Logotipo de HISPANA
Logotipo del Ministerio de Cultura y Deporte
  • ¿Qué es Hispana?
  • Búsqueda
  • Directorio de colecciones
  • Contacto
  • es
    • Español
    • Euskara
    • English
    • Galego
    • Català
    • Valencià
Está en:  › Datos de registro
Linked Open Data
A Comodulation Analysis of Atmospheric Energy Injection Into the Ground Motion at InSight, Mars
Identificadores del recurso
Journal of Geophysical Research: Planets 126(4): e2020JE006538(2021)
2169-9097
https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2020JE006538
http://hdl.handle.net/20.500.12666/608
10.1029/2020JE006538
2169-9100
Procedencia
(DIGITAL.INTA)

Ficha

Título:
A Comodulation Analysis of Atmospheric Energy Injection Into the Ground Motion at InSight, Mars
Descripción:
InSight put the first seismic station on the surface of another planet in 2019. While it has made the first detection of marsquakes, the wind has been providing a strong background signal that most of the time makes seismic detection difficult. This work aims to separate out the unwanted injection from Mars’ atmosphere to give us confidence that the signals observed by InSight are vibrations from the planet itself. The issue of atmospheric injection into the seismic signal was foreseen before the mission launch and InSight was equipped with wind and pressure sensors. However, no stable relationship is observed between the strength of the wind and the amplitude of the measured vibrations by InSights’ seismometers. Also, we are mainly sensing the wind shaking the lander, which transmits vibrations to the ground under our seismometer. These complications have led us to use the measurements themselves to work out the strength of the environmental injection rather than rely on a complex time-varying model of the possible pathways. This work shows how we can work out estimates of how much the atmosphere is affecting the seismic measurements and in particular we show that the strongest possible quakes that have been detected by InSight are above what we might have expected from just the measurements from InSight's wind and pressure sensors at that time.
Seismic observations involve signals that can be easily masked by noise injection. For the NASA Mars lander InSight, the atmosphere is a significant noise contributor, impeding the identification of seismic events for two-thirds of a Martian day. While the noise is below that seen at even the quietest sites on Earth, the amplitude of seismic signals on Mars is also considerably lower, requiring an understanding and quantification of environmental injection at unprecedented levels. Mars’ ground and atmosphere are a continuously coupled seismic system, and although atmospheric functions are of distinct origins, the superposition of these noise contributions is poorly understood, making separation a challenging task. We present a novel method for partitioning the observed signal into seismic and environmental contributions. Atmospheric pressure and wind fluctuations are shown to exhibit temporal cross-frequency coupling across multiple bands, injecting noise that is neither random nor coherent. We investigate this through comodulation, quantifying the synchrony of the seismic motion, wind and pressure signals. By working in the time-frequency domain, we discriminate between the different origins of underlying processes and determine the site's environmental sensitivity. Our method aims to create a virtual vault at InSight's landing site on Mars, shielding the seismometers with effective postprocessing in lieu of a physical vault. This allows us to describe the environmental and seismic signals over a sequence of sols, to quantify the wind and pressure injection and estimate the seismic content of possible marsquakes with a signal-to-noise ratio that can be quantified in terms of environmental independence. Finally, we exploit the relationship between the comodulated signals to identify their sources.
The authors would like to thank the Editor-in-Chief Prof. Laurent Montesi, Adam Ringler and another anonymous reviewer who provided thorough and helpful reviews that have improved this manuscript. We would also like to thank Andrea Christophi for constructive criticism of the manuscript. We acknowledge NASA, UK Space Agency, CNES, their partner agencies and Institutions (UKSA, IC, SSO, DLR, JPL, IPGP-CNRS, ETHZ, MPS-MPG) and the flight operations team at JPL, SISMOC, MSDS, IRIS-DMC, and PDS for acquiring and providing InSight data, including SEED SEIS data.
Peerreview
Idioma:
English
Autor/Productor:
Charalambous, C.
Stott, A. E.
Pike, W. T.
McClean, J. B.
Warren, T.
Spiga, A.
Banfield, D.
García, R. F.
Clinton, J.
Stähler, S. C.
Navarro, S.
Lognonné, P.
Scholz, J. R.
Kawamura, T.
Van Driel, M.
Böse, M.
Ceylan, S.
Khan, A.
Horleston, A.
Orhand Mainsant, G.
Sotomayor, L. M.
Murdoch, N.
Giardini, D.
Banerdt, W. B.
Editor:
Advancing Earth and Space Science AGU
Otros colaboradores/productores:
Murdoch, N. [0000-0002-9701-4075]
Lognonne, P. [0000-0002-1014-920X]
Charalambous, C. [0000-0002-9139-3895]
Stott, A. E. [0000-0001-6121-705X]
Spiga, A. [0000-0002-6776-6268]
Stähler, S. [0000-0002-0783-2489]
Scholz, J. R. [0000-0003-1404-2335]
Ceylan, S. [0000-0002-6552-6850]
Khan, A. [0000-0003-4462-3173]
Van Driel, M. [0000-0002-8938-4615]
Horleston, A. [0000-0002-6748-6522]
Giardini, D. [0000-0002-5573-7638]
Banerdt, W. B. [0000-0003-3125-1542]
Derechos:
Attribution-NonCommercial-NoDerivatives 4.0 International
© 2021. The Authors.
https://creativecommons.org/licenses/by-nc-nd/4.0/
info:eu-repo/semantics/openAccess
Fecha:
2022-02-15T14:25:27Z
2021-02-08
Tipo de recurso:
info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
Formato:
application/pdf

oai_dc

Descargar XML

    <?xml version="1.0" encoding="UTF-8" ?>

  1. <oai_dc:dc schemaLocation="http://www.openarchives.org/OAI/2.0/oai_dc/ http://www.openarchives.org/OAI/2.0/oai_dc.xsd">

    1. <dc:title>A Comodulation Analysis of Atmospheric Energy Injection Into the Ground Motion at InSight, Mars</dc:title>

    2. <dc:creator>Charalambous, C.</dc:creator>

    3. <dc:creator>Stott, A. E.</dc:creator>

    4. <dc:creator>Pike, W. T.</dc:creator>

    5. <dc:creator>McClean, J. B.</dc:creator>

    6. <dc:creator>Warren, T.</dc:creator>

    7. <dc:creator>Spiga, A.</dc:creator>

    8. <dc:creator>Banfield, D.</dc:creator>

    9. <dc:creator>García, R. F.</dc:creator>

    10. <dc:creator>Clinton, J.</dc:creator>

    11. <dc:creator>Stähler, S. C.</dc:creator>

    12. <dc:creator>Navarro, S.</dc:creator>

    13. <dc:creator>Lognonné, P.</dc:creator>

    14. <dc:creator>Scholz, J. R.</dc:creator>

    15. <dc:creator>Kawamura, T.</dc:creator>

    16. <dc:creator>Van Driel, M.</dc:creator>

    17. <dc:creator>Böse, M.</dc:creator>

    18. <dc:creator>Ceylan, S.</dc:creator>

    19. <dc:creator>Khan, A.</dc:creator>

    20. <dc:creator>Horleston, A.</dc:creator>

    21. <dc:creator>Orhand Mainsant, G.</dc:creator>

    22. <dc:creator>Sotomayor, L. M.</dc:creator>

    23. <dc:creator>Murdoch, N.</dc:creator>

    24. <dc:creator>Giardini, D.</dc:creator>

    25. <dc:creator>Banerdt, W. B.</dc:creator>

    26. <dc:contributor>Murdoch, N. [0000-0002-9701-4075]</dc:contributor>

    27. <dc:contributor>Lognonne, P. [0000-0002-1014-920X]</dc:contributor>

    28. <dc:contributor>Charalambous, C. [0000-0002-9139-3895]</dc:contributor>

    29. <dc:contributor>Stott, A. E. [0000-0001-6121-705X]</dc:contributor>

    30. <dc:contributor>Spiga, A. [0000-0002-6776-6268]</dc:contributor>

    31. <dc:contributor>Stähler, S. [0000-0002-0783-2489]</dc:contributor>

    32. <dc:contributor>Scholz, J. R. [0000-0003-1404-2335]</dc:contributor>

    33. <dc:contributor>Ceylan, S. [0000-0002-6552-6850]</dc:contributor>

    34. <dc:contributor>Khan, A. [0000-0003-4462-3173]</dc:contributor>

    35. <dc:contributor>Van Driel, M. [0000-0002-8938-4615]</dc:contributor>

    36. <dc:contributor>Horleston, A. [0000-0002-6748-6522]</dc:contributor>

    37. <dc:contributor>Giardini, D. [0000-0002-5573-7638]</dc:contributor>

    38. <dc:contributor>Banerdt, W. B. [0000-0003-3125-1542]</dc:contributor>

    39. <dc:description>InSight put the first seismic station on the surface of another planet in 2019. While it has made the first detection of marsquakes, the wind has been providing a strong background signal that most of the time makes seismic detection difficult. This work aims to separate out the unwanted injection from Mars’ atmosphere to give us confidence that the signals observed by InSight are vibrations from the planet itself. The issue of atmospheric injection into the seismic signal was foreseen before the mission launch and InSight was equipped with wind and pressure sensors. However, no stable relationship is observed between the strength of the wind and the amplitude of the measured vibrations by InSights’ seismometers. Also, we are mainly sensing the wind shaking the lander, which transmits vibrations to the ground under our seismometer. These complications have led us to use the measurements themselves to work out the strength of the environmental injection rather than rely on a complex time-varying model of the possible pathways. This work shows how we can work out estimates of how much the atmosphere is affecting the seismic measurements and in particular we show that the strongest possible quakes that have been detected by InSight are above what we might have expected from just the measurements from InSight's wind and pressure sensors at that time.</dc:description>

    40. <dc:description>Seismic observations involve signals that can be easily masked by noise injection. For the NASA Mars lander InSight, the atmosphere is a significant noise contributor, impeding the identification of seismic events for two-thirds of a Martian day. While the noise is below that seen at even the quietest sites on Earth, the amplitude of seismic signals on Mars is also considerably lower, requiring an understanding and quantification of environmental injection at unprecedented levels. Mars’ ground and atmosphere are a continuously coupled seismic system, and although atmospheric functions are of distinct origins, the superposition of these noise contributions is poorly understood, making separation a challenging task. We present a novel method for partitioning the observed signal into seismic and environmental contributions. Atmospheric pressure and wind fluctuations are shown to exhibit temporal cross-frequency coupling across multiple bands, injecting noise that is neither random nor coherent. We investigate this through comodulation, quantifying the synchrony of the seismic motion, wind and pressure signals. By working in the time-frequency domain, we discriminate between the different origins of underlying processes and determine the site's environmental sensitivity. Our method aims to create a virtual vault at InSight's landing site on Mars, shielding the seismometers with effective postprocessing in lieu of a physical vault. This allows us to describe the environmental and seismic signals over a sequence of sols, to quantify the wind and pressure injection and estimate the seismic content of possible marsquakes with a signal-to-noise ratio that can be quantified in terms of environmental independence. Finally, we exploit the relationship between the comodulated signals to identify their sources.</dc:description>

    41. <dc:description>The authors would like to thank the Editor-in-Chief Prof. Laurent Montesi, Adam Ringler and another anonymous reviewer who provided thorough and helpful reviews that have improved this manuscript. We would also like to thank Andrea Christophi for constructive criticism of the manuscript. We acknowledge NASA, UK Space Agency, CNES, their partner agencies and Institutions (UKSA, IC, SSO, DLR, JPL, IPGP-CNRS, ETHZ, MPS-MPG) and the flight operations team at JPL, SISMOC, MSDS, IRIS-DMC, and PDS for acquiring and providing InSight data, including SEED SEIS data.</dc:description>

    42. <dc:description>Peerreview</dc:description>

    43. <dc:date>2022-02-15T14:25:27Z</dc:date>

    44. <dc:date>2022-02-15T14:25:27Z</dc:date>

    45. <dc:date>2021-02-08</dc:date>

    46. <dc:type>info:eu-repo/semantics/article</dc:type>

    47. <dc:type>info:eu-repo/semantics/publishedVersion</dc:type>

    48. <dc:type>http://purl.org/coar/resource_type/c_6501</dc:type>

    49. <dc:identifier>Journal of Geophysical Research: Planets 126(4): e2020JE006538(2021)</dc:identifier>

    50. <dc:identifier>2169-9097</dc:identifier>

    51. <dc:identifier>https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2020JE006538</dc:identifier>

    52. <dc:identifier>http://hdl.handle.net/20.500.12666/608</dc:identifier>

    53. <dc:identifier>10.1029/2020JE006538</dc:identifier>

    54. <dc:identifier>2169-9100</dc:identifier>

    55. <dc:language>eng</dc:language>

    56. <dc:rights>Attribution-NonCommercial-NoDerivatives 4.0 International</dc:rights>

    57. <dc:rights>© 2021. The Authors.</dc:rights>

    58. <dc:rights>https://creativecommons.org/licenses/by-nc-nd/4.0/</dc:rights>

    59. <dc:rights>info:eu-repo/semantics/openAccess</dc:rights>

    60. <dc:format>application/pdf</dc:format>

    61. <dc:publisher>Advancing Earth and Space Science AGU</dc:publisher>

    </oai_dc:dc>

didl

Descargar XML

    <?xml version="1.0" encoding="UTF-8" ?>

  1. <d:DIDL schemaLocation="urn:mpeg:mpeg21:2002:02-DIDL-NS http://standards.iso.org/ittf/PubliclyAvailableStandards/MPEG-21_schema_files/did/didl.xsd">

    1. <d:DIDLInfo>

      1. <dcterms:created schemaLocation="http://purl.org/dc/terms/ http://dublincore.org/schemas/xmls/qdc/dcterms.xsd">2022-02-15T14:25:27Z</dcterms:created>

      </d:DIDLInfo>

    2. <d:Item id="hdl_20.500.12666_608">

      1. <d:Descriptor>

        1. <d:Statement mimeType="application/xml; charset=utf-8">

          1. <dii:Identifier schemaLocation="urn:mpeg:mpeg21:2002:01-DII-NS http://standards.iso.org/ittf/PubliclyAvailableStandards/MPEG-21_schema_files/dii/dii.xsd">urn:hdl:20.500.12666/608</dii:Identifier>

          </d:Statement>

        </d:Descriptor>

      2. <d:Descriptor>

        1. <d:Statement mimeType="application/xml; charset=utf-8">

          1. <oai_dc:dc schemaLocation="http://www.openarchives.org/OAI/2.0/oai_dc/ http://www.openarchives.org/OAI/2.0/oai_dc.xsd">

            1. <dc:title>A Comodulation Analysis of Atmospheric Energy Injection Into the Ground Motion at InSight, Mars</dc:title>

            2. <dc:creator>Charalambous, C.</dc:creator>

            3. <dc:creator>Stott, A. E.</dc:creator>

            4. <dc:creator>Pike, W. T.</dc:creator>

            5. <dc:creator>McClean, J. B.</dc:creator>

            6. <dc:creator>Warren, T.</dc:creator>

            7. <dc:creator>Spiga, A.</dc:creator>

            8. <dc:creator>Banfield, D.</dc:creator>

            9. <dc:creator>García, R. F.</dc:creator>

            10. <dc:creator>Clinton, J.</dc:creator>

            11. <dc:creator>Stähler, S. C.</dc:creator>

            12. <dc:creator>Navarro, S.</dc:creator>

            13. <dc:creator>Lognonné, P.</dc:creator>

            14. <dc:creator>Scholz, J. R.</dc:creator>

            15. <dc:creator>Kawamura, T.</dc:creator>

            16. <dc:creator>Van Driel, M.</dc:creator>

            17. <dc:creator>Böse, M.</dc:creator>

            18. <dc:creator>Ceylan, S.</dc:creator>

            19. <dc:creator>Khan, A.</dc:creator>

            20. <dc:creator>Horleston, A.</dc:creator>

            21. <dc:creator>Orhand Mainsant, G.</dc:creator>

            22. <dc:creator>Sotomayor, L. M.</dc:creator>

            23. <dc:creator>Murdoch, N.</dc:creator>

            24. <dc:creator>Giardini, D.</dc:creator>

            25. <dc:creator>Banerdt, W. B.</dc:creator>

            26. <dc:contributor>Murdoch, N. [0000-0002-9701-4075]</dc:contributor>

            27. <dc:contributor>Lognonne, P. [0000-0002-1014-920X]</dc:contributor>

            28. <dc:contributor>Charalambous, C. [0000-0002-9139-3895]</dc:contributor>

            29. <dc:contributor>Stott, A. E. [0000-0001-6121-705X]</dc:contributor>

            30. <dc:contributor>Spiga, A. [0000-0002-6776-6268]</dc:contributor>

            31. <dc:contributor>Stähler, S. [0000-0002-0783-2489]</dc:contributor>

            32. <dc:contributor>Scholz, J. R. [0000-0003-1404-2335]</dc:contributor>

            33. <dc:contributor>Ceylan, S. [0000-0002-6552-6850]</dc:contributor>

            34. <dc:contributor>Khan, A. [0000-0003-4462-3173]</dc:contributor>

            35. <dc:contributor>Van Driel, M. [0000-0002-8938-4615]</dc:contributor>

            36. <dc:contributor>Horleston, A. [0000-0002-6748-6522]</dc:contributor>

            37. <dc:contributor>Giardini, D. [0000-0002-5573-7638]</dc:contributor>

            38. <dc:contributor>Banerdt, W. B. [0000-0003-3125-1542]</dc:contributor>

            39. <dc:description>InSight put the first seismic station on the surface of another planet in 2019. While it has made the first detection of marsquakes, the wind has been providing a strong background signal that most of the time makes seismic detection difficult. This work aims to separate out the unwanted injection from Mars’ atmosphere to give us confidence that the signals observed by InSight are vibrations from the planet itself. The issue of atmospheric injection into the seismic signal was foreseen before the mission launch and InSight was equipped with wind and pressure sensors. However, no stable relationship is observed between the strength of the wind and the amplitude of the measured vibrations by InSights’ seismometers. Also, we are mainly sensing the wind shaking the lander, which transmits vibrations to the ground under our seismometer. These complications have led us to use the measurements themselves to work out the strength of the environmental injection rather than rely on a complex time-varying model of the possible pathways. This work shows how we can work out estimates of how much the atmosphere is affecting the seismic measurements and in particular we show that the strongest possible quakes that have been detected by InSight are above what we might have expected from just the measurements from InSight's wind and pressure sensors at that time.</dc:description>

            40. <dc:description>Seismic observations involve signals that can be easily masked by noise injection. For the NASA Mars lander InSight, the atmosphere is a significant noise contributor, impeding the identification of seismic events for two-thirds of a Martian day. While the noise is below that seen at even the quietest sites on Earth, the amplitude of seismic signals on Mars is also considerably lower, requiring an understanding and quantification of environmental injection at unprecedented levels. Mars’ ground and atmosphere are a continuously coupled seismic system, and although atmospheric functions are of distinct origins, the superposition of these noise contributions is poorly understood, making separation a challenging task. We present a novel method for partitioning the observed signal into seismic and environmental contributions. Atmospheric pressure and wind fluctuations are shown to exhibit temporal cross-frequency coupling across multiple bands, injecting noise that is neither random nor coherent. We investigate this through comodulation, quantifying the synchrony of the seismic motion, wind and pressure signals. By working in the time-frequency domain, we discriminate between the different origins of underlying processes and determine the site's environmental sensitivity. Our method aims to create a virtual vault at InSight's landing site on Mars, shielding the seismometers with effective postprocessing in lieu of a physical vault. This allows us to describe the environmental and seismic signals over a sequence of sols, to quantify the wind and pressure injection and estimate the seismic content of possible marsquakes with a signal-to-noise ratio that can be quantified in terms of environmental independence. Finally, we exploit the relationship between the comodulated signals to identify their sources.</dc:description>

            41. <dc:date>2022-02-15T14:25:27Z</dc:date>

            42. <dc:date>2022-02-15T14:25:27Z</dc:date>

            43. <dc:date>2021-02-08</dc:date>

            44. <dc:type>info:eu-repo/semantics/article</dc:type>

            45. <dc:identifier>Journal of Geophysical Research: Planets 126(4): e2020JE006538(2021)</dc:identifier>

            46. <dc:identifier>2169-9097</dc:identifier>

            47. <dc:identifier>https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2020JE006538</dc:identifier>

            48. <dc:identifier>http://hdl.handle.net/20.500.12666/608</dc:identifier>

            49. <dc:identifier>10.1029/2020JE006538</dc:identifier>

            50. <dc:identifier>2169-9100</dc:identifier>

            51. <dc:language>eng</dc:language>

            52. <dc:rights>© 2021. The Authors.</dc:rights>

            53. <dc:rights>https://creativecommons.org/licenses/by-nc-nd/4.0/</dc:rights>

            54. <dc:rights>info:eu-repo/semantics/openAccess</dc:rights>

            55. <dc:rights>Attribution-NonCommercial-NoDerivatives 4.0 International</dc:rights>

            56. <dc:publisher>Advancing Earth and Space Science AGU</dc:publisher>

            </oai_dc:dc>

          </d:Statement>

        </d:Descriptor>

      3. <d:Component id="20.500.12666_608_1">

        1. <d:Resource mimeType="application/pdf" ref="https://digital.inta.es:8443/jspui/bitstream/20.500.12666/608/1/A%20comodulation%20analysis%20of%20atmospheric%20energy%20injection%20into%20the%20ground%20motion%20at%20InSight%20Mars.pdf" />

        </d:Component>

      </d:Item>

    </d:DIDL>

dim

Descargar XML

    <?xml version="1.0" encoding="UTF-8" ?>

  1. <dim:dim schemaLocation="http://www.dspace.org/xmlns/dspace/dim http://www.dspace.org/schema/dim.xsd">

    1. <dim:field element="rights" mdschema="dc" qualifier="license">© 2021. The Authors.</dim:field>

    2. <dim:field element="rights" lang="es" mdschema="dc">Attribution-NonCommercial-NoDerivatives 4.0 International</dim:field>

    3. <dim:field element="rights" mdschema="dc" qualifier="uri">https://creativecommons.org/licenses/by-nc-nd/4.0/</dim:field>

    4. <dim:field element="rights" mdschema="dc" qualifier="accessRights">info:eu-repo/semantics/openAccess</dim:field>

    5. <dim:field authority="cc215c24-4730-4972-b418-42129bda950a" confidence="600" element="contributor" mdschema="dc" qualifier="author">Charalambous, C.</dim:field>

    6. <dim:field authority="9ba2a210-2dc7-4eb3-b108-77c4c00e8bed" confidence="-1" element="contributor" mdschema="dc" qualifier="author">Stott, A. E.</dim:field>

    7. <dim:field authority="90aa97a4-d20a-407c-b606-8f34467f303a" confidence="-1" element="contributor" mdschema="dc" qualifier="author">Pike, W. T.</dim:field>

    8. <dim:field authority="6ee35d43-52bd-4b13-94ba-1191f17f34d9" confidence="-1" element="contributor" mdschema="dc" qualifier="author">McClean, J. B.</dim:field>

    9. <dim:field authority="d89d7047-0f80-4777-8ad3-4601e16f3bae" confidence="-1" element="contributor" mdschema="dc" qualifier="author">Warren, T.</dim:field>

    10. <dim:field authority="95b298d5-4dd4-4c3f-b23c-840939885893" confidence="-1" element="contributor" mdschema="dc" qualifier="author">Spiga, A.</dim:field>

    11. <dim:field authority="bf246758-5f06-464e-beef-623a876458c1" confidence="-1" element="contributor" mdschema="dc" qualifier="author">Banfield, D.</dim:field>

    12. <dim:field authority="56fa5234-5f3e-4758-b14c-62d4dc6c9210" confidence="-1" element="contributor" mdschema="dc" qualifier="author">García, R. F.</dim:field>

    13. <dim:field authority="a55de001-1931-4584-86a9-4d49f07e5734" confidence="-1" element="contributor" mdschema="dc" qualifier="author">Clinton, J.</dim:field>

    14. <dim:field authority="0b9d1547-9b8e-4f3e-81c1-6fbfd5ef9dfa" confidence="-1" element="contributor" mdschema="dc" qualifier="author">Stähler, S. C.</dim:field>

    15. <dim:field authority="cabbd408-4be9-4c6e-b6f8-784b226fa10a" confidence="600" element="contributor" mdschema="dc" qualifier="author">Navarro, S.</dim:field>

    16. <dim:field authority="34b02454-7e9e-4358-9310-af015fa39643" confidence="-1" element="contributor" mdschema="dc" qualifier="author">Lognonné, P.</dim:field>

    17. <dim:field authority="7775053c-7f1e-4ec3-a6f2-a7971c9d186e" confidence="-1" element="contributor" mdschema="dc" qualifier="author">Scholz, J. R.</dim:field>

    18. <dim:field authority="73645446-bd0b-4425-ab20-dc7722cd36fc" confidence="-1" element="contributor" mdschema="dc" qualifier="author">Kawamura, T.</dim:field>

    19. <dim:field authority="a32ea685-8213-451a-9b06-bcabbe455bd9" confidence="-1" element="contributor" mdschema="dc" qualifier="author">Van Driel, M.</dim:field>

    20. <dim:field authority="a844b51e-a73b-44c8-9d24-cca87cc488d9" confidence="-1" element="contributor" mdschema="dc" qualifier="author">Böse, M.</dim:field>

    21. <dim:field authority="a97192b3-1eec-4c5d-8a18-894e0f3ea547" confidence="-1" element="contributor" mdschema="dc" qualifier="author">Ceylan, S.</dim:field>

    22. <dim:field authority="14a674ab-3693-4e05-bc5f-37105e5477e7" confidence="-1" element="contributor" mdschema="dc" qualifier="author">Khan, A.</dim:field>

    23. <dim:field authority="cfaf5f17-8d52-43bb-b2a1-0058c4fc8d4b" confidence="-1" element="contributor" mdschema="dc" qualifier="author">Horleston, A.</dim:field>

    24. <dim:field authority="09800a7c-5f5e-45c9-968c-196f584de8d2" confidence="-1" element="contributor" mdschema="dc" qualifier="author">Orhand Mainsant, G.</dim:field>

    25. <dim:field authority="1c18bf1b-4696-4163-a12b-90b17e0f71d0" confidence="-1" element="contributor" mdschema="dc" qualifier="author">Sotomayor, L. M.</dim:field>

    26. <dim:field authority="bca46510-46d3-477b-a3dd-0545b9573098" confidence="-1" element="contributor" mdschema="dc" qualifier="author">Murdoch, N.</dim:field>

    27. <dim:field authority="37b0df30-230d-4052-90e7-b9483dfdf0ac" confidence="-1" element="contributor" mdschema="dc" qualifier="author">Giardini, D.</dim:field>

    28. <dim:field authority="574080ee-5fb9-4552-9bbb-4cb78cd79339" confidence="-1" element="contributor" mdschema="dc" qualifier="author">Banerdt, W. B.</dim:field>

    29. <dim:field element="contributor" mdschema="dc" qualifier="orcid">Murdoch, N. [0000-0002-9701-4075]</dim:field>

    30. <dim:field element="contributor" mdschema="dc" qualifier="orcid">Lognonne, P. [0000-0002-1014-920X]</dim:field>

    31. <dim:field element="contributor" mdschema="dc" qualifier="orcid">Charalambous, C. [0000-0002-9139-3895]</dim:field>

    32. <dim:field element="contributor" mdschema="dc" qualifier="orcid">Stott, A. E. [0000-0001-6121-705X]</dim:field>

    33. <dim:field element="contributor" mdschema="dc" qualifier="orcid">Spiga, A. [0000-0002-6776-6268]</dim:field>

    34. <dim:field element="contributor" mdschema="dc" qualifier="orcid">Stähler, S. [0000-0002-0783-2489]</dim:field>

    35. <dim:field element="contributor" mdschema="dc" qualifier="orcid">Scholz, J. R. [0000-0003-1404-2335]</dim:field>

    36. <dim:field element="contributor" mdschema="dc" qualifier="orcid">Ceylan, S. [0000-0002-6552-6850]</dim:field>

    37. <dim:field element="contributor" mdschema="dc" qualifier="orcid">Khan, A. [0000-0003-4462-3173]</dim:field>

    38. <dim:field element="contributor" mdschema="dc" qualifier="orcid">Van Driel, M. [0000-0002-8938-4615]</dim:field>

    39. <dim:field element="contributor" mdschema="dc" qualifier="orcid">Horleston, A. [0000-0002-6748-6522]</dim:field>

    40. <dim:field element="contributor" mdschema="dc" qualifier="orcid">Giardini, D. [0000-0002-5573-7638]</dim:field>

    41. <dim:field element="contributor" mdschema="dc" qualifier="orcid">Banerdt, W. B. [0000-0003-3125-1542]</dim:field>

    42. <dim:field element="date" mdschema="dc" qualifier="accessioned">2022-02-15T14:25:27Z</dim:field>

    43. <dim:field element="date" mdschema="dc" qualifier="available">2022-02-15T14:25:27Z</dim:field>

    44. <dim:field element="date" mdschema="dc" qualifier="issued">2021-02-08</dim:field>

    45. <dim:field element="identifier" lang="es" mdschema="dc" qualifier="citation">Journal of Geophysical Research: Planets 126(4): e2020JE006538(2021)</dim:field>

    46. <dim:field element="identifier" mdschema="dc" qualifier="issn">2169-9097</dim:field>

    47. <dim:field element="identifier" mdschema="dc" qualifier="other">https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2020JE006538</dim:field>

    48. <dim:field element="identifier" mdschema="dc" qualifier="uri">http://hdl.handle.net/20.500.12666/608</dim:field>

    49. <dim:field element="identifier" mdschema="dc" qualifier="doi">10.1029/2020JE006538</dim:field>

    50. <dim:field element="identifier" mdschema="dc" qualifier="e-issn">2169-9100</dim:field>

    51. <dim:field element="description" lang="es" mdschema="dc">InSight put the first seismic station on the surface of another planet in 2019. While it has made the first detection of marsquakes, the wind has been providing a strong background signal that most of the time makes seismic detection difficult. This work aims to separate out the unwanted injection from Mars’ atmosphere to give us confidence that the signals observed by InSight are vibrations from the planet itself. The issue of atmospheric injection into the seismic signal was foreseen before the mission launch and InSight was equipped with wind and pressure sensors. However, no stable relationship is observed between the strength of the wind and the amplitude of the measured vibrations by InSights’ seismometers. Also, we are mainly sensing the wind shaking the lander, which transmits vibrations to the ground under our seismometer. These complications have led us to use the measurements themselves to work out the strength of the environmental injection rather than rely on a complex time-varying model of the possible pathways. This work shows how we can work out estimates of how much the atmosphere is affecting the seismic measurements and in particular we show that the strongest possible quakes that have been detected by InSight are above what we might have expected from just the measurements from InSight's wind and pressure sensors at that time.</dim:field>

    52. <dim:field element="description" lang="es" mdschema="dc" qualifier="abstract">Seismic observations involve signals that can be easily masked by noise injection. For the NASA Mars lander InSight, the atmosphere is a significant noise contributor, impeding the identification of seismic events for two-thirds of a Martian day. While the noise is below that seen at even the quietest sites on Earth, the amplitude of seismic signals on Mars is also considerably lower, requiring an understanding and quantification of environmental injection at unprecedented levels. Mars’ ground and atmosphere are a continuously coupled seismic system, and although atmospheric functions are of distinct origins, the superposition of these noise contributions is poorly understood, making separation a challenging task. We present a novel method for partitioning the observed signal into seismic and environmental contributions. Atmospheric pressure and wind fluctuations are shown to exhibit temporal cross-frequency coupling across multiple bands, injecting noise that is neither random nor coherent. We investigate this through comodulation, quantifying the synchrony of the seismic motion, wind and pressure signals. By working in the time-frequency domain, we discriminate between the different origins of underlying processes and determine the site's environmental sensitivity. Our method aims to create a virtual vault at InSight's landing site on Mars, shielding the seismometers with effective postprocessing in lieu of a physical vault. This allows us to describe the environmental and seismic signals over a sequence of sols, to quantify the wind and pressure injection and estimate the seismic content of possible marsquakes with a signal-to-noise ratio that can be quantified in terms of environmental independence. Finally, we exploit the relationship between the comodulated signals to identify their sources.</dim:field>

    53. <dim:field element="description" lang="es" mdschema="dc" qualifier="sponsorship">The authors would like to thank the Editor-in-Chief Prof. Laurent Montesi, Adam Ringler and another anonymous reviewer who provided thorough and helpful reviews that have improved this manuscript. We would also like to thank Andrea Christophi for constructive criticism of the manuscript. We acknowledge NASA, UK Space Agency, CNES, their partner agencies and Institutions (UKSA, IC, SSO, DLR, JPL, IPGP-CNRS, ETHZ, MPS-MPG) and the flight operations team at JPL, SISMOC, MSDS, IRIS-DMC, and PDS for acquiring and providing InSight data, including SEED SEIS data.</dim:field>

    54. <dim:field element="description" lang="es" mdschema="dc" qualifier="peerreviewed">Peerreview</dim:field>

    55. <dim:field element="language" lang="es" mdschema="dc" qualifier="iso">eng</dim:field>

    56. <dim:field element="publisher" lang="es" mdschema="dc">Advancing Earth and Space Science AGU</dim:field>

    57. <dim:field element="title" lang="es" mdschema="dc">A Comodulation Analysis of Atmospheric Energy Injection Into the Ground Motion at InSight, Mars</dim:field>

    58. <dim:field element="type" lang="es" mdschema="dc">info:eu-repo/semantics/article</dim:field>

    59. <dim:field element="type" mdschema="dc" qualifier="hasVersion">info:eu-repo/semantics/publishedVersion</dim:field>

    60. <dim:field element="type" mdschema="dc" qualifier="coar">http://purl.org/coar/resource_type/c_6501</dim:field>

    </dim:dim>

etdms

Descargar XML

    <?xml version="1.0" encoding="UTF-8" ?>

  1. <thesis schemaLocation="http://www.ndltd.org/standards/metadata/etdms/1.0/ http://www.ndltd.org/standards/metadata/etdms/1.0/etdms.xsd">

    1. <title>A Comodulation Analysis of Atmospheric Energy Injection Into the Ground Motion at InSight, Mars</title>

    2. <creator>Charalambous, C.</creator>

    3. <creator>Stott, A. E.</creator>

    4. <creator>Pike, W. T.</creator>

    5. <creator>McClean, J. B.</creator>

    6. <creator>Warren, T.</creator>

    7. <creator>Spiga, A.</creator>

    8. <creator>Banfield, D.</creator>

    9. <creator>García, R. F.</creator>

    10. <creator>Clinton, J.</creator>

    11. <creator>Stähler, S. C.</creator>

    12. <creator>Navarro, S.</creator>

    13. <creator>Lognonné, P.</creator>

    14. <creator>Scholz, J. R.</creator>

    15. <creator>Kawamura, T.</creator>

    16. <creator>Van Driel, M.</creator>

    17. <creator>Böse, M.</creator>

    18. <creator>Ceylan, S.</creator>

    19. <creator>Khan, A.</creator>

    20. <creator>Horleston, A.</creator>

    21. <creator>Orhand Mainsant, G.</creator>

    22. <creator>Sotomayor, L. M.</creator>

    23. <creator>Murdoch, N.</creator>

    24. <creator>Giardini, D.</creator>

    25. <creator>Banerdt, W. B.</creator>

    26. <contributor>Murdoch, N. [0000-0002-9701-4075]</contributor>

    27. <contributor>Lognonne, P. [0000-0002-1014-920X]</contributor>

    28. <contributor>Charalambous, C. [0000-0002-9139-3895]</contributor>

    29. <contributor>Stott, A. E. [0000-0001-6121-705X]</contributor>

    30. <contributor>Spiga, A. [0000-0002-6776-6268]</contributor>

    31. <contributor>Stähler, S. [0000-0002-0783-2489]</contributor>

    32. <contributor>Scholz, J. R. [0000-0003-1404-2335]</contributor>

    33. <contributor>Ceylan, S. [0000-0002-6552-6850]</contributor>

    34. <contributor>Khan, A. [0000-0003-4462-3173]</contributor>

    35. <contributor>Van Driel, M. [0000-0002-8938-4615]</contributor>

    36. <contributor>Horleston, A. [0000-0002-6748-6522]</contributor>

    37. <contributor>Giardini, D. [0000-0002-5573-7638]</contributor>

    38. <contributor>Banerdt, W. B. [0000-0003-3125-1542]</contributor>

    39. <description>InSight put the first seismic station on the surface of another planet in 2019. While it has made the first detection of marsquakes, the wind has been providing a strong background signal that most of the time makes seismic detection difficult. This work aims to separate out the unwanted injection from Mars’ atmosphere to give us confidence that the signals observed by InSight are vibrations from the planet itself. The issue of atmospheric injection into the seismic signal was foreseen before the mission launch and InSight was equipped with wind and pressure sensors. However, no stable relationship is observed between the strength of the wind and the amplitude of the measured vibrations by InSights’ seismometers. Also, we are mainly sensing the wind shaking the lander, which transmits vibrations to the ground under our seismometer. These complications have led us to use the measurements themselves to work out the strength of the environmental injection rather than rely on a complex time-varying model of the possible pathways. This work shows how we can work out estimates of how much the atmosphere is affecting the seismic measurements and in particular we show that the strongest possible quakes that have been detected by InSight are above what we might have expected from just the measurements from InSight's wind and pressure sensors at that time.</description>

    40. <description>Seismic observations involve signals that can be easily masked by noise injection. For the NASA Mars lander InSight, the atmosphere is a significant noise contributor, impeding the identification of seismic events for two-thirds of a Martian day. While the noise is below that seen at even the quietest sites on Earth, the amplitude of seismic signals on Mars is also considerably lower, requiring an understanding and quantification of environmental injection at unprecedented levels. Mars’ ground and atmosphere are a continuously coupled seismic system, and although atmospheric functions are of distinct origins, the superposition of these noise contributions is poorly understood, making separation a challenging task. We present a novel method for partitioning the observed signal into seismic and environmental contributions. Atmospheric pressure and wind fluctuations are shown to exhibit temporal cross-frequency coupling across multiple bands, injecting noise that is neither random nor coherent. We investigate this through comodulation, quantifying the synchrony of the seismic motion, wind and pressure signals. By working in the time-frequency domain, we discriminate between the different origins of underlying processes and determine the site's environmental sensitivity. Our method aims to create a virtual vault at InSight's landing site on Mars, shielding the seismometers with effective postprocessing in lieu of a physical vault. This allows us to describe the environmental and seismic signals over a sequence of sols, to quantify the wind and pressure injection and estimate the seismic content of possible marsquakes with a signal-to-noise ratio that can be quantified in terms of environmental independence. Finally, we exploit the relationship between the comodulated signals to identify their sources.</description>

    41. <date>2022-02-15</date>

    42. <date>2022-02-15</date>

    43. <date>2021-02-08</date>

    44. <type>info:eu-repo/semantics/article</type>

    45. <identifier>Journal of Geophysical Research: Planets 126(4): e2020JE006538(2021)</identifier>

    46. <identifier>2169-9097</identifier>

    47. <identifier>https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2020JE006538</identifier>

    48. <identifier>http://hdl.handle.net/20.500.12666/608</identifier>

    49. <identifier>10.1029/2020JE006538</identifier>

    50. <identifier>2169-9100</identifier>

    51. <language>eng</language>

    52. <rights>© 2021. The Authors.</rights>

    53. <rights>https://creativecommons.org/licenses/by-nc-nd/4.0/</rights>

    54. <rights>info:eu-repo/semantics/openAccess</rights>

    55. <rights>Attribution-NonCommercial-NoDerivatives 4.0 International</rights>

    56. <publisher>Advancing Earth and Space Science AGU</publisher>

    </thesis>

marc

Descargar XML

    <?xml version="1.0" encoding="UTF-8" ?>

  1. <record schemaLocation="http://www.loc.gov/MARC21/slim http://www.loc.gov/standards/marcxml/schema/MARC21slim.xsd">

    1. <leader>00925njm 22002777a 4500</leader>

    2. <datafield ind1=" " ind2=" " tag="042">

      1. <subfield code="a">dc</subfield>

      </datafield>

    3. <datafield ind1=" " ind2=" " tag="720">

      1. <subfield code="a">Charalambous, C.</subfield>

      2. <subfield code="e">author</subfield>

      </datafield>

    4. <datafield ind1=" " ind2=" " tag="720">

      1. <subfield code="a">Stott, A. E.</subfield>

      2. <subfield code="e">author</subfield>

      </datafield>

    5. <datafield ind1=" " ind2=" " tag="720">

      1. <subfield code="a">Pike, W. T.</subfield>

      2. <subfield code="e">author</subfield>

      </datafield>

    6. <datafield ind1=" " ind2=" " tag="720">

      1. <subfield code="a">McClean, J. B.</subfield>

      2. <subfield code="e">author</subfield>

      </datafield>

    7. <datafield ind1=" " ind2=" " tag="720">

      1. <subfield code="a">Warren, T.</subfield>

      2. <subfield code="e">author</subfield>

      </datafield>

    8. <datafield ind1=" " ind2=" " tag="720">

      1. <subfield code="a">Spiga, A.</subfield>

      2. <subfield code="e">author</subfield>

      </datafield>

    9. <datafield ind1=" " ind2=" " tag="720">

      1. <subfield code="a">Banfield, D.</subfield>

      2. <subfield code="e">author</subfield>

      </datafield>

    10. <datafield ind1=" " ind2=" " tag="720">

      1. <subfield code="a">García, R. F.</subfield>

      2. <subfield code="e">author</subfield>

      </datafield>

    11. <datafield ind1=" " ind2=" " tag="720">

      1. <subfield code="a">Clinton, J.</subfield>

      2. <subfield code="e">author</subfield>

      </datafield>

    12. <datafield ind1=" " ind2=" " tag="720">

      1. <subfield code="a">Stähler, S. C.</subfield>

      2. <subfield code="e">author</subfield>

      </datafield>

    13. <datafield ind1=" " ind2=" " tag="720">

      1. <subfield code="a">Navarro, S.</subfield>

      2. <subfield code="e">author</subfield>

      </datafield>

    14. <datafield ind1=" " ind2=" " tag="720">

      1. <subfield code="a">Lognonné, P.</subfield>

      2. <subfield code="e">author</subfield>

      </datafield>

    15. <datafield ind1=" " ind2=" " tag="720">

      1. <subfield code="a">Scholz, J. R.</subfield>

      2. <subfield code="e">author</subfield>

      </datafield>

    16. <datafield ind1=" " ind2=" " tag="720">

      1. <subfield code="a">Kawamura, T.</subfield>

      2. <subfield code="e">author</subfield>

      </datafield>

    17. <datafield ind1=" " ind2=" " tag="720">

      1. <subfield code="a">Van Driel, M.</subfield>

      2. <subfield code="e">author</subfield>

      </datafield>

    18. <datafield ind1=" " ind2=" " tag="720">

      1. <subfield code="a">Böse, M.</subfield>

      2. <subfield code="e">author</subfield>

      </datafield>

    19. <datafield ind1=" " ind2=" " tag="720">

      1. <subfield code="a">Ceylan, S.</subfield>

      2. <subfield code="e">author</subfield>

      </datafield>

    20. <datafield ind1=" " ind2=" " tag="720">

      1. <subfield code="a">Khan, A.</subfield>

      2. <subfield code="e">author</subfield>

      </datafield>

    21. <datafield ind1=" " ind2=" " tag="720">

      1. <subfield code="a">Horleston, A.</subfield>

      2. <subfield code="e">author</subfield>

      </datafield>

    22. <datafield ind1=" " ind2=" " tag="720">

      1. <subfield code="a">Orhand Mainsant, G.</subfield>

      2. <subfield code="e">author</subfield>

      </datafield>

    23. <datafield ind1=" " ind2=" " tag="720">

      1. <subfield code="a">Sotomayor, L. M.</subfield>

      2. <subfield code="e">author</subfield>

      </datafield>

    24. <datafield ind1=" " ind2=" " tag="720">

      1. <subfield code="a">Murdoch, N.</subfield>

      2. <subfield code="e">author</subfield>

      </datafield>

    25. <datafield ind1=" " ind2=" " tag="720">

      1. <subfield code="a">Giardini, D.</subfield>

      2. <subfield code="e">author</subfield>

      </datafield>

    26. <datafield ind1=" " ind2=" " tag="720">

      1. <subfield code="a">Banerdt, W. B.</subfield>

      2. <subfield code="e">author</subfield>

      </datafield>

    27. <datafield ind1=" " ind2=" " tag="260">

      1. <subfield code="c">2021-02-08</subfield>

      </datafield>

    28. <datafield ind1=" " ind2=" " tag="520">

      1. <subfield code="a">Seismic observations involve signals that can be easily masked by noise injection. For the NASA Mars lander InSight, the atmosphere is a significant noise contributor, impeding the identification of seismic events for two-thirds of a Martian day. While the noise is below that seen at even the quietest sites on Earth, the amplitude of seismic signals on Mars is also considerably lower, requiring an understanding and quantification of environmental injection at unprecedented levels. Mars’ ground and atmosphere are a continuously coupled seismic system, and although atmospheric functions are of distinct origins, the superposition of these noise contributions is poorly understood, making separation a challenging task. We present a novel method for partitioning the observed signal into seismic and environmental contributions. Atmospheric pressure and wind fluctuations are shown to exhibit temporal cross-frequency coupling across multiple bands, injecting noise that is neither random nor coherent. We investigate this through comodulation, quantifying the synchrony of the seismic motion, wind and pressure signals. By working in the time-frequency domain, we discriminate between the different origins of underlying processes and determine the site's environmental sensitivity. Our method aims to create a virtual vault at InSight's landing site on Mars, shielding the seismometers with effective postprocessing in lieu of a physical vault. This allows us to describe the environmental and seismic signals over a sequence of sols, to quantify the wind and pressure injection and estimate the seismic content of possible marsquakes with a signal-to-noise ratio that can be quantified in terms of environmental independence. Finally, we exploit the relationship between the comodulated signals to identify their sources.</subfield>

      </datafield>

    29. <datafield ind1="8" ind2=" " tag="024">

      1. <subfield code="a">Journal of Geophysical Research: Planets 126(4): e2020JE006538(2021)</subfield>

      </datafield>

    30. <datafield ind1="8" ind2=" " tag="024">

      1. <subfield code="a">2169-9097</subfield>

      </datafield>

    31. <datafield ind1="8" ind2=" " tag="024">

      1. <subfield code="a">https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2020JE006538</subfield>

      </datafield>

    32. <datafield ind1="8" ind2=" " tag="024">

      1. <subfield code="a">http://hdl.handle.net/20.500.12666/608</subfield>

      </datafield>

    33. <datafield ind1="8" ind2=" " tag="024">

      1. <subfield code="a">10.1029/2020JE006538</subfield>

      </datafield>

    34. <datafield ind1="8" ind2=" " tag="024">

      1. <subfield code="a">2169-9100</subfield>

      </datafield>

    35. <datafield ind1="0" ind2="0" tag="245">

      1. <subfield code="a">A Comodulation Analysis of Atmospheric Energy Injection Into the Ground Motion at InSight, Mars</subfield>

      </datafield>

    </record>

mets

Descargar XML

Se ha omitido la presentación del registro por ser demasiado largo. Si lo desea, puede descargárselo en el enlace anterior.

mods

Descargar XML

    <?xml version="1.0" encoding="UTF-8" ?>

  1. <mods:mods schemaLocation="http://www.loc.gov/mods/v3 http://www.loc.gov/standards/mods/v3/mods-3-1.xsd">

    1. <mods:name>

      1. <mods:namePart>Charalambous, C.</mods:namePart>

      </mods:name>

    2. <mods:name>

      1. <mods:namePart>Stott, A. E.</mods:namePart>

      </mods:name>

    3. <mods:name>

      1. <mods:namePart>Pike, W. T.</mods:namePart>

      </mods:name>

    4. <mods:name>

      1. <mods:namePart>McClean, J. B.</mods:namePart>

      </mods:name>

    5. <mods:name>

      1. <mods:namePart>Warren, T.</mods:namePart>

      </mods:name>

    6. <mods:name>

      1. <mods:namePart>Spiga, A.</mods:namePart>

      </mods:name>

    7. <mods:name>

      1. <mods:namePart>Banfield, D.</mods:namePart>

      </mods:name>

    8. <mods:name>

      1. <mods:namePart>García, R. F.</mods:namePart>

      </mods:name>

    9. <mods:name>

      1. <mods:namePart>Clinton, J.</mods:namePart>

      </mods:name>

    10. <mods:name>

      1. <mods:namePart>Stähler, S. C.</mods:namePart>

      </mods:name>

    11. <mods:name>

      1. <mods:namePart>Navarro, S.</mods:namePart>

      </mods:name>

    12. <mods:name>

      1. <mods:namePart>Lognonné, P.</mods:namePart>

      </mods:name>

    13. <mods:name>

      1. <mods:namePart>Scholz, J. R.</mods:namePart>

      </mods:name>

    14. <mods:name>

      1. <mods:namePart>Kawamura, T.</mods:namePart>

      </mods:name>

    15. <mods:name>

      1. <mods:namePart>Van Driel, M.</mods:namePart>

      </mods:name>

    16. <mods:name>

      1. <mods:namePart>Böse, M.</mods:namePart>

      </mods:name>

    17. <mods:name>

      1. <mods:namePart>Ceylan, S.</mods:namePart>

      </mods:name>

    18. <mods:name>

      1. <mods:namePart>Khan, A.</mods:namePart>

      </mods:name>

    19. <mods:name>

      1. <mods:namePart>Horleston, A.</mods:namePart>

      </mods:name>

    20. <mods:name>

      1. <mods:namePart>Orhand Mainsant, G.</mods:namePart>

      </mods:name>

    21. <mods:name>

      1. <mods:namePart>Sotomayor, L. M.</mods:namePart>

      </mods:name>

    22. <mods:name>

      1. <mods:namePart>Murdoch, N.</mods:namePart>

      </mods:name>

    23. <mods:name>

      1. <mods:namePart>Giardini, D.</mods:namePart>

      </mods:name>

    24. <mods:name>

      1. <mods:namePart>Banerdt, W. B.</mods:namePart>

      </mods:name>

    25. <mods:extension>

      1. <mods:dateAvailable encoding="iso8601">2022-02-15T14:25:27Z</mods:dateAvailable>

      </mods:extension>

    26. <mods:extension>

      1. <mods:dateAccessioned encoding="iso8601">2022-02-15T14:25:27Z</mods:dateAccessioned>

      </mods:extension>

    27. <mods:originInfo>

      1. <mods:dateIssued encoding="iso8601">2021-02-08</mods:dateIssued>

      </mods:originInfo>

    28. <mods:identifier type="citation">Journal of Geophysical Research: Planets 126(4): e2020JE006538(2021)</mods:identifier>

    29. <mods:identifier type="issn">2169-9097</mods:identifier>

    30. <mods:identifier type="other">https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2020JE006538</mods:identifier>

    31. <mods:identifier type="uri">http://hdl.handle.net/20.500.12666/608</mods:identifier>

    32. <mods:identifier type="doi">10.1029/2020JE006538</mods:identifier>

    33. <mods:identifier type="e-issn">2169-9100</mods:identifier>

    34. <mods:abstract>Seismic observations involve signals that can be easily masked by noise injection. For the NASA Mars lander InSight, the atmosphere is a significant noise contributor, impeding the identification of seismic events for two-thirds of a Martian day. While the noise is below that seen at even the quietest sites on Earth, the amplitude of seismic signals on Mars is also considerably lower, requiring an understanding and quantification of environmental injection at unprecedented levels. Mars’ ground and atmosphere are a continuously coupled seismic system, and although atmospheric functions are of distinct origins, the superposition of these noise contributions is poorly understood, making separation a challenging task. We present a novel method for partitioning the observed signal into seismic and environmental contributions. Atmospheric pressure and wind fluctuations are shown to exhibit temporal cross-frequency coupling across multiple bands, injecting noise that is neither random nor coherent. We investigate this through comodulation, quantifying the synchrony of the seismic motion, wind and pressure signals. By working in the time-frequency domain, we discriminate between the different origins of underlying processes and determine the site's environmental sensitivity. Our method aims to create a virtual vault at InSight's landing site on Mars, shielding the seismometers with effective postprocessing in lieu of a physical vault. This allows us to describe the environmental and seismic signals over a sequence of sols, to quantify the wind and pressure injection and estimate the seismic content of possible marsquakes with a signal-to-noise ratio that can be quantified in terms of environmental independence. Finally, we exploit the relationship between the comodulated signals to identify their sources.</mods:abstract>

    35. <mods:language>

      1. <mods:languageTerm>eng</mods:languageTerm>

      </mods:language>

    36. <mods:accessCondition type="useAndReproduction">© 2021. The Authors.</mods:accessCondition>

    37. <mods:accessCondition type="useAndReproduction">https://creativecommons.org/licenses/by-nc-nd/4.0/</mods:accessCondition>

    38. <mods:accessCondition type="useAndReproduction">info:eu-repo/semantics/openAccess</mods:accessCondition>

    39. <mods:accessCondition type="useAndReproduction">Attribution-NonCommercial-NoDerivatives 4.0 International</mods:accessCondition>

    40. <mods:titleInfo>

      1. <mods:title>A Comodulation Analysis of Atmospheric Energy Injection Into the Ground Motion at InSight, Mars</mods:title>

      </mods:titleInfo>

    41. <mods:genre>info:eu-repo/semantics/article</mods:genre>

    </mods:mods>

ore

Descargar XML

    <?xml version="1.0" encoding="UTF-8" ?>

  1. <atom:entry schemaLocation="http://www.w3.org/2005/Atom http://www.kbcafe.com/rss/atom.xsd.xml">

    1. <atom:id>http://hdl.handle.net/20.500.12666/608/ore.xml</atom:id>

    2. <atom:link href="http://hdl.handle.net/20.500.12666/608" rel="alternate" />
    3. <atom:link href="http://hdl.handle.net/20.500.12666/608/ore.xml" rel="http://www.openarchives.org/ore/terms/describes" />
    4. <atom:link href="http://hdl.handle.net/20.500.12666/608/ore.xml#atom" rel="self" type="application/atom+xml" />
    5. <atom:published>2022-02-15T14:25:27Z</atom:published>

    6. <atom:updated>2022-02-15T14:25:27Z</atom:updated>

    7. <atom:source>

      1. <atom:generator>Digital INTA</atom:generator>

      </atom:source>

    8. <atom:title>A Comodulation Analysis of Atmospheric Energy Injection Into the Ground Motion at InSight, Mars</atom:title>

    9. <atom:author>

      1. <atom:name>Charalambous, C.</atom:name>

      </atom:author>

    10. <atom:author>

      1. <atom:name>Stott, A. E.</atom:name>

      </atom:author>

    11. <atom:author>

      1. <atom:name>Pike, W. T.</atom:name>

      </atom:author>

    12. <atom:author>

      1. <atom:name>McClean, J. B.</atom:name>

      </atom:author>

    13. <atom:author>

      1. <atom:name>Warren, T.</atom:name>

      </atom:author>

    14. <atom:author>

      1. <atom:name>Spiga, A.</atom:name>

      </atom:author>

    15. <atom:author>

      1. <atom:name>Banfield, D.</atom:name>

      </atom:author>

    16. <atom:author>

      1. <atom:name>García, R. F.</atom:name>

      </atom:author>

    17. <atom:author>

      1. <atom:name>Clinton, J.</atom:name>

      </atom:author>

    18. <atom:author>

      1. <atom:name>Stähler, S. C.</atom:name>

      </atom:author>

    19. <atom:author>

      1. <atom:name>Navarro, S.</atom:name>

      </atom:author>

    20. <atom:author>

      1. <atom:name>Lognonné, P.</atom:name>

      </atom:author>

    21. <atom:author>

      1. <atom:name>Scholz, J. R.</atom:name>

      </atom:author>

    22. <atom:author>

      1. <atom:name>Kawamura, T.</atom:name>

      </atom:author>

    23. <atom:author>

      1. <atom:name>Van Driel, M.</atom:name>

      </atom:author>

    24. <atom:author>

      1. <atom:name>Böse, M.</atom:name>

      </atom:author>

    25. <atom:author>

      1. <atom:name>Ceylan, S.</atom:name>

      </atom:author>

    26. <atom:author>

      1. <atom:name>Khan, A.</atom:name>

      </atom:author>

    27. <atom:author>

      1. <atom:name>Horleston, A.</atom:name>

      </atom:author>

    28. <atom:author>

      1. <atom:name>Orhand Mainsant, G.</atom:name>

      </atom:author>

    29. <atom:author>

      1. <atom:name>Sotomayor, L. M.</atom:name>

      </atom:author>

    30. <atom:author>

      1. <atom:name>Murdoch, N.</atom:name>

      </atom:author>

    31. <atom:author>

      1. <atom:name>Giardini, D.</atom:name>

      </atom:author>

    32. <atom:author>

      1. <atom:name>Banerdt, W. B.</atom:name>

      </atom:author>

    33. <atom:category label="Aggregation" scheme="http://www.openarchives.org/ore/terms/" term="http://www.openarchives.org/ore/terms/Aggregation" />
    34. <atom:category scheme="http://www.openarchives.org/ore/atom/modified" term="2022-02-15T14:25:27Z" />
    35. <atom:category label="DSpace Item" scheme="http://www.dspace.org/objectModel/" term="DSpaceItem" />
    36. <atom:link href="https://digital.inta.es:8443/jspui/bitstream/20.500.12666/608/1/A%20comodulation%20analysis%20of%20atmospheric%20energy%20injection%20into%20the%20ground%20motion%20at%20InSight%20Mars.pdf" length="10767785" rel="http://www.openarchives.org/ore/terms/aggregates" title="A comodulation analysis of atmospheric energy injection into the ground motion at InSight Mars.pdf" type="application/pdf" />
    37. <oreatom:triples>

      1. <rdf:Description about="http://hdl.handle.net/20.500.12666/608/ore.xml#atom">

        1. <rdf:type resource="http://www.dspace.org/objectModel/DSpaceItem" />
        2. <dcterms:modified>2022-02-15T14:25:27Z</dcterms:modified>

        </rdf:Description>

      2. <rdf:Description about="https://digital.inta.es:8443/jspui/bitstream/20.500.12666/608/3/A%20comodulation%20analysis%20of%20atmospheric%20energy%20injection%20into%20the%20ground%20motion%20at%20InSight%20Mars.pdf.txt">

        1. <rdf:type resource="http://www.dspace.org/objectModel/DSpaceBitstream" />
        2. <dcterms:description>TEXT</dcterms:description>

        </rdf:Description>

      3. <rdf:Description about="https://digital.inta.es:8443/jspui/bitstream/20.500.12666/608/4/A%20comodulation%20analysis%20of%20atmospheric%20energy%20injection%20into%20the%20ground%20motion%20at%20InSight%20Mars.pdf.jpg">

        1. <rdf:type resource="http://www.dspace.org/objectModel/DSpaceBitstream" />
        2. <dcterms:description>THUMBNAIL</dcterms:description>

        </rdf:Description>

      4. <rdf:Description about="https://digital.inta.es:8443/jspui/bitstream/20.500.12666/608/1/A%20comodulation%20analysis%20of%20atmospheric%20energy%20injection%20into%20the%20ground%20motion%20at%20InSight%20Mars.pdf">

        1. <rdf:type resource="http://www.dspace.org/objectModel/DSpaceBitstream" />
        2. <dcterms:description>ORIGINAL</dcterms:description>

        </rdf:Description>

      5. <rdf:Description about="https://digital.inta.es:8443/jspui/bitstream/20.500.12666/608/2/license.txt">

        1. <rdf:type resource="http://www.dspace.org/objectModel/DSpaceBitstream" />
        2. <dcterms:description>LICENSE</dcterms:description>

        </rdf:Description>

      </oreatom:triples>

    </atom:entry>

qdc

Descargar XML

    <?xml version="1.0" encoding="UTF-8" ?>

  1. <qdc:qualifieddc schemaLocation="http://purl.org/dc/elements/1.1/ http://dublincore.org/schemas/xmls/qdc/2006/01/06/dc.xsd http://purl.org/dc/terms/ http://dublincore.org/schemas/xmls/qdc/2006/01/06/dcterms.xsd http://dspace.org/qualifieddc/ http://www.ukoln.ac.uk/metadata/dcmi/xmlschema/qualifieddc.xsd">

    1. <dc:title>A Comodulation Analysis of Atmospheric Energy Injection Into the Ground Motion at InSight, Mars</dc:title>

    2. <dc:creator>Charalambous, C.</dc:creator>

    3. <dc:creator>Stott, A. E.</dc:creator>

    4. <dc:creator>Pike, W. T.</dc:creator>

    5. <dc:creator>McClean, J. B.</dc:creator>

    6. <dc:creator>Warren, T.</dc:creator>

    7. <dc:creator>Spiga, A.</dc:creator>

    8. <dc:creator>Banfield, D.</dc:creator>

    9. <dc:creator>García, R. F.</dc:creator>

    10. <dc:creator>Clinton, J.</dc:creator>

    11. <dc:creator>Stähler, S. C.</dc:creator>

    12. <dc:creator>Navarro, S.</dc:creator>

    13. <dc:creator>Lognonné, P.</dc:creator>

    14. <dc:creator>Scholz, J. R.</dc:creator>

    15. <dc:creator>Kawamura, T.</dc:creator>

    16. <dc:creator>Van Driel, M.</dc:creator>

    17. <dc:creator>Böse, M.</dc:creator>

    18. <dc:creator>Ceylan, S.</dc:creator>

    19. <dc:creator>Khan, A.</dc:creator>

    20. <dc:creator>Horleston, A.</dc:creator>

    21. <dc:creator>Orhand Mainsant, G.</dc:creator>

    22. <dc:creator>Sotomayor, L. M.</dc:creator>

    23. <dc:creator>Murdoch, N.</dc:creator>

    24. <dc:creator>Giardini, D.</dc:creator>

    25. <dc:creator>Banerdt, W. B.</dc:creator>

    26. <dc:contributor>Murdoch, N. [0000-0002-9701-4075]</dc:contributor>

    27. <dc:contributor>Lognonne, P. [0000-0002-1014-920X]</dc:contributor>

    28. <dc:contributor>Charalambous, C. [0000-0002-9139-3895]</dc:contributor>

    29. <dc:contributor>Stott, A. E. [0000-0001-6121-705X]</dc:contributor>

    30. <dc:contributor>Spiga, A. [0000-0002-6776-6268]</dc:contributor>

    31. <dc:contributor>Stähler, S. [0000-0002-0783-2489]</dc:contributor>

    32. <dc:contributor>Scholz, J. R. [0000-0003-1404-2335]</dc:contributor>

    33. <dc:contributor>Ceylan, S. [0000-0002-6552-6850]</dc:contributor>

    34. <dc:contributor>Khan, A. [0000-0003-4462-3173]</dc:contributor>

    35. <dc:contributor>Van Driel, M. [0000-0002-8938-4615]</dc:contributor>

    36. <dc:contributor>Horleston, A. [0000-0002-6748-6522]</dc:contributor>

    37. <dc:contributor>Giardini, D. [0000-0002-5573-7638]</dc:contributor>

    38. <dc:contributor>Banerdt, W. B. [0000-0003-3125-1542]</dc:contributor>

    39. <dcterms:abstract>Seismic observations involve signals that can be easily masked by noise injection. For the NASA Mars lander InSight, the atmosphere is a significant noise contributor, impeding the identification of seismic events for two-thirds of a Martian day. While the noise is below that seen at even the quietest sites on Earth, the amplitude of seismic signals on Mars is also considerably lower, requiring an understanding and quantification of environmental injection at unprecedented levels. Mars’ ground and atmosphere are a continuously coupled seismic system, and although atmospheric functions are of distinct origins, the superposition of these noise contributions is poorly understood, making separation a challenging task. We present a novel method for partitioning the observed signal into seismic and environmental contributions. Atmospheric pressure and wind fluctuations are shown to exhibit temporal cross-frequency coupling across multiple bands, injecting noise that is neither random nor coherent. We investigate this through comodulation, quantifying the synchrony of the seismic motion, wind and pressure signals. By working in the time-frequency domain, we discriminate between the different origins of underlying processes and determine the site's environmental sensitivity. Our method aims to create a virtual vault at InSight's landing site on Mars, shielding the seismometers with effective postprocessing in lieu of a physical vault. This allows us to describe the environmental and seismic signals over a sequence of sols, to quantify the wind and pressure injection and estimate the seismic content of possible marsquakes with a signal-to-noise ratio that can be quantified in terms of environmental independence. Finally, we exploit the relationship between the comodulated signals to identify their sources.</dcterms:abstract>

    40. <dcterms:dateAccepted>2022-02-15T14:25:27Z</dcterms:dateAccepted>

    41. <dcterms:available>2022-02-15T14:25:27Z</dcterms:available>

    42. <dcterms:created>2022-02-15T14:25:27Z</dcterms:created>

    43. <dcterms:issued>2021-02-08</dcterms:issued>

    44. <dc:type>info:eu-repo/semantics/article</dc:type>

    45. <dc:identifier>Journal of Geophysical Research: Planets 126(4): e2020JE006538(2021)</dc:identifier>

    46. <dc:identifier>2169-9097</dc:identifier>

    47. <dc:identifier>https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2020JE006538</dc:identifier>

    48. <dc:identifier>http://hdl.handle.net/20.500.12666/608</dc:identifier>

    49. <dc:identifier>10.1029/2020JE006538</dc:identifier>

    50. <dc:identifier>2169-9100</dc:identifier>

    51. <dc:language>eng</dc:language>

    52. <dc:rights>© 2021. The Authors.</dc:rights>

    53. <dc:rights>https://creativecommons.org/licenses/by-nc-nd/4.0/</dc:rights>

    54. <dc:rights>info:eu-repo/semantics/openAccess</dc:rights>

    55. <dc:rights>Attribution-NonCommercial-NoDerivatives 4.0 International</dc:rights>

    56. <dc:publisher>Advancing Earth and Space Science AGU</dc:publisher>

    </qdc:qualifieddc>

rdf

Descargar XML

    <?xml version="1.0" encoding="UTF-8" ?>

  1. <rdf:RDF schemaLocation="http://www.openarchives.org/OAI/2.0/rdf/ http://www.openarchives.org/OAI/2.0/rdf.xsd">

    1. <ow:Publication about="oai:digital.inta.es:20.500.12666/608">

      1. <dc:title>A Comodulation Analysis of Atmospheric Energy Injection Into the Ground Motion at InSight, Mars</dc:title>

      2. <dc:creator>Charalambous, C.</dc:creator>

      3. <dc:creator>Stott, A. E.</dc:creator>

      4. <dc:creator>Pike, W. T.</dc:creator>

      5. <dc:creator>McClean, J. B.</dc:creator>

      6. <dc:creator>Warren, T.</dc:creator>

      7. <dc:creator>Spiga, A.</dc:creator>

      8. <dc:creator>Banfield, D.</dc:creator>

      9. <dc:creator>García, R. F.</dc:creator>

      10. <dc:creator>Clinton, J.</dc:creator>

      11. <dc:creator>Stähler, S. C.</dc:creator>

      12. <dc:creator>Navarro, S.</dc:creator>

      13. <dc:creator>Lognonné, P.</dc:creator>

      14. <dc:creator>Scholz, J. R.</dc:creator>

      15. <dc:creator>Kawamura, T.</dc:creator>

      16. <dc:creator>Van Driel, M.</dc:creator>

      17. <dc:creator>Böse, M.</dc:creator>

      18. <dc:creator>Ceylan, S.</dc:creator>

      19. <dc:creator>Khan, A.</dc:creator>

      20. <dc:creator>Horleston, A.</dc:creator>

      21. <dc:creator>Orhand Mainsant, G.</dc:creator>

      22. <dc:creator>Sotomayor, L. M.</dc:creator>

      23. <dc:creator>Murdoch, N.</dc:creator>

      24. <dc:creator>Giardini, D.</dc:creator>

      25. <dc:creator>Banerdt, W. B.</dc:creator>

      26. <dc:contributor>Murdoch, N. [0000-0002-9701-4075]</dc:contributor>

      27. <dc:contributor>Lognonne, P. [0000-0002-1014-920X]</dc:contributor>

      28. <dc:contributor>Charalambous, C. [0000-0002-9139-3895]</dc:contributor>

      29. <dc:contributor>Stott, A. E. [0000-0001-6121-705X]</dc:contributor>

      30. <dc:contributor>Spiga, A. [0000-0002-6776-6268]</dc:contributor>

      31. <dc:contributor>Stähler, S. [0000-0002-0783-2489]</dc:contributor>

      32. <dc:contributor>Scholz, J. R. [0000-0003-1404-2335]</dc:contributor>

      33. <dc:contributor>Ceylan, S. [0000-0002-6552-6850]</dc:contributor>

      34. <dc:contributor>Khan, A. [0000-0003-4462-3173]</dc:contributor>

      35. <dc:contributor>Van Driel, M. [0000-0002-8938-4615]</dc:contributor>

      36. <dc:contributor>Horleston, A. [0000-0002-6748-6522]</dc:contributor>

      37. <dc:contributor>Giardini, D. [0000-0002-5573-7638]</dc:contributor>

      38. <dc:contributor>Banerdt, W. B. [0000-0003-3125-1542]</dc:contributor>

      39. <dc:description>InSight put the first seismic station on the surface of another planet in 2019. While it has made the first detection of marsquakes, the wind has been providing a strong background signal that most of the time makes seismic detection difficult. This work aims to separate out the unwanted injection from Mars’ atmosphere to give us confidence that the signals observed by InSight are vibrations from the planet itself. The issue of atmospheric injection into the seismic signal was foreseen before the mission launch and InSight was equipped with wind and pressure sensors. However, no stable relationship is observed between the strength of the wind and the amplitude of the measured vibrations by InSights’ seismometers. Also, we are mainly sensing the wind shaking the lander, which transmits vibrations to the ground under our seismometer. These complications have led us to use the measurements themselves to work out the strength of the environmental injection rather than rely on a complex time-varying model of the possible pathways. This work shows how we can work out estimates of how much the atmosphere is affecting the seismic measurements and in particular we show that the strongest possible quakes that have been detected by InSight are above what we might have expected from just the measurements from InSight's wind and pressure sensors at that time.</dc:description>

      40. <dc:description>Seismic observations involve signals that can be easily masked by noise injection. For the NASA Mars lander InSight, the atmosphere is a significant noise contributor, impeding the identification of seismic events for two-thirds of a Martian day. While the noise is below that seen at even the quietest sites on Earth, the amplitude of seismic signals on Mars is also considerably lower, requiring an understanding and quantification of environmental injection at unprecedented levels. Mars’ ground and atmosphere are a continuously coupled seismic system, and although atmospheric functions are of distinct origins, the superposition of these noise contributions is poorly understood, making separation a challenging task. We present a novel method for partitioning the observed signal into seismic and environmental contributions. Atmospheric pressure and wind fluctuations are shown to exhibit temporal cross-frequency coupling across multiple bands, injecting noise that is neither random nor coherent. We investigate this through comodulation, quantifying the synchrony of the seismic motion, wind and pressure signals. By working in the time-frequency domain, we discriminate between the different origins of underlying processes and determine the site's environmental sensitivity. Our method aims to create a virtual vault at InSight's landing site on Mars, shielding the seismometers with effective postprocessing in lieu of a physical vault. This allows us to describe the environmental and seismic signals over a sequence of sols, to quantify the wind and pressure injection and estimate the seismic content of possible marsquakes with a signal-to-noise ratio that can be quantified in terms of environmental independence. Finally, we exploit the relationship between the comodulated signals to identify their sources.</dc:description>

      41. <dc:date>2022-02-15T14:25:27Z</dc:date>

      42. <dc:date>2022-02-15T14:25:27Z</dc:date>

      43. <dc:date>2021-02-08</dc:date>

      44. <dc:type>info:eu-repo/semantics/article</dc:type>

      45. <dc:identifier>Journal of Geophysical Research: Planets 126(4): e2020JE006538(2021)</dc:identifier>

      46. <dc:identifier>2169-9097</dc:identifier>

      47. <dc:identifier>https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2020JE006538</dc:identifier>

      48. <dc:identifier>http://hdl.handle.net/20.500.12666/608</dc:identifier>

      49. <dc:identifier>10.1029/2020JE006538</dc:identifier>

      50. <dc:identifier>2169-9100</dc:identifier>

      51. <dc:language>eng</dc:language>

      52. <dc:rights>© 2021. The Authors.</dc:rights>

      53. <dc:rights>https://creativecommons.org/licenses/by-nc-nd/4.0/</dc:rights>

      54. <dc:rights>info:eu-repo/semantics/openAccess</dc:rights>

      55. <dc:rights>Attribution-NonCommercial-NoDerivatives 4.0 International</dc:rights>

      56. <dc:publisher>Advancing Earth and Space Science AGU</dc:publisher>

      </ow:Publication>

    </rdf:RDF>

xoai

Descargar XML

Se ha omitido la presentación del registro por ser demasiado largo. Si lo desea, puede descargárselo en el enlace anterior.

Hispana

Portal de acceso al patrimonio digital y el agregador nacional de contenidos a Europeana.

Contacto

Accede a nuestro formulario y te contestaremos con la mayor brevedad.

Contacto

Twitter

Tweets by Hispana_roai

Facebook

HISPANA
© Ministerio de Cultura y Deporte
  • Aviso Legal
  • Accesibilidad