction</dc:subject>
<dc:subject>Breast imaging</dc:subject>
<dc:subject>Breast</dc:subject>
<dc:subject>Face</dc:subject>
<dc:subject>Plastic surgery</dc:subject>
<dc:subject>Reconstructive surgery</dc:subject>
<dc:subject>Shape constraints</dc:subject>
<dc:subject>Statistical shape models</dc:subject>
<dc:subject>ASM</dc:subject>
<dc:subject>Active Shape Models</dc:subject>
<dc:subject>Weighted regularized</dc:subject>
<dc:description>This thesis has been accomplished in Crisalix in collaboration with the Universitat Pompeu Fabra within the program of Doctorats Industrials. Crisalix has the mission of enhancing the communication between professionals of plastic surgery and patients by providing a solution to the most common question during the surgery planning process of ``How will I look after the surgery?''. The solution proposed by Crisalix is based in 3D imaging technology. This technology generates the 3D reconstruction that accurately represents the area of the patient that is going to be operated. This is followed by the possibility of creating multiple simulations of the plastic procedure, which results in the representation of the possible outcomes of the surgery. This thesis presents a framework capable to reconstruct 3D shapes of faces and breasts of plastic surgery patients from 2D images and 3D scans. The 3D reconstruction of an object is a challenging problem with many inherent ambiguities. Statistical model based methods are a powerful approach to overcome some of these ambiguities. We follow the intuition of maximizing the use of available prior information by introducing it into statistical model based methods to enhance their properties. First, we explore Active Shape Models (ASM) which are a well known method to perform 2D shapes alignment. However, it is challenging to maintain prior information (e.g. small set of given landmarks) unchanged once the statistical model constraints are applied. We propose a new weighted regularized projection into the parameter space which allows us to obtain shapes that at the same time fulfill the imposed shape constraints and are plausible according to the statistical model. Second, we extend this methodology to be applied to 3D Morphable Models (3DMM), which are a widespread method to perform 3D reconstruction. However, existing methods present some limitations. Some of them are based in non-linear optimizations computationally expensive that can get stuck in local minima. Another limitation is that not all the methods provide enough resolution to represent accurately the anatomy details needed for this application. Given the medical use of the application, the accuracy and robustness of the method, are important factors to take into consideration. We show how 3DMM initialization and 3DMM fitting can be improved using our weighted regularized projection. Finally, we present a framework capable to reconstruct 3D shapes of plastic surgery patients from two possible inputs: 2D images and 3D scans. Our method is used in different stages of the 3D reconstruction pipeline: shape alignment; 3DMM initialization and 3DMM fitting. The developed methods have been integrated in the production environment of Crisalix, proving their validity.</dc:description>
<dc:description>Aquesta tesi ha estat realitzada a Crisalix amb la col·laboració de la Universitat Pompeu Fabra sota el pla de Doctorats Industrials. Crisalix té com a objectiu la millora de la comunicació entre els professionals de la cirurgia plàstica i els pacients, proporcionant una solució a la pregunta que sorgeix més freqüentment durant el procés de planificació d'una operació quirúrgica ``Com em veuré després de la cirurgia?''. La solució proposada per Crisalix està basada en la tecnologia d'imatge 3D. Aquesta tecnologia genera la reconstrucció 3D de la zona del pacient operada, seguit de la possibilitat de crear múltiples simulacions obtenint la representació dels possibles resultats de la cirurgia. Aquesta tesi presenta un sistema capaç de reconstruir cares i pits de pacients de cirurgia plàstica a partir de fotos 2D i escanegis. La reconstrucció en 3D d'un objecte és un problema complicat degut a la presència d'ambigüitats. Els mètodes basats en models estadístics son adequats per mitigar-les. En aquest treball, hem seguit la intuïció de maximitzar l'ús d'informació prèvia, introduint-la al model estadístic per millorar les seves propietats. En primer lloc, explorem els Active Shape Models (ASM) que són un conegut mètode fet servir per alinear contorns d'objectes 2D. No obstant, un cop aplicades les correccions de forma del model estadístic, es difícil de mantenir informació de la que es disposava a priori (per exemple, un petit conjunt de punts donat) inalterada. Proposem una nova projecció ponderada amb un terme de regularització, que permet obtenir formes que compleixen les restriccions de forma imposades i alhora són plausibles en concordança amb el model estadístic. En segon lloc, ampliem la metodologia per aplicar-la als anomenats 3D Morphable Models (3DMM) que són un mètode extensivament utilitzat per fer reconstrucció 3D. No obstant, els mètodes de 3DMM existents presenten algunes limitacions. Alguns estan basats en optimitzacions no lineals, computacionalment costoses i que poden quedar atrapades en mínims locals. Una altra limitació, és que no tots el mètodes proporcionen la resolució adequada per representar amb precisió els detalls de l'anatomia. Donat l'ús mèdic de l'aplicació, la precisió i la robustesa són factors molt importants a tenir en compte. Mostrem com la inicialització i l'ajustament de 3DMM poden ser millorats fent servir la projecció ponderada amb regularització proposada. Finalment, es presenta un sistema capaç de reconstruir models 3D de pacients de cirurgia plàstica a partir de dos possibles tipus de dades: imatges 2D i escaneigs en 3D. El nostre mètode es fa servir en diverses etapes del procés de reconstrucció: alineament de formes en imatge, la inicialització i l'ajustament de 3DMM. Els mètodes desenvolupats han estat integrats a l'entorn de producció de Crisalix provant la seva validesa.</dc:description>
<dc:date>2019-06-12T11:40:31Z</dc:date>
<dc:date>2019-06-12T11:40:31Z</dc:date>
<dc:date>2018-12-12</dc:date>
<dc:type>info:eu-repo/semantics/doctoralThesis</dc:type>
<dc:type>info:eu-repo/semantics/publishedVersion</dc:type>
<dc:identifier>http://hdl.handle.net/10803/667049</dc:identifier>
<dc:language>eng</dc:language>
<dc:rights>ADVERTIMENT. L'accés als continguts d'aquesta tesi doctoral i la seva utilització ha de respectar els drets de la persona autora. Pot ser utilitzada per a consulta o estudi personal, així com en activitats o materials d'investigació i docència en els termes establerts a l'art. 32 del Text Refós de la Llei de Propietat Intel·lectual (RDL 1/1996). Per altres utilitzacions es requereix l'autorització prèvia i expressa de la persona autora. En qualsevol cas, en la utilització dels seus continguts caldrà indicar de forma clara el nom i cognoms de la persona autora i el títol de la tesi doctoral. No s'autoritza la seva reproducció o altres formes d'explotació efectuades amb finalitats de lucre ni la seva comunicació pública des d'un lloc aliè al servei TDX. Tampoc s'autoritza la presentació del seu contingut en una finestra o marc aliè a TDX (framing). Aquesta reserva de drets afecta tant als continguts de la tesi com als seus resums i índexs.</dc:rights>
<dc:rights>info:eu-repo/semantics/openAccess</dc:rights>
<dc:publisher>Universitat Pompeu Fabra</dc:publisher>
<dc:source>TDX (Tesis Doctorals en Xarxa)</dc:source>
</ow:Publication>
</rdf:RDF>
<?xml version="1.0" encoding="UTF-8" ?>
<uketd_dc:uketddc schemaLocation="http://naca.central.cranfield.ac.uk/ethos-oai/2.0/ http://naca.central.cranfield.ac.uk/ethos-oai/2.0/uketd_dc.xsd">
<dc:title>3D reconstruction for plastic surgery simulation based on statistical shape models</dc:title>
<dc:creator>Ruiz Fernández, Guillermo</dc:creator>
<dcterms:abstract>This thesis has been accomplished in Crisalix in collaboration with the Universitat Pompeu Fabra within the program of Doctorats Industrials. Crisalix has the mission of enhancing the communication between professionals of plastic surgery and patients by providing a solution to the most common question during the surgery planning process of ``How will I look after the surgery?''. The solution proposed by Crisalix is based in 3D imaging technology. This technology generates the 3D reconstruction that accurately represents the area of the patient that is going to be operated. This is followed by the possibility of creating multiple simulations of the plastic procedure, which results in the representation of the possible outcomes of the surgery. This thesis presents a framework capable to reconstruct 3D shapes of faces and breasts of plastic surgery patients from 2D images and 3D scans. The 3D reconstruction of an object is a challenging problem with many inherent ambiguities. Statistical model based methods are a powerful approach to overcome some of these ambiguities. We follow the intuition of maximizing the use of available prior information by introducing it into statistical model based methods to enhance their properties. First, we explore Active Shape Models (ASM) which are a well known method to perform 2D shapes alignment. However, it is challenging to maintain prior information (e.g. small set of given landmarks) unchanged once the statistical model constraints are applied. We propose a new weighted regularized projection into the parameter space which allows us to obtain shapes that at the same time fulfill the imposed shape constraints and are plausible according to the statistical model. Second, we extend this methodology to be applied to 3D Morphable Models (3DMM), which are a widespread method to perform 3D reconstruction. However, existing methods present some limitations. Some of them are based in non-linear optimizations computationally expensive that can get stuck in local minima. Another limitation is that not all the methods provide enough resolution to represent accurately the anatomy details needed for this application. Given the medical use of the application, the accuracy and robustness of the method, are important factors to take into consideration. We show how 3DMM initialization and 3DMM fitting can be improved using our weighted regularized projection. Finally, we present a framework capable to reconstruct 3D shapes of plastic surgery patients from two possible inputs: 2D images and 3D scans. Our method is used in different stages of the 3D reconstruction pipeline: shape alignment; 3DMM initialization and 3DMM fitting. The developed methods have been integrated in the production environment of Crisalix, proving their validity.</dcterms:abstract>
<dcterms:abstract>Aquesta tesi ha estat realitzada a Crisalix amb la col·laboració de la Universitat Pompeu Fabra sota el pla de Doctorats Industrials. Crisalix té com a objectiu la millora de la comunicació entre els professionals de la cirurgia plàstica i els pacients, proporcionant una solució a la pregunta que sorgeix més freqüentment durant el procés de planificació d'una operació quirúrgica ``Com em veuré després de la cirurgia?''. La solució proposada per Crisalix està basada en la tecnologia d'imatge 3D. Aquesta tecnologia genera la reconstrucció 3D de la zona del pacient operada, seguit de la possibilitat de crear múltiples simulacions obtenint la representació dels possibles resultats de la cirurgia. Aquesta tesi presenta un sistema capaç de reconstruir cares i pits de pacients de cirurgia plàstica a partir de fotos 2D i escanegis. La reconstrucció en 3D d'un objecte és un problema complicat degut a la presència d'ambigüitats. Els mètodes basats en models estadístics son adequats per mitigar-les. En aquest treball, hem seguit la intuïció de maximitzar l'ús d'informació prèvia, introduint-la al model estadístic per millorar les seves propietats. En primer lloc, explorem els Active Shape Models (ASM) que són un conegut mètode fet servir per alinear contorns d'objectes 2D. No obstant, un cop aplicades les correccions de forma del model estadístic, es difícil de mantenir informació de la que es disposava a priori (per exemple, un petit conjunt de punts donat) inalterada. Proposem una nova projecció ponderada amb un terme de regularització, que permet obtenir formes que compleixen les restriccions de forma imposades i alhora són plausibles en concordança amb el model estadístic. En segon lloc, ampliem la metodologia per aplicar-la als anomenats 3D Morphable Models (3DMM) que són un mètode extensivament utilitzat per fer reconstrucció 3D. No obstant, els mètodes de 3DMM existents presenten algunes limitacions. Alguns estan basats en optimitzacions no lineals, computacionalment costoses i que poden quedar atrapades en mínims locals. Una altra limitació, és que no tots el mètodes proporcionen la resolució adequada per representar amb precisió els detalls de l'anatomia. Donat l'ús mèdic de l'aplicació, la precisió i la robustesa són factors molt importants a tenir en compte. Mostrem com la inicialització i l'ajustament de 3DMM poden ser millorats fent servir la projecció ponderada amb regularització proposada. Finalment, es presenta un sistema capaç de reconstruir models 3D de pacients de cirurgia plàstica a partir de dos possibles tipus de dades: imatges 2D i escaneigs en 3D. El nostre mètode es fa servir en diverses etapes del procés de reconstrucció: alineament de formes en imatge, la inicialització i l'ajustament de 3DMM. Els mètodes desenvolupats han estat integrats a l'entorn de producció de Crisalix provant la seva validesa.</dcterms:abstract>
<uketdterms:institution>Universitat Pompeu Fabra</uketdterms:institution>
<dcterms:issued>2018-12-12</dcterms:issued>
<dc:type>info:eu-repo/semantics/doctoralThesis</dc:type>
<dc:type>info:eu-repo/semantics/publishedVersion</dc:type>
<dc:language type="dcterms:ISO639-2">eng</dc:language>
<dcterms:isReferencedBy>http://hdl.handle.net/10803/667049</dcterms:isReferencedBy>
<dcterms:hasFormat>https://www.tdx.cat/bitstream/10803/667049/5/tgrfII.pdf.txt</dcterms:hasFormat>
<uketdterms:checksum type="uketdterms:MD5">2ef1fd21dd17227509f907c0b94a4e47</uketdterms:checksum>
<dc:identifier type="dcterms:URI">https://www.tdx.cat/bitstream/10803/667049/3/tgrfII.pdf</dc:identifier>
<uketdterms:checksum type="uketdterms:MD5">71e34c0a48508f960104e55e8d4ed13a</uketdterms:checksum>
<uketdterms:embargodate>cap</uketdterms:embargodate>
<dc:subject>3D morphable models</dc:subject>
<dc:subject>3DMM</dc:subject>
<dc:subject>3D reconstruction</dc:subject>
<dc:subject>Breast imaging</dc:subject>
<dc:subject>Breast</dc:subject>
<dc:subject>Face</dc:subject>
<dc:subject>Plastic surgery</dc:subject>
<dc:subject>Reconstructive surgery</dc:subject>
<dc:subject>Shape constraints</dc:subject>
<dc:subject>Statistical shape models</dc:subject>
<dc:subject>ASM</dc:subject>
<dc:subject>Active Shape Models</dc:subject>
<dc:subject>Weighted regularized</dc:subject>
</uketd_dc:uketddc>
<?xml version="1.0" encoding="UTF-8" ?>
<metadata schemaLocation="http://www.lyncode.com/xoai http://www.lyncode.com/xsd/xoai.xsd">
<element name="dc">
<element name="contributor">
<element name="none">
<field name="value">Universitat Pompeu Fabra. Departament de Tecnologies de la Informació i les Comunicacions</field>
</element>
<element name="author">
<element name="none">
<field name="value">Ruiz Fernández, Guillermo</field>
<field name="authority">298e245b-b6d7-478d-9c07-4ad0df9b198a</field>
<field name="confidence">-1</field>
</element>
</element>
<element name="authoremail">
<element name="en_US">
<field name="value">guille10rf@gmail.com</field>
</element>
</element>
<element name="authoremailshow">
<element name="en_US">
<field name="value">true</field>
</element>
</element>
<element name="director">
<element name="none">
<field name="value">González Ballester, Miguel Ángel</field>
<field name="authority">78c25316-230f-4068-a273-f8eb8f116772</field>
<field name="confidence">-1</field>
<field name="value">Sukno, Federico Mateo</field>
<field name="authority">8f517bbf-2dcd-43b4-9e86-23aef7d9f9a8</field>
<field name="confidence">-1</field>
</element>
</element>
</element>
<element name="date">
<element name="accessioned">
<element name="none">
<field name="value">2019-06-12T11:40:31Z</field>
</element>
</element>
<element name="available">
<element name="none">
<field name="value">2019-06-12T11:40:31Z</field>
</element>
</element>
<element name="issued">
<element name="none">
<field name="value">2018-12-12</field>
</element>
</element>
</element>
<element name="identifier">
<element name="uri">
<element name="none">
<field name="value">http://hdl.handle.net/10803/667049</field>
</element>
</element>
</element>
<element name="description">
<element name="abstract">
<element name="en_US">
<field name="value">This thesis has been accomplished in Crisalix in collaboration with the Universitat Pompeu Fabra within the program of Doctorats Industrials. Crisalix has the mission of enhancing the communication between professionals of plastic surgery and patients by providing a solution to the most common question during the surgery planning process of ``How will I look after the surgery?''. The solution proposed by Crisalix is based in 3D imaging technology. This technology generates the 3D reconstruction that accurately represents the area of the patient that is going to be operated. This is followed by the possibility of creating multiple simulations of the plastic procedure, which results in the representation of the possible outcomes of the surgery. This thesis presents a framework capable to reconstruct 3D shapes of faces and breasts of plastic surgery patients from 2D images and 3D scans. The 3D reconstruction of an object is a challenging problem with many inherent ambiguities. Statistical model based methods are a powerful approach to overcome some of these ambiguities. We follow the intuition of maximizing the use of available prior information by introducing it into statistical model based methods to enhance their properties. First, we explore Active Shape Models (ASM) which are a well known method to perform 2D shapes alignment. However, it is challenging to maintain prior information (e.g. small set of given landmarks) unchanged once the statistical model constraints are applied. We propose a new weighted regularized projection into the parameter space which allows us to obtain shapes that at the same time fulfill the imposed shape constraints and are plausible according to the statistical model. Second, we extend this methodology to be applied to 3D Morphable Models (3DMM), which are a widespread method to perform 3D reconstruction. However, existing methods present some limitations. Some of them are based in non-linear optimizations computationally expensive that can get stuck in local minima. Another limitation is that not all the methods provide enough resolution to represent accurately the anatomy details needed for this application. Given the medical use of the application, the accuracy and robustness of the method, are important factors to take into consideration. We show how 3DMM initialization and 3DMM fitting can be improved using our weighted regularized projection. Finally, we present a framework capable to reconstruct 3D shapes of plastic surgery patients from two possible inputs: 2D images and 3D scans. Our method is used in different stages of the 3D reconstruction pipeline: shape alignment; 3DMM initialization and 3DMM fitting. The developed methods have been integrated in the production environment of Crisalix, proving their validity.</field>
<field name="value">Aquesta tesi ha estat realitzada a Crisalix amb la col·laboració de la Universitat Pompeu Fabra sota el pla de Doctorats Industrials. Crisalix té com a objectiu la millora de la comunicació entre els professionals de la cirurgia plàstica i els pacients, proporcionant una solució a la pregunta que sorgeix més freqüentment durant el procés de planificació d'una operació quirúrgica ``Com em veuré després de la cirurgia?''. La solució proposada per Crisalix està basada en la tecnologia d'imatge 3D. Aquesta tecnologia genera la reconstrucció 3D de la zona del pacient operada, seguit de la possibilitat de crear múltiples simulacions obtenint la representació dels possibles resultats de la cirurgia. Aquesta tesi presenta un sistema capaç de reconstruir cares i pits de pacients de cirurgia plàstica a partir de fotos 2D i escanegis. La reconstrucció en 3D d'un objecte és un problema complicat degut a la presència d'ambigüitats. Els mètodes basats en models estadístics son adequats per mitigar-les. En aquest treball, hem seguit la intuïció de maximitzar l'ús d'informació prèvia, introduint-la al model estadístic per millorar les seves propietats. En primer lloc, explorem els Active Shape Models (ASM) que són un conegut mètode fet servir per alinear contorns d'objectes 2D. No obstant, un cop aplicades les correccions de forma del model estadístic, es difícil de mantenir informació de la que es disposava a priori (per exemple, un petit conjunt de punts donat) inalterada. Proposem una nova projecció ponderada amb un terme de regularització, que permet obtenir formes que compleixen les restriccions de forma imposades i alhora són plausibles en concordança amb el model estadístic. En segon lloc, ampliem la metodologia per aplicar-la als anomenats 3D Morphable Models (3DMM) que són un mètode extensivament utilitzat per fer reconstrucció 3D. No obstant, els mètodes de 3DMM existents presenten algunes limitacions. Alguns estan basats en optimitzacions no lineals, computacionalment costoses i que poden quedar atrapades en mínims locals. Una altra limitació, és que no tots el mètodes proporcionen la resolució adequada per representar amb precisió els detalls de l'anatomia. Donat l'ús mèdic de l'aplicació, la precisió i la robustesa són factors molt importants a tenir en compte. Mostrem com la inicialització i l'ajustament de 3DMM poden ser millorats fent servir la projecció ponderada amb regularització proposada. Finalment, es presenta un sistema capaç de reconstruir models 3D de pacients de cirurgia plàstica a partir de dos possibles tipus de dades: imatges 2D i escaneigs en 3D. El nostre mètode es fa servir en diverses etapes del procés de reconstrucció: alineament de formes en imatge, la inicialització i l'ajustament de 3DMM. Els mètodes desenvolupats han estat integrats a l'entorn de producció de Crisalix provant la seva validesa.</field>
</element>
</element>
<element name="degree">
<element name="none">
<field name="value">Programa de doctorat en Tecnologies de la Informació i les Comunicacions</field>
</element>
</element>
</element>
<element name="format">
<element name="extent">
<element name="en_US">
<field name="value">134 p.</field>
</element>
</element>
<element name="mimetype">
<element name="none">
<field name="value">application/pdf</field>
</element>
</element>
</element>
<element name="language">
<element name="iso">
<element name="en_US">
<field name="value">eng</field>
</element>
</element>
</element>
<element name="publisher">
<element name="none">
<field name="value">Universitat Pompeu Fabra</field>
</element>
</element>
<element name="rights">
<element name="license">
<element name="none">
<field name="value">ADVERTIMENT. L'accés als continguts d'aquesta tesi doctoral i la seva utilització ha de respectar els drets de la persona autora. Pot ser utilitzada per a consulta o estudi personal, així com en activitats o materials d'investigació i docència en els termes establerts a l'art. 32 del Text Refós de la Llei de Propietat Intel·lectual (RDL 1/1996). Per altres utilitzacions es requereix l'autorització prèvia i expressa de la persona autora. En qualsevol cas, en la utilització dels seus continguts caldrà indicar de forma clara el nom i cognoms de la persona autora i el títol de la tesi doctoral. No s'autoritza la seva reproducció o altres formes d'explotació efectuades amb finalitats de lucre ni la seva comunicació pública des d'un lloc aliè al servei TDX. Tampoc s'autoritza la presentació del seu contingut en una finestra o marc aliè a TDX (framing). Aquesta reserva de drets afecta tant als continguts de la tesi com als seus resums i índexs.</field>
</element>
</element>
<element name="accessLevel">
<element name="none">
<field name="value">info:eu-repo/semantics/openAccess</field>
</element>
</element>
</element>
<element name="source">
<element name="none">
<field name="value">TDX (Tesis Doctorals en Xarxa)</field>
</element>
</element>
<element name="subject">
<element name="en_US">
<field name="value">3D morphable models</field>
<field name="value">3DMM</field>
<field name="value">3D reconstruction</field>
<field name="value">Breast imaging</field>
<field name="value">Breast</field>
<field name="value">Face</field>
<field name="value">Plastic surgery</field>
<field name="value">Reconstructive surgery</field>
<field name="value">Shape constraints</field>
<field name="value">Statistical shape models</field>
<field name="value">ASM</field>
<field name="value">Active Shape Models</field>
<field name="value">Weighted regularized</field>
</element>
<element name="udc">
<element name="en_US">
<field name="value">62</field>
</element>
</element>
</element>
<element name="title">
<element name="en_US">
<field name="value">3D reconstruction for plastic surgery simulation based on statistical shape models</field>
</element>
</element>
<element name="type">
<element name="none">
<field name="value">info:eu-repo/semantics/doctoralThesis</field>
<field name="value">info:eu-repo/semantics/publishedVersion</field>
</element>
</element>
<element name="embargo">
<element name="terms">
<element name="en_US">
<field name="value">cap</field>
</element>
</element>
</element>
</element>
<element name="bundles">
<element name="bundle">
<field name="name">TEXT</field>
<element name="bitstreams">
<element name="bitstream">
<field name="name">tgrfII.pdf.txt</field>
<field name="originalName">tgrfII.pdf.txt</field>
<field name="description">Extracted text</field>
<field name="format">text/plain</field>
<field name="size">166461</field>
<field name="url">https://www.tdx.cat/bitstream/10803/667049/5/tgrfII.pdf.txt</field>
<field name="checksum">2ef1fd21dd17227509f907c0b94a4e47</field>
<field name="checksumAlgorithm">MD5</field>
<field name="sid">5</field>
<field name="drm">open access</field>
</element>
</element>
</element>
<element name="bundle">
<field name="name">ORIGINAL</field>
<element name="bitstreams">
<element name="bitstream">
<field name="name">tgrfII.pdf</field>
<field name="originalName">tgrfII.pdf</field>
<field name="format">application/pdf</field>
<field name="size">19115423</field>
<field name="url">https://www.tdx.cat/bitstream/10803/667049/3/tgrfII.pdf</field>
<field name="checksum">71e34c0a48508f960104e55e8d4ed13a</field>
<field name="checksumAlgorithm">MD5</field>
<field name="sid">3</field>
<field name="drm">open access</field>
</element>
</element>
</element>
<element name="bundle">
<field name="name">MEDIA_DOCUMENT</field>
<element name="bitstreams">
<element name="bitstream">
<field name="name">tgrfII.pdf.xml</field>
<field name="originalName">tgrfII.pdf.xml</field>
<field name="description">Document Consulta</field>
<field name="format">text/xml</field>
<field name="size">106</field>
<field name="url">https://www.tdx.cat/bitstream/10803/667049/4/tgrfII.pdf.xml</field>
<field name="checksum">d7a225f2e8902bf5e1ac35ca29deec35</field>
<field name="checksumAlgorithm">MD5</field>
<field name="sid">4</field>
<field name="drm">open access</field>
</element>
</element>
</element>
</element>
<element name="others">
<field name="handle">10803/667049</field>
<field name="identifier">oai:www.tdx.cat:10803/667049</field>
<field name="lastModifyDate">2024-03-15 11:58:04.318</field>
<field name="drm">open access</field>
</element>
<element name="repository">
<field name="name">TDX (Tesis Doctorals en Xarxa)</field>
<field name="mail">pir@csuc.cat</field>
</element>
</metadata>