<?xml version="1.0" encoding="UTF-8" ?>
<oai_dc:dc schemaLocation="http://www.openarchives.org/OAI/2.0/oai_dc/ http://www.openarchives.org/OAI/2.0/oai_dc.xsd">
<dc:title>A Comparison between Multiple Regression Models and CUN-BAE Equation to Predict Body Fat in Adults</dc:title>
<dc:creator>Fuster-Parra, Pilar</dc:creator>
<dc:creator>Bennasar-Veny, Miquel</dc:creator>
<dc:creator>Tauler, Pedro</dc:creator>
<dc:creator>Yáñez, Aina M.</dc:creator>
<dc:creator>López-González, Angel Arturo</dc:creator>
<dc:creator>Aguilo, Antoni</dc:creator>
<dc:subject>Anthropometry</dc:subject>
<dc:subject>Aged</dc:subject>
<dc:subject>European Continental Ancestry Group</dc:subject>
<dc:subject>Young Adult</dc:subject>
<dc:subject>Adult</dc:subject>
<dc:subject>Adipose Tissue</dc:subject>
<dc:subject>Humans</dc:subject>
<dc:subject>Middle Aged</dc:subject>
<dc:subject>Cross-Sectional Studies</dc:subject>
<dc:subject>Adiposity</dc:subject>
<dc:subject>Body Mass Index</dc:subject>
<dc:subject>Models, Statistical</dc:subject>
<dc:subject>Regression Analysis</dc:subject>
<dc:subject>Índice de Masa Corporal</dc:subject>
<dc:subject>Modelos Estadísticos</dc:subject>
<dc:subject>Grupo de Ascendencia Continental Europea</dc:subject>
<dc:subject>Tejido Adiposo</dc:subject>
<dc:subject>Estudios Transversales</dc:subject>
<dc:subject>Humanos</dc:subject>
<dc:subject>Persona de Mediana Edad</dc:subject>
<dc:subject>Adulto Joven</dc:subject>
<dc:subject>Anciano</dc:subject>
<dc:subject>Antropometría</dc:subject>
<dc:subject>Adulto</dc:subject>
<dc:subject>Análisis de Regresión</dc:subject>
<dc:subject>Adiposidad</dc:subject>
<dc:description>Background Because the accurate measure of body fat (BF) is difficult, several prediction equations have been proposed. The aim of this study was to compare different multiple regression models to predict BF, including the recently reported CUN-BAE equation. Methods Multi regression models using body mass index (BMI) and body adiposity index (BAI) as predictors of BF will be compared. These models will be also compared with the CUN-BAE equation. For all the analysis a sample including all the participants and another one including only the overweight and obese subjects will be considered. The BF reference measure was made using Bioelectrical Impedance Analysis. Results The simplest models including only BMI or BAI as independent variables showed that BAI is a better predictor of BF. However, adding the variable sex to both models made BMI a better predictor than the BAI. For both the whole group of participants and the group of overweight and obese participants, using simple models (BMI, age and sex as variables) allowed obtaining similar correlations with BF as when the more complex CUN-BAE was used (rho = 0:87 vs rho= 0:86 for the whole sample and rho= 0:88 vs rho= 0:89 for overweight and obese subjects, being the second value the one for CUN-BAE). Conclusions There are simpler models than CUN-BAE equation that fits BF as well as CUN-BAE does. Therefore, it could be considered that CUN-BAE overfits. Using a simple linear regression model, the BAI, as the only variable, predicts BF better than BMI. However, when the sex variable is introduced, BMI becomes the indicator of choice to predict BF.</dc:description>
<dc:description>This work was supported by the Spanish Ministry of Science and Innovation (PI 13/01477). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.</dc:description>
<dc:date>2021-08-25T06:50:22Z</dc:date>
<dc:date>2021-08-25T06:50:22Z</dc:date>
<dc:date>2015-03-30</dc:date>
<dc:type>research article</dc:type>
<dc:identifier>Fuster-Parra P, Bennasar-Veny M, Tauler Riera P, Yañez AM, Lopez Gonzalez AA, Aguilo A. A Comparison between Multiple Regression Models and CUN-BAE Equation to Predict Body Fat in Adults. PLoS One. 2015 Mar 30;10(3):e0122291.</dc:identifier>
<dc:identifier>1932-6203</dc:identifier>
<dc:identifier>http://hdl.handle.net/20.500.13003/10904</dc:identifier>
<dc:identifier>10.1371/journal.pone.0122291</dc:identifier>
<dc:identifier>25821960</dc:identifier>
<dc:identifier>L603554891</dc:identifier>
<dc:identifier>2-s2.0-84926292396</dc:identifier>
<dc:identifier>000352134700162</dc:identifier>
<dc:language>eng</dc:language>
<dc:relation>https://dx.doi.org/10.1371/journal.pone.0122291</dc:relation>
<dc:rights>Attribution 4.0 International</dc:rights>
<dc:rights>http://creativecommons.org/licenses/by/4.0/</dc:rights>
<dc:rights>open access</dc:rights>
<dc:publisher>Public Library Science</dc:publisher>
</oai_dc:dc>
<?xml version="1.0" encoding="UTF-8" ?>
<d:DIDL schemaLocation="urn:mpeg:mpeg21:2002:02-DIDL-NS http://standards.iso.org/ittf/PubliclyAvailableStandards/MPEG-21_schema_files/did/didl.xsd">
<d:DIDLInfo>
<dcterms:created schemaLocation="http://purl.org/dc/terms/ http://dublincore.org/schemas/xmls/qdc/dcterms.xsd">2021-08-25T06:50:22Z</dcterms:created>
</d:DIDLInfo>
<d:Item id="hdl_20.500.13003_10904">
<d:Descriptor>
<d:Statement mimeType="application/xml; charset=utf-8">
<dii:Identifier schemaLocation="urn:mpeg:mpeg21:2002:01-DII-NS http://standards.iso.org/ittf/PubliclyAvailableStandards/MPEG-21_schema_files/dii/dii.xsd">urn:hdl:20.500.13003/10904</dii:Identifier>
</d:Statement>
</d:Descriptor>
<d:Descriptor>
<d:Statement mimeType="application/xml; charset=utf-8">
<oai_dc:dc schemaLocation="http://www.openarchives.org/OAI/2.0/oai_dc/ http://www.openarchives.org/OAI/2.0/oai_dc.xsd">
<dc:title>A Comparison between Multiple Regression Models and CUN-BAE Equation to Predict Body Fat in Adults</dc:title>
<dc:creator>Fuster-Parra, Pilar</dc:creator>
<dc:creator>Bennasar-Veny, Miquel</dc:creator>
<dc:creator>Tauler, Pedro</dc:creator>
<dc:creator>Yáñez, Aina M.</dc:creator>
<dc:creator>López-González, Angel Arturo</dc:creator>
<dc:creator>Aguilo, Antoni</dc:creator>
<dc:description>Background Because the accurate measure of body fat (BF) is difficult, several prediction equations have been proposed. The aim of this study was to compare different multiple regression models to predict BF, including the recently reported CUN-BAE equation. Methods Multi regression models using body mass index (BMI) and body adiposity index (BAI) as predictors of BF will be compared. These models will be also compared with the CUN-BAE equation. For all the analysis a sample including all the participants and another one including only the overweight and obese subjects will be considered. The BF reference measure was made using Bioelectrical Impedance Analysis. Results The simplest models including only BMI or BAI as independent variables showed that BAI is a better predictor of BF. However, adding the variable sex to both models made BMI a better predictor than the BAI. For both the whole group of participants and the group of overweight and obese participants, using simple models (BMI, age and sex as variables) allowed obtaining similar correlations with BF as when the more complex CUN-BAE was used (rho = 0:87 vs rho= 0:86 for the whole sample and rho= 0:88 vs rho= 0:89 for overweight and obese subjects, being the second value the one for CUN-BAE). Conclusions There are simpler models than CUN-BAE equation that fits BF as well as CUN-BAE does. Therefore, it could be considered that CUN-BAE overfits. Using a simple linear regression model, the BAI, as the only variable, predicts BF better than BMI. However, when the sex variable is introduced, BMI becomes the indicator of choice to predict BF.</dc:description>
<dc:date>2021-08-25T06:50:22Z</dc:date>
<dc:date>2021-08-25T06:50:22Z</dc:date>
<dc:date>2015-03-30</dc:date>
<dc:type>research article</dc:type>
<dc:identifier>Fuster-Parra P, Bennasar-Veny M, Tauler Riera P, Yañez AM, Lopez Gonzalez AA, Aguilo A. A Comparison between Multiple Regression Models and CUN-BAE Equation to Predict Body Fat in Adults. PLoS One. 2015 Mar 30;10(3):e0122291.</dc:identifier>
<dc:identifier>1932-6203</dc:identifier>
<dc:identifier>http://hdl.handle.net/20.500.13003/10904</dc:identifier>
<dc:identifier>10.1371/journal.pone.0122291</dc:identifier>
<dc:identifier>25821960</dc:identifier>
<dc:identifier>L603554891</dc:identifier>
<dc:identifier>2-s2.0-84926292396</dc:identifier>
<dc:identifier>000352134700162</dc:identifier>
<dc:language>eng</dc:language>
<dc:relation>https://dx.doi.org/10.1371/journal.pone.0122291</dc:relation>
<dc:rights>http://creativecommons.org/licenses/by/4.0/</dc:rights>
<dc:rights>open access</dc:rights>
<dc:rights>Attribution 4.0 International</dc:rights>
<dc:publisher>Public Library Science</dc:publisher>
</oai_dc:dc>
</d:Statement>
</d:Descriptor>
<d:Component id="20.500.13003_10904_1">
</d:Component>
</d:Item>
</d:DIDL>
<?xml version="1.0" encoding="UTF-8" ?>
<dim:dim schemaLocation="http://www.dspace.org/xmlns/dspace/dim http://www.dspace.org/schema/dim.xsd">
<dim:field authority="261" confidence="500" element="contributor" mdschema="dc" orcid_id="0000-0003-2929-1625" qualifier="author">Fuster-Parra, Pilar</dim:field>
<dim:field authority="81" confidence="500" element="contributor" mdschema="dc" orcid_id="0000-0003-1668-2141" qualifier="author">Bennasar-Veny, Miquel</dim:field>
<dim:field authority="833" confidence="500" element="contributor" mdschema="dc" orcid_id="0000-0003-0841-1720" qualifier="author">Tauler, Pedro</dim:field>
<dim:field authority="799" confidence="500" element="contributor" mdschema="dc" orcid_id="" qualifier="author">Yáñez, Aina M.</dim:field>
<dim:field authority="999" confidence="500" element="contributor" mdschema="dc" orcid_id="" qualifier="author">López-González, Angel Arturo</dim:field>
<dim:field authority="5" confidence="500" element="contributor" mdschema="dc" orcid_id="0000-0001-5162-0996" qualifier="author">Aguilo, Antoni</dim:field>
<dim:field element="date" mdschema="dc" qualifier="accessioned">2021-08-25T06:50:22Z</dim:field>
<dim:field element="date" mdschema="dc" qualifier="available">2021-08-25T06:50:22Z</dim:field>
<dim:field element="date" mdschema="dc" qualifier="issued">2015-03-30</dim:field>
<dim:field element="identifier" lang="en" mdschema="dc" qualifier="citation">Fuster-Parra P, Bennasar-Veny M, Tauler Riera P, Yañez AM, Lopez Gonzalez AA, Aguilo A. A Comparison between Multiple Regression Models and CUN-BAE Equation to Predict Body Fat in Adults. PLoS One. 2015 Mar 30;10(3):e0122291.</dim:field>
<dim:field element="identifier" mdschema="dc" qualifier="issn">1932-6203</dim:field>
<dim:field element="identifier" mdschema="dc" qualifier="uri">http://hdl.handle.net/20.500.13003/10904</dim:field>
<dim:field element="identifier" mdschema="dc" qualifier="doi">10.1371/journal.pone.0122291</dim:field>
<dim:field element="identifier" mdschema="dc" qualifier="pmid">25821960</dim:field>
<dim:field element="identifier" mdschema="dc" qualifier="pui">L603554891</dim:field>
<dim:field element="identifier" mdschema="dc" qualifier="scopus">2-s2.0-84926292396</dim:field>
<dim:field element="identifier" mdschema="dc" qualifier="wos">000352134700162</dim:field>
<dim:field element="description" lang="en" mdschema="dc" qualifier="abstract">Background Because the accurate measure of body fat (BF) is difficult, several prediction equations have been proposed. The aim of this study was to compare different multiple regression models to predict BF, including the recently reported CUN-BAE equation. Methods Multi regression models using body mass index (BMI) and body adiposity index (BAI) as predictors of BF will be compared. These models will be also compared with the CUN-BAE equation. For all the analysis a sample including all the participants and another one including only the overweight and obese subjects will be considered. The BF reference measure was made using Bioelectrical Impedance Analysis. Results The simplest models including only BMI or BAI as independent variables showed that BAI is a better predictor of BF. However, adding the variable sex to both models made BMI a better predictor than the BAI. For both the whole group of participants and the group of overweight and obese participants, using simple models (BMI, age and sex as variables) allowed obtaining similar correlations with BF as when the more complex CUN-BAE was used (rho = 0:87 vs rho= 0:86 for the whole sample and rho= 0:88 vs rho= 0:89 for overweight and obese subjects, being the second value the one for CUN-BAE). Conclusions There are simpler models than CUN-BAE equation that fits BF as well as CUN-BAE does. Therefore, it could be considered that CUN-BAE overfits. Using a simple linear regression model, the BAI, as the only variable, predicts BF better than BMI. However, when the sex variable is introduced, BMI becomes the indicator of choice to predict BF.</dim:field>
<dim:field element="description" lang="en" mdschema="dc" qualifier="fundingtext">This work was supported by the Spanish Ministry of Science and Innovation (PI 13/01477). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.</dim:field>
<dim:field element="language" lang="en" mdschema="dc" qualifier="iso">eng</dim:field>
<dim:field element="publisher" lang="en" mdschema="dc">Public Library Science</dim:field>
<dim:field element="rights" lang="*" mdschema="dc">Attribution 4.0 International</dim:field>
<dim:field element="rights" lang="*" mdschema="dc" qualifier="uri">http://creativecommons.org/licenses/by/4.0/</dim:field>
<dim:field element="rights" lang="en" mdschema="dc" qualifier="accessRights">open access</dim:field>
<dim:field authority="D000886" confidence="500" element="subject" lang="*" mdschema="dc" qualifier="mesh">Anthropometry</dim:field>
<dim:field authority="D000368" confidence="500" element="subject" lang="*" mdschema="dc" qualifier="mesh">Aged</dim:field>
<dim:field authority="D044465" confidence="500" element="subject" lang="*" mdschema="dc" qualifier="mesh">European Continental Ancestry Group</dim:field>
<dim:field authority="D055815" confidence="500" element="subject" lang="*" mdschema="dc" qualifier="mesh">Young Adult</dim:field>
<dim:field authority="D000328" confidence="500" element="subject" lang="*" mdschema="dc" qualifier="mesh">Adult</dim:field>
<dim:field authority="D000273" confidence="500" element="subject" lang="*" mdschema="dc" qualifier="mesh">Adipose Tissue</dim:field>
<dim:field authority="D006801" confidence="500" element="subject" lang="*" mdschema="dc" qualifier="mesh">Humans</dim:field>
<dim:field authority="D008875" confidence="500" element="subject" lang="*" mdschema="dc" qualifier="mesh">Middle Aged</dim:field>
<dim:field authority="D003430" confidence="500" element="subject" lang="*" mdschema="dc" qualifier="mesh">Cross-Sectional Studies</dim:field>
<dim:field authority="D050154" confidence="500" element="subject" lang="*" mdschema="dc" qualifier="mesh">Adiposity</dim:field>
<dim:field authority="D015992" confidence="500" element="subject" lang="*" mdschema="dc" qualifier="mesh">Body Mass Index</dim:field>
<dim:field authority="D015233" confidence="500" element="subject" lang="*" mdschema="dc" qualifier="mesh">Models, Statistical</dim:field>
<dim:field authority="D012044" confidence="500" element="subject" lang="*" mdschema="dc" qualifier="mesh">Regression Analysis</dim:field>
<dim:field authority="DECSD015992" confidence="500" element="subject" lang="*" mdschema="dc" qualifier="decs">Índice de Masa Corporal</dim:field>
<dim:field authority="DECSD015233" confidence="500" element="subject" lang="*" mdschema="dc" qualifier="decs">Modelos Estadísticos</dim:field>
<dim:field authority="DECSD044465" confidence="500" element="subject" lang="*" mdschema="dc" qualifier="decs">Grupo de Ascendencia Continental Europea</dim:field>
<dim:field authority="DECSD000273" confidence="500" element="subject" lang="*" mdschema="dc" qualifier="decs">Tejido Adiposo</dim:field>
<dim:field authority="DECSD003430" confidence="500" element="subject" lang="*" mdschema="dc" qualifier="decs">Estudios Transversales</dim:field>
<dim:field authority="DECSD006801" confidence="500" element="subject" lang="*" mdschema="dc" qualifier="decs">Humanos</dim:field>
<dim:field authority="DECSD008875" confidence="500" element="subject" lang="*" mdschema="dc" qualifier="decs">Persona de Mediana Edad</dim:field>
<dim:field authority="DECSD055815" confidence="500" element="subject" lang="*" mdschema="dc" qualifier="decs">Adulto Joven</dim:field>
<dim:field authority="DECSD000368" confidence="500" element="subject" lang="*" mdschema="dc" qualifier="decs">Anciano</dim:field>
<dim:field authority="DECSD000886" confidence="500" element="subject" lang="*" mdschema="dc" qualifier="decs">Antropometría</dim:field>
<dim:field authority="DECSD000328" confidence="500" element="subject" lang="*" mdschema="dc" qualifier="decs">Adulto</dim:field>
<dim:field authority="DECSD012044" confidence="500" element="subject" lang="*" mdschema="dc" qualifier="decs">Análisis de Regresión</dim:field>
<dim:field authority="DECSD050154" confidence="500" element="subject" lang="*" mdschema="dc" qualifier="decs">Adiposidad</dim:field>
<dim:field element="title" lang="en" mdschema="dc">A Comparison between Multiple Regression Models and CUN-BAE Equation to Predict Body Fat in Adults</dim:field>
<dim:field element="type" lang="en" mdschema="dc">research article</dim:field>
<dim:field element="issue" lang="en" mdschema="dc" qualifier="number">3</dim:field>
<dim:field element="journal" lang="en" mdschema="dc" qualifier="title">PloS One</dim:field>
<dim:field element="page" lang="en" mdschema="dc" qualifier="initial">e0122291</dim:field>
<dim:field element="relation" lang="en" mdschema="dc" qualifier="publisherversion">https://dx.doi.org/10.1371/journal.pone.0122291</dim:field>
<dim:field element="volume" lang="en" mdschema="dc" qualifier="number">10</dim:field>
</dim:dim>
<?xml version="1.0" encoding="UTF-8" ?>
<thesis schemaLocation="http://www.ndltd.org/standards/metadata/etdms/1.0/ http://www.ndltd.org/standards/metadata/etdms/1.0/etdms.xsd">
<title>A Comparison between Multiple Regression Models and CUN-BAE Equation to Predict Body Fat in Adults</title>
<creator>Fuster-Parra, Pilar</creator>
<creator>Bennasar-Veny, Miquel</creator>
<creator>Tauler, Pedro</creator>
<creator>Yáñez, Aina M.</creator>
<creator>López-González, Angel Arturo</creator>
<creator>Aguilo, Antoni</creator>
<description>Background Because the accurate measure of body fat (BF) is difficult, several prediction equations have been proposed. The aim of this study was to compare different multiple regression models to predict BF, including the recently reported CUN-BAE equation. Methods Multi regression models using body mass index (BMI) and body adiposity index (BAI) as predictors of BF will be compared. These models will be also compared with the CUN-BAE equation. For all the analysis a sample including all the participants and another one including only the overweight and obese subjects will be considered. The BF reference measure was made using Bioelectrical Impedance Analysis. Results The simplest models including only BMI or BAI as independent variables showed that BAI is a better predictor of BF. However, adding the variable sex to both models made BMI a better predictor than the BAI. For both the whole group of participants and the group of overweight and obese participants, using simple models (BMI, age and sex as variables) allowed obtaining similar correlations with BF as when the more complex CUN-BAE was used (rho = 0:87 vs rho= 0:86 for the whole sample and rho= 0:88 vs rho= 0:89 for overweight and obese subjects, being the second value the one for CUN-BAE). Conclusions There are simpler models than CUN-BAE equation that fits BF as well as CUN-BAE does. Therefore, it could be considered that CUN-BAE overfits. Using a simple linear regression model, the BAI, as the only variable, predicts BF better than BMI. However, when the sex variable is introduced, BMI becomes the indicator of choice to predict BF.</description>
<date>2021-08-25</date>
<date>2021-08-25</date>
<date>2015-03-30</date>
<type>research article</type>
<identifier>Fuster-Parra P, Bennasar-Veny M, Tauler Riera P, Yañez AM, Lopez Gonzalez AA, Aguilo A. A Comparison between Multiple Regression Models and CUN-BAE Equation to Predict Body Fat in Adults. PLoS One. 2015 Mar 30;10(3):e0122291.</identifier>
<identifier>1932-6203</identifier>
<identifier>http://hdl.handle.net/20.500.13003/10904</identifier>
<identifier>10.1371/journal.pone.0122291</identifier>
<identifier>25821960</identifier>
<identifier>L603554891</identifier>
<identifier>2-s2.0-84926292396</identifier>
<identifier>000352134700162</identifier>
<language>eng</language>
<relation>https://dx.doi.org/10.1371/journal.pone.0122291</relation>
<rights>http://creativecommons.org/licenses/by/4.0/</rights>
<rights>open access</rights>
<rights>Attribution 4.0 International</rights>
<publisher>Public Library Science</publisher>
</thesis>
<?xml version="1.0" encoding="UTF-8" ?>
<record schemaLocation="http://www.loc.gov/MARC21/slim http://www.loc.gov/standards/marcxml/schema/MARC21slim.xsd">
<leader>00925njm 22002777a 4500</leader>
<datafield ind1=" " ind2=" " tag="042">
<subfield code="a">dc</subfield>
</datafield>
<datafield ind1=" " ind2=" " tag="720">
<subfield code="a">Fuster-Parra, Pilar</subfield>
<subfield code="e">author</subfield>
</datafield>
<datafield ind1=" " ind2=" " tag="720">
<subfield code="a">Bennasar-Veny, Miquel</subfield>
<subfield code="e">author</subfield>
</datafield>
<datafield ind1=" " ind2=" " tag="720">
<subfield code="a">Tauler, Pedro</subfield>
<subfield code="e">author</subfield>
</datafield>
<datafield ind1=" " ind2=" " tag="720">
<subfield code="a">Yáñez, Aina M.</subfield>
<subfield code="e">author</subfield>
</datafield>
<datafield ind1=" " ind2=" " tag="720">
<subfield code="a">López-González, Angel Arturo</subfield>
<subfield code="e">author</subfield>
</datafield>
<datafield ind1=" " ind2=" " tag="720">
<subfield code="a">Aguilo, Antoni</subfield>
<subfield code="e">author</subfield>
</datafield>
<datafield ind1=" " ind2=" " tag="260">
<subfield code="c">2015-03-30</subfield>
</datafield>
<datafield ind1=" " ind2=" " tag="520">
<subfield code="a">Background Because the accurate measure of body fat (BF) is difficult, several prediction equations have been proposed. The aim of this study was to compare different multiple regression models to predict BF, including the recently reported CUN-BAE equation. Methods Multi regression models using body mass index (BMI) and body adiposity index (BAI) as predictors of BF will be compared. These models will be also compared with the CUN-BAE equation. For all the analysis a sample including all the participants and another one including only the overweight and obese subjects will be considered. The BF reference measure was made using Bioelectrical Impedance Analysis. Results The simplest models including only BMI or BAI as independent variables showed that BAI is a better predictor of BF. However, adding the variable sex to both models made BMI a better predictor than the BAI. For both the whole group of participants and the group of overweight and obese participants, using simple models (BMI, age and sex as variables) allowed obtaining similar correlations with BF as when the more complex CUN-BAE was used (rho = 0:87 vs rho= 0:86 for the whole sample and rho= 0:88 vs rho= 0:89 for overweight and obese subjects, being the second value the one for CUN-BAE). Conclusions There are simpler models than CUN-BAE equation that fits BF as well as CUN-BAE does. Therefore, it could be considered that CUN-BAE overfits. Using a simple linear regression model, the BAI, as the only variable, predicts BF better than BMI. However, when the sex variable is introduced, BMI becomes the indicator of choice to predict BF.</subfield>
</datafield>
<datafield ind1="8" ind2=" " tag="024">
<subfield code="a">Fuster-Parra P, Bennasar-Veny M, Tauler Riera P, Yañez AM, Lopez Gonzalez AA, Aguilo A. A Comparison between Multiple Regression Models and CUN-BAE Equation to Predict Body Fat in Adults. PLoS One. 2015 Mar 30;10(3):e0122291.</subfield>
</datafield>
<datafield ind1="8" ind2=" " tag="024">
<subfield code="a">1932-6203</subfield>
</datafield>
<datafield ind1="8" ind2=" " tag="024">
<subfield code="a">http://hdl.handle.net/20.500.13003/10904</subfield>
</datafield>
<datafield ind1="8" ind2=" " tag="024">
<subfield code="a">10.1371/journal.pone.0122291</subfield>
</datafield>
<datafield ind1="8" ind2=" " tag="024">
<subfield code="a">25821960</subfield>
</datafield>
<datafield ind1="8" ind2=" " tag="024">
<subfield code="a">L603554891</subfield>
</datafield>
<datafield ind1="8" ind2=" " tag="024">
<subfield code="a">2-s2.0-84926292396</subfield>
</datafield>
<datafield ind1="8" ind2=" " tag="024">
<subfield code="a">000352134700162</subfield>
</datafield>
<datafield ind1="0" ind2="0" tag="245">
<subfield code="a">A Comparison between Multiple Regression Models and CUN-BAE Equation to Predict Body Fat in Adults</subfield>
</datafield>
</record>
<?xml version="1.0" encoding="UTF-8" ?>
<mets ID=" DSpace_ITEM_20.500.13003-10904" OBJID=" hdl:20.500.13003/10904" PROFILE="DSpace METS SIP Profile 1.0" TYPE="DSpace ITEM" schemaLocation="http://www.loc.gov/METS/ http://www.loc.gov/standards/mets/mets.xsd">
<metsHdr CREATEDATE="2023-03-27T17:47:28Z">
<agent ROLE="CUSTODIAN" TYPE="ORGANIZATION">
<name>Docusalut</name>
</agent>
</metsHdr>
<dmdSec ID="DMD_20.500.13003_10904">
<mdWrap MDTYPE="MODS">
<xmlData schemaLocation="http://www.loc.gov/mods/v3 http://www.loc.gov/standards/mods/v3/mods-3-1.xsd">
<mods:mods schemaLocation="http://www.loc.gov/mods/v3 http://www.loc.gov/standards/mods/v3/mods-3-1.xsd">
<mods:name>
<mods:role>
<mods:roleTerm type="text">author</mods:roleTerm>
</mods:role>
<mods:namePart>Fuster-Parra, Pilar</mods:namePart>
</mods:name>
<mods:name>
<mods:role>
<mods:roleTerm type="text">author</mods:roleTerm>
</mods:role>
<mods:namePart>Bennasar-Veny, Miquel</mods:namePart>
</mods:name>
<mods:name>
<mods:role>
<mods:roleTerm type="text">author</mods:roleTerm>
</mods:role>
<mods:namePart>Tauler, Pedro</mods:namePart>
</mods:name>
<mods:name>
<mods:role>
<mods:roleTerm type="text">author</mods:roleTerm>
</mods:role>
<mods:namePart>Yáñez, Aina M.</mods:namePart>
</mods:name>
<mods:name>
<mods:role>
<mods:roleTerm type="text">author</mods:roleTerm>
</mods:role>
<mods:namePart>López-González, Angel Arturo</mods:namePart>
</mods:name>
<mods:name>
<mods:role>
<mods:roleTerm type="text">author</mods:roleTerm>
</mods:role>
<mods:namePart>Aguilo, Antoni</mods:namePart>
</mods:name>
<mods:extension>
<mods:dateAccessioned encoding="iso8601">2021-08-25T06:50:22Z</mods:dateAccessioned>
</mods:extension>
<mods:extension>
<mods:dateAvailable encoding="iso8601">2021-08-25T06:50:22Z</mods:dateAvailable>
</mods:extension>
<mods:originInfo>
<mods:dateIssued encoding="iso8601">2015-03-30</mods:dateIssued>
</mods:originInfo>
<mods:identifier type="citation">Fuster-Parra P, Bennasar-Veny M, Tauler Riera P, Yañez AM, Lopez Gonzalez AA, Aguilo A. A Comparison between Multiple Regression Models and CUN-BAE Equation to Predict Body Fat in Adults. PLoS One. 2015 Mar 30;10(3):e0122291.</mods:identifier>
<mods:identifier type="issn">1932-6203</mods:identifier>
<mods:identifier type="uri">http://hdl.handle.net/20.500.13003/10904</mods:identifier>
<mods:identifier type="doi">10.1371/journal.pone.0122291</mods:identifier>
<mods:identifier type="pmid">25821960</mods:identifier>
<mods:identifier type="pui">L603554891</mods:identifier>
<mods:identifier type="scopus">2-s2.0-84926292396</mods:identifier>
<mods:identifier type="wos">000352134700162</mods:identifier>
<mods:abstract>Background Because the accurate measure of body fat (BF) is difficult, several prediction equations have been proposed. The aim of this study was to compare different multiple regression models to predict BF, including the recently reported CUN-BAE equation. Methods Multi regression models using body mass index (BMI) and body adiposity index (BAI) as predictors of BF will be compared. These models will be also compared with the CUN-BAE equation. For all the analysis a sample including all the participants and another one including only the overweight and obese subjects will be considered. The BF reference measure was made using Bioelectrical Impedance Analysis. Results The simplest models including only BMI or BAI as independent variables showed that BAI is a better predictor of BF. However, adding the variable sex to both models made BMI a better predictor than the BAI. For both the whole group of participants and the group of overweight and obese participants, using simple models (BMI, age and sex as variables) allowed obtaining similar correlations with BF as when the more complex CUN-BAE was used (rho = 0:87 vs rho= 0:86 for the whole sample and rho= 0:88 vs rho= 0:89 for overweight and obese subjects, being the second value the one for CUN-BAE). Conclusions There are simpler models than CUN-BAE equation that fits BF as well as CUN-BAE does. Therefore, it could be considered that CUN-BAE overfits. Using a simple linear regression model, the BAI, as the only variable, predicts BF better than BMI. However, when the sex variable is introduced, BMI becomes the indicator of choice to predict BF.</mods:abstract>
<mods:language>
<mods:languageTerm authority="rfc3066">eng</mods:languageTerm>
</mods:language>
<mods:accessCondition type="useAndReproduction">Attribution 4.0 International</mods:accessCondition>
<mods:titleInfo>
<mods:title>A Comparison between Multiple Regression Models and CUN-BAE Equation to Predict Body Fat in Adults</mods:title>
</mods:titleInfo>
<mods:genre>research article</mods:genre>
</mods:mods>
</xmlData>
</mdWrap>
</dmdSec>
<amdSec ID="FO_20.500.13003_10904_1">
<techMD ID="TECH_O_20.500.13003_10904_1">
<mdWrap MDTYPE="PREMIS">
<xmlData schemaLocation="http://www.loc.gov/standards/premis http://www.loc.gov/standards/premis/PREMIS-v1-0.xsd">
<premis:premis>
<premis:object>
<premis:objectIdentifier>
<premis:objectIdentifierType>URL</premis:objectIdentifierType>
<premis:objectIdentifierValue>https://docusalut.com/bitstream/20.500.13003/10904/1/000352134700162.pdf</premis:objectIdentifierValue>
</premis:objectIdentifier>
<premis:objectCategory>File</premis:objectCategory>
<premis:objectCharacteristics>
<premis:fixity>
<premis:messageDigestAlgorithm>MD5</premis:messageDigestAlgorithm>
<premis:messageDigest>6405140e5987995784df1914c9aedd87</premis:messageDigest>
</premis:fixity>
<premis:size>363353</premis:size>
<premis:format>
<premis:formatDesignation>
<premis:formatName>application/pdf</premis:formatName>
</premis:formatDesignation>
</premis:format>
</premis:objectCharacteristics>
<premis:originalName>000352134700162.pdf</premis:originalName>
</premis:object>
</premis:premis>
</xmlData>
</mdWrap>
</techMD>
</amdSec>
<amdSec ID="FT_20.500.13003_10904_3">
<techMD ID="TECH_T_20.500.13003_10904_3">
<mdWrap MDTYPE="PREMIS">
<xmlData schemaLocation="http://www.loc.gov/standards/premis http://www.loc.gov/standards/premis/PREMIS-v1-0.xsd">
<premis:premis>
<premis:object>
<premis:objectIdentifier>
<premis:objectIdentifierType>URL</premis:objectIdentifierType>
<premis:objectIdentifierValue>https://docusalut.com/bitstream/20.500.13003/10904/3/000352134700162.pdf.txt</premis:objectIdentifierValue>
</premis:objectIdentifier>
<premis:objectCategory>File</premis:objectCategory>
<premis:objectCharacteristics>
<premis:fixity>
<premis:messageDigestAlgorithm>MD5</premis:messageDigestAlgorithm>
<premis:messageDigest>8fc135df2198dbd6684f1ff0dab18371</premis:messageDigest>
</premis:fixity>
<premis:size>37448</premis:size>
<premis:format>
<premis:formatDesignation>
<premis:formatName>text/plain</premis:formatName>
</premis:formatDesignation>
</premis:format>
</premis:objectCharacteristics>
<premis:originalName>000352134700162.pdf.txt</premis:originalName>
</premis:object>
</premis:premis>
</xmlData>
</mdWrap>
</techMD>
</amdSec>
<fileSec>
<fileGrp USE="ORIGINAL">
<file ADMID="FO_20.500.13003_10904_1" CHECKSUM="6405140e5987995784df1914c9aedd87" CHECKSUMTYPE="MD5" GROUPID="GROUP_BITSTREAM_20.500.13003_10904_1" ID="BITSTREAM_ORIGINAL_20.500.13003_10904_1" MIMETYPE="application/pdf" SEQ="1" SIZE="363353">
</file>
</fileGrp>
<fileGrp USE="TEXT">
<file ADMID="FT_20.500.13003_10904_3" CHECKSUM="8fc135df2198dbd6684f1ff0dab18371" CHECKSUMTYPE="MD5" GROUPID="GROUP_BITSTREAM_20.500.13003_10904_3" ID="BITSTREAM_TEXT_20.500.13003_10904_3" MIMETYPE="text/plain" SEQ="3" SIZE="37448">
</file>
</fileGrp>
</fileSec>
<structMap LABEL="DSpace Object" TYPE="LOGICAL">
<div ADMID="DMD_20.500.13003_10904" TYPE="DSpace Object Contents">
<div TYPE="DSpace BITSTREAM">
</div>
</div>
</structMap>
</mets>
<?xml version="1.0" encoding="UTF-8" ?>
<mods:mods schemaLocation="http://www.loc.gov/mods/v3 http://www.loc.gov/standards/mods/v3/mods-3-1.xsd">
<mods:name>
<mods:namePart>Fuster-Parra, Pilar</mods:namePart>
</mods:name>
<mods:name>
<mods:namePart>Bennasar-Veny, Miquel</mods:namePart>
</mods:name>
<mods:name>
<mods:namePart>Tauler, Pedro</mods:namePart>
</mods:name>
<mods:name>
<mods:namePart>Yáñez, Aina M.</mods:namePart>
</mods:name>
<mods:name>
<mods:namePart>López-González, Angel Arturo</mods:namePart>
</mods:name>
<mods:name>
<mods:namePart>Aguilo, Antoni</mods:namePart>
</mods:name>
<mods:extension>
<mods:dateAvailable encoding="iso8601">2021-08-25T06:50:22Z</mods:dateAvailable>
</mods:extension>
<mods:extension>
<mods:dateAccessioned encoding="iso8601">2021-08-25T06:50:22Z</mods:dateAccessioned>
</mods:extension>
<mods:originInfo>
<mods:dateIssued encoding="iso8601">2015-03-30</mods:dateIssued>
</mods:originInfo>
<mods:identifier type="citation">Fuster-Parra P, Bennasar-Veny M, Tauler Riera P, Yañez AM, Lopez Gonzalez AA, Aguilo A. A Comparison between Multiple Regression Models and CUN-BAE Equation to Predict Body Fat in Adults. PLoS One. 2015 Mar 30;10(3):e0122291.</mods:identifier>
<mods:identifier type="issn">1932-6203</mods:identifier>
<mods:identifier type="uri">http://hdl.handle.net/20.500.13003/10904</mods:identifier>
<mods:identifier type="doi">10.1371/journal.pone.0122291</mods:identifier>
<mods:identifier type="pmid">25821960</mods:identifier>
<mods:identifier type="pui">L603554891</mods:identifier>
<mods:identifier type="scopus">2-s2.0-84926292396</mods:identifier>
<mods:identifier type="wos">000352134700162</mods:identifier>
<mods:abstract>Background Because the accurate measure of body fat (BF) is difficult, several prediction equations have been proposed. The aim of this study was to compare different multiple regression models to predict BF, including the recently reported CUN-BAE equation. Methods Multi regression models using body mass index (BMI) and body adiposity index (BAI) as predictors of BF will be compared. These models will be also compared with the CUN-BAE equation. For all the analysis a sample including all the participants and another one including only the overweight and obese subjects will be considered. The BF reference measure was made using Bioelectrical Impedance Analysis. Results The simplest models including only BMI or BAI as independent variables showed that BAI is a better predictor of BF. However, adding the variable sex to both models made BMI a better predictor than the BAI. For both the whole group of participants and the group of overweight and obese participants, using simple models (BMI, age and sex as variables) allowed obtaining similar correlations with BF as when the more complex CUN-BAE was used (rho = 0:87 vs rho= 0:86 for the whole sample and rho= 0:88 vs rho= 0:89 for overweight and obese subjects, being the second value the one for CUN-BAE). Conclusions There are simpler models than CUN-BAE equation that fits BF as well as CUN-BAE does. Therefore, it could be considered that CUN-BAE overfits. Using a simple linear regression model, the BAI, as the only variable, predicts BF better than BMI. However, when the sex variable is introduced, BMI becomes the indicator of choice to predict BF.</mods:abstract>
<mods:language>
<mods:languageTerm>eng</mods:languageTerm>
</mods:language>
<mods:accessCondition type="useAndReproduction">http://creativecommons.org/licenses/by/4.0/</mods:accessCondition>
<mods:accessCondition type="useAndReproduction">open access</mods:accessCondition>
<mods:accessCondition type="useAndReproduction">Attribution 4.0 International</mods:accessCondition>
<mods:titleInfo>
<mods:title>A Comparison between Multiple Regression Models and CUN-BAE Equation to Predict Body Fat in Adults</mods:title>
</mods:titleInfo>
<mods:genre>research article</mods:genre>
</mods:mods>
<?xml version="1.0" encoding="UTF-8" ?>
<atom:entry schemaLocation="http://www.w3.org/2005/Atom http://www.kbcafe.com/rss/atom.xsd.xml">
<atom:id>http://hdl.handle.net/20.500.13003/10904/ore.xml</atom:id>
<atom:published>2021-08-25T06:50:22Z</atom:published>
<atom:updated>2021-08-25T06:50:22Z</atom:updated>
<atom:source>
<atom:generator>Docusalut</atom:generator>
</atom:source>
<atom:title>A Comparison between Multiple Regression Models and CUN-BAE Equation to Predict Body Fat in Adults</atom:title>
<atom:author>
<atom:name>Fuster-Parra, Pilar</atom:name>
</atom:author>
<atom:author>
<atom:name>Bennasar-Veny, Miquel</atom:name>
</atom:author>
<atom:author>
<atom:name>Tauler, Pedro</atom:name>
</atom:author>
<atom:author>
<atom:name>Yáñez, Aina M.</atom:name>
</atom:author>
<atom:author>
<atom:name>López-González, Angel Arturo</atom:name>
</atom:author>
<atom:author>
<atom:name>Aguilo, Antoni</atom:name>
</atom:author>
<oreatom:triples>
<rdf:Description about="http://hdl.handle.net/20.500.13003/10904/ore.xml#atom">
<dcterms:modified>2021-08-25T06:50:22Z</dcterms:modified>
</rdf:Description>
<rdf:Description about="https://docusalut.com/bitstream/20.500.13003/10904/1/000352134700162.pdf">
<dcterms:description>ORIGINAL</dcterms:description>
</rdf:Description>
<rdf:Description about="https://docusalut.com/bitstream/20.500.13003/10904/2/license_rdf">
<dcterms:description>CC-LICENSE</dcterms:description>
</rdf:Description>
<rdf:Description about="https://docusalut.com/bitstream/20.500.13003/10904/3/000352134700162.pdf.txt">
<dcterms:description>TEXT</dcterms:description>
</rdf:Description>
<rdf:Description about="https://docusalut.com/bitstream/20.500.13003/10904/4/000352134700162.pdf.jpg">
<dcterms:description>THUMBNAIL</dcterms:description>
</rdf:Description>
</oreatom:triples>
</atom:entry>
<?xml version="1.0" encoding="UTF-8" ?>
<qdc:qualifieddc schemaLocation="http://purl.org/dc/elements/1.1/ http://dublincore.org/schemas/xmls/qdc/2006/01/06/dc.xsd http://purl.org/dc/terms/ http://dublincore.org/schemas/xmls/qdc/2006/01/06/dcterms.xsd http://dspace.org/qualifieddc/ http://www.ukoln.ac.uk/metadata/dcmi/xmlschema/qualifieddc.xsd">
<dc:title>A Comparison between Multiple Regression Models and CUN-BAE Equation to Predict Body Fat in Adults</dc:title>
<dc:creator>Fuster-Parra, Pilar</dc:creator>
<dc:creator>Bennasar-Veny, Miquel</dc:creator>
<dc:creator>Tauler, Pedro</dc:creator>
<dc:creator>Yáñez, Aina M.</dc:creator>
<dc:creator>López-González, Angel Arturo</dc:creator>
<dc:creator>Aguilo, Antoni</dc:creator>
<dcterms:abstract>Background Because the accurate measure of body fat (BF) is difficult, several prediction equations have been proposed. The aim of this study was to compare different multiple regression models to predict BF, including the recently reported CUN-BAE equation. Methods Multi regression models using body mass index (BMI) and body adiposity index (BAI) as predictors of BF will be compared. These models will be also compared with the CUN-BAE equation. For all the analysis a sample including all the participants and another one including only the overweight and obese subjects will be considered. The BF reference measure was made using Bioelectrical Impedance Analysis. Results The simplest models including only BMI or BAI as independent variables showed that BAI is a better predictor of BF. However, adding the variable sex to both models made BMI a better predictor than the BAI. For both the whole group of participants and the group of overweight and obese participants, using simple models (BMI, age and sex as variables) allowed obtaining similar correlations with BF as when the more complex CUN-BAE was used (rho = 0:87 vs rho= 0:86 for the whole sample and rho= 0:88 vs rho= 0:89 for overweight and obese subjects, being the second value the one for CUN-BAE). Conclusions There are simpler models than CUN-BAE equation that fits BF as well as CUN-BAE does. Therefore, it could be considered that CUN-BAE overfits. Using a simple linear regression model, the BAI, as the only variable, predicts BF better than BMI. However, when the sex variable is introduced, BMI becomes the indicator of choice to predict BF.</dcterms:abstract>
<dcterms:dateAccepted>2021-08-25T06:50:22Z</dcterms:dateAccepted>
<dcterms:available>2021-08-25T06:50:22Z</dcterms:available>
<dcterms:created>2021-08-25T06:50:22Z</dcterms:created>
<dcterms:issued>2015-03-30</dcterms:issued>
<dc:type>research article</dc:type>
<dc:identifier>Fuster-Parra P, Bennasar-Veny M, Tauler Riera P, Yañez AM, Lopez Gonzalez AA, Aguilo A. A Comparison between Multiple Regression Models and CUN-BAE Equation to Predict Body Fat in Adults. PLoS One. 2015 Mar 30;10(3):e0122291.</dc:identifier>
<dc:identifier>1932-6203</dc:identifier>
<dc:identifier>http://hdl.handle.net/20.500.13003/10904</dc:identifier>
<dc:identifier>10.1371/journal.pone.0122291</dc:identifier>
<dc:identifier>25821960</dc:identifier>
<dc:identifier>L603554891</dc:identifier>
<dc:identifier>2-s2.0-84926292396</dc:identifier>
<dc:identifier>000352134700162</dc:identifier>
<dc:language>eng</dc:language>
<dc:relation>https://dx.doi.org/10.1371/journal.pone.0122291</dc:relation>
<dc:rights>http://creativecommons.org/licenses/by/4.0/</dc:rights>
<dc:rights>open access</dc:rights>
<dc:rights>Attribution 4.0 International</dc:rights>
<dc:publisher>Public Library Science</dc:publisher>
</qdc:qualifieddc>
<?xml version="1.0" encoding="UTF-8" ?>
<rdf:RDF schemaLocation="http://www.openarchives.org/OAI/2.0/rdf/ http://www.openarchives.org/OAI/2.0/rdf.xsd">
<ow:Publication about="oai:docusalut.com:20.500.13003/10904">
<dc:title>A Comparison between Multiple Regression Models and CUN-BAE Equation to Predict Body Fat in Adults</dc:title>
<dc:creator>Fuster-Parra, Pilar</dc:creator>
<dc:creator>Bennasar-Veny, Miquel</dc:creator>
<dc:creator>Tauler, Pedro</dc:creator>
<dc:creator>Yáñez, Aina M.</dc:creator>
<dc:creator>López-González, Angel Arturo</dc:creator>
<dc:creator>Aguilo, Antoni</dc:creator>
<dc:description>Background Because the accurate measure of body fat (BF) is difficult, several prediction equations have been proposed. The aim of this study was to compare different multiple regression models to predict BF, including the recently reported CUN-BAE equation. Methods Multi regression models using body mass index (BMI) and body adiposity index (BAI) as predictors of BF will be compared. These models will be also compared with the CUN-BAE equation. For all the analysis a sample including all the participants and another one including only the overweight and obese subjects will be considered. The BF reference measure was made using Bioelectrical Impedance Analysis. Results The simplest models including only BMI or BAI as independent variables showed that BAI is a better predictor of BF. However, adding the variable sex to both models made BMI a better predictor than the BAI. For both the whole group of participants and the group of overweight and obese participants, using simple models (BMI, age and sex as variables) allowed obtaining similar correlations with BF as when the more complex CUN-BAE was used (rho = 0:87 vs rho= 0:86 for the whole sample and rho= 0:88 vs rho= 0:89 for overweight and obese subjects, being the second value the one for CUN-BAE). Conclusions There are simpler models than CUN-BAE equation that fits BF as well as CUN-BAE does. Therefore, it could be considered that CUN-BAE overfits. Using a simple linear regression model, the BAI, as the only variable, predicts BF better than BMI. However, when the sex variable is introduced, BMI becomes the indicator of choice to predict BF.</dc:description>
<dc:date>2021-08-25T06:50:22Z</dc:date>
<dc:date>2021-08-25T06:50:22Z</dc:date>
<dc:date>2015-03-30</dc:date>
<dc:type>research article</dc:type>
<dc:identifier>Fuster-Parra P, Bennasar-Veny M, Tauler Riera P, Yañez AM, Lopez Gonzalez AA, Aguilo A. A Comparison between Multiple Regression Models and CUN-BAE Equation to Predict Body Fat in Adults. PLoS One. 2015 Mar 30;10(3):e0122291.</dc:identifier>
<dc:identifier>1932-6203</dc:identifier>
<dc:identifier>http://hdl.handle.net/20.500.13003/10904</dc:identifier>
<dc:identifier>10.1371/journal.pone.0122291</dc:identifier>
<dc:identifier>25821960</dc:identifier>
<dc:identifier>L603554891</dc:identifier>
<dc:identifier>2-s2.0-84926292396</dc:identifier>
<dc:identifier>000352134700162</dc:identifier>
<dc:language>eng</dc:language>
<dc:relation>https://dx.doi.org/10.1371/journal.pone.0122291</dc:relation>
<dc:rights>http://creativecommons.org/licenses/by/4.0/</dc:rights>
<dc:rights>open access</dc:rights>
<dc:rights>Attribution 4.0 International</dc:rights>
<dc:publisher>Public Library Science</dc:publisher>
</ow:Publication>
</rdf:RDF>
<?xml version="1.0" encoding="UTF-8" ?>
<metadata schemaLocation="http://www.lyncode.com/xoai http://www.lyncode.com/xsd/xoai.xsd">
<element name="dc">
<element name="contributor">
<element name="author">
<element name="none">
<field name="value">Fuster-Parra, Pilar</field>
<field name="authority">261</field>
<field name="confidence">500</field>
<field name="orcid_id">0000-0003-2929-1625</field>
<field name="value">Bennasar-Veny, Miquel</field>
<field name="authority">81</field>
<field name="confidence">500</field>
<field name="orcid_id">0000-0003-1668-2141</field>
<field name="value">Tauler, Pedro</field>
<field name="authority">833</field>
<field name="confidence">500</field>
<field name="orcid_id">0000-0003-0841-1720</field>
<field name="value">Yáñez, Aina M.</field>
<field name="authority">799</field>
<field name="confidence">500</field>
<field name="value">López-González, Angel Arturo</field>
<field name="authority">999</field>
<field name="confidence">500</field>
<field name="value">Aguilo, Antoni</field>
<field name="authority">5</field>
<field name="confidence">500</field>
<field name="orcid_id">0000-0001-5162-0996</field>
</element>
</element>
</element>
<element name="date">
<element name="accessioned">
<element name="none">
<field name="value">2021-08-25T06:50:22Z</field>
</element>
</element>
<element name="available">
<element name="none">
<field name="value">2021-08-25T06:50:22Z</field>
</element>
</element>
<element name="issued">
<element name="none">
<field name="value">2015-03-30</field>
</element>
</element>
<element name="embargoEndDate">
</element>
</element>
<element name="identifier">
<element name="citation">
<element name="en">
<field name="value">Fuster-Parra P, Bennasar-Veny M, Tauler Riera P, Yañez AM, Lopez Gonzalez AA, Aguilo A. A Comparison between Multiple Regression Models and CUN-BAE Equation to Predict Body Fat in Adults. PLoS One. 2015 Mar 30;10(3):e0122291.</field>
</element>
</element>
<element name="issn">
<element name="none">
<field name="value">1932-6203</field>
</element>
</element>
<element name="uri">
<element name="none">
<field name="value">http://hdl.handle.net/20.500.13003/10904</field>
</element>
</element>
<element name="doi">
<element name="none">
<field name="value">10.1371/journal.pone.0122291</field>
</element>
</element>
<element name="pmid">
<element name="none">
<field name="value">25821960</field>
</element>
</element>
<element name="pui">
<element name="none">
<field name="value">L603554891</field>
</element>
</element>
<element name="scopus">
<element name="none">
<field name="value">2-s2.0-84926292396</field>
</element>
</element>
<element name="wos">
<element name="none">
<field name="value">000352134700162</field>
</element>
</element>
</element>
<element name="description">
<element name="abstract">
<element name="en">
<field name="value">Background Because the accurate measure of body fat (BF) is difficult, several prediction equations have been proposed. The aim of this study was to compare different multiple regression models to predict BF, including the recently reported CUN-BAE equation. Methods Multi regression models using body mass index (BMI) and body adiposity index (BAI) as predictors of BF will be compared. These models will be also compared with the CUN-BAE equation. For all the analysis a sample including all the participants and another one including only the overweight and obese subjects will be considered. The BF reference measure was made using Bioelectrical Impedance Analysis. Results The simplest models including only BMI or BAI as independent variables showed that BAI is a better predictor of BF. However, adding the variable sex to both models made BMI a better predictor than the BAI. For both the whole group of participants and the group of overweight and obese participants, using simple models (BMI, age and sex as variables) allowed obtaining similar correlations with BF as when the more complex CUN-BAE was used (rho = 0:87 vs rho= 0:86 for the whole sample and rho= 0:88 vs rho= 0:89 for overweight and obese subjects, being the second value the one for CUN-BAE). Conclusions There are simpler models than CUN-BAE equation that fits BF as well as CUN-BAE does. Therefore, it could be considered that CUN-BAE overfits. Using a simple linear regression model, the BAI, as the only variable, predicts BF better than BMI. However, when the sex variable is introduced, BMI becomes the indicator of choice to predict BF.</field>
</element>
</element>
<element name="fundingtext">
<element name="en">
<field name="value">This work was supported by the Spanish Ministry of Science and Innovation (PI 13/01477). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.</field>
</element>
</element>
</element>
<element name="language">
<element name="iso">
<element name="en">
<field name="value">eng</field>
</element>
</element>
</element>
<element name="publisher">
<element name="en">
<field name="value">Public Library Science</field>
</element>
</element>
<element name="rights">
<element name="*">
<field name="value">Attribution 4.0 International</field>
</element>
<element name="uri">
<element name="*">
<field name="value">http://creativecommons.org/licenses/by/4.0/</field>
</element>
</element>
<element name="accessRights">
<element name="en">
<field name="value">open access</field>
</element>
</element>
</element>
<element name="subject">
<element name="mesh">
<element name="*">
<field name="value">Anthropometry</field>
<field name="authority">D000886</field>
<field name="confidence">500</field>
<field name="value">Aged</field>
<field name="authority">D000368</field>
<field name="confidence">500</field>
<field name="value">European Continental Ancestry Group</field>
<field name="authority">D044465</field>
<field name="confidence">500</field>
<field name="value">Young Adult</field>
<field name="authority">D055815</field>
<field name="confidence">500</field>
<field name="value">Adult</field>
<field name="authority">D000328</field>
<field name="confidence">500</field>
<field name="value">Adipose Tissue</field>
<field name="authority">D000273</field>
<field name="confidence">500</field>
<field name="value">Humans</field>
<field name="authority">D006801</field>
<field name="confidence">500</field>
<field name="value">Middle Aged</field>
<field name="authority">D008875</field>
<field name="confidence">500</field>
<field name="value">Cross-Sectional Studies</field>
<field name="authority">D003430</field>
<field name="confidence">500</field>
<field name="value">Adiposity</field>
<field name="authority">D050154</field>
<field name="confidence">500</field>
<field name="value">Body Mass Index</field>
<field name="authority">D015992</field>
<field name="confidence">500</field>
<field name="value">Models, Statistical</field>
<field name="authority">D015233</field>
<field name="confidence">500</field>
<field name="value">Regression Analysis</field>
<field name="authority">D012044</field>
<field name="confidence">500</field>
</element>
</element>
<element name="decs">
<element name="*">
<field name="value">Índice de Masa Corporal</field>
<field name="authority">DECSD015992</field>
<field name="confidence">500</field>
<field name="value">Modelos Estadísticos</field>
<field name="authority">DECSD015233</field>
<field name="confidence">500</field>
<field name="value">Grupo de Ascendencia Continental Europea</field>
<field name="authority">DECSD044465</field>
<field name="confidence">500</field>
<field name="value">Tejido Adiposo</field>
<field name="authority">DECSD000273</field>
<field name="confidence">500</field>
<field name="value">Estudios Transversales</field>
<field name="authority">DECSD003430</field>
<field name="confidence">500</field>
<field name="value">Humanos</field>
<field name="authority">DECSD006801</field>
<field name="confidence">500</field>
<field name="value">Persona de Mediana Edad</field>
<field name="authority">DECSD008875</field>
<field name="confidence">500</field>
<field name="value">Adulto Joven</field>
<field name="authority">DECSD055815</field>
<field name="confidence">500</field>
<field name="value">Anciano</field>
<field name="authority">DECSD000368</field>
<field name="confidence">500</field>
<field name="value">Antropometría</field>
<field name="authority">DECSD000886</field>
<field name="confidence">500</field>
<field name="value">Adulto</field>
<field name="authority">DECSD000328</field>
<field name="confidence">500</field>
<field name="value">Análisis de Regresión</field>
<field name="authority">DECSD012044</field>
<field name="confidence">500</field>
<field name="value">Adiposidad</field>
<field name="authority">DECSD050154</field>
<field name="confidence">500</field>
</element>
</element>
</element>
<element name="title">
<element name="en">
<field name="value">A Comparison between Multiple Regression Models and CUN-BAE Equation to Predict Body Fat in Adults</field>
</element>
</element>
<element name="type">
<element name="en">
<field name="value">research article</field>
</element>
</element>
<element name="issue">
<element name="number">
<element name="en">
<field name="value">3</field>
</element>
</element>
</element>
<element name="journal">
<element name="title">
<element name="en">
<field name="value">PloS One</field>
</element>
</element>
</element>
<element name="page">
<element name="initial">
<element name="en">
<field name="value">e0122291</field>
</element>
</element>
</element>
<element name="relation">
<element name="publisherversion">
<element name="en">
<field name="value">https://dx.doi.org/10.1371/journal.pone.0122291</field>
</element>
</element>
</element>
<element name="volume">
<element name="number">
<element name="en">
<field name="value">10</field>
</element>
</element>
</element>
</element>
<element name="bundles">
<element name="bundle">
<field name="name">ORIGINAL</field>
<element name="bitstreams">
<element name="bitstream">
<field name="name">000352134700162.pdf</field>
<field name="format">application/pdf</field>
<field name="size">363353</field>
<field name="url">https://docusalut.com/bitstream/20.500.13003/10904/1/000352134700162.pdf</field>
<field name="checksum">6405140e5987995784df1914c9aedd87</field>
<field name="checksumAlgorithm">MD5</field>
<field name="sid">1</field>
<field name="drm">open access</field>
</element>
</element>
</element>
<element name="bundle">
<field name="name">CC-LICENSE</field>
<element name="bitstreams">
<element name="bitstream">
<field name="name">license_rdf</field>
<field name="format">application/octet-stream</field>
<field name="size">908</field>
<field name="url">https://docusalut.com/bitstream/20.500.13003/10904/2/license_rdf</field>
<field name="checksum">0175ea4a2d4caec4bbcc37e300941108</field>
<field name="checksumAlgorithm">MD5</field>
<field name="sid">2</field>
<field name="drm">open access</field>
</element>
</element>
</element>
<element name="bundle">
<field name="name">TEXT</field>
<element name="bitstreams">
<element name="bitstream">
<field name="name">000352134700162.pdf.txt</field>
<field name="originalName">000352134700162.pdf.txt</field>
<field name="description">Extracted text</field>
<field name="format">text/plain</field>
<field name="size">37448</field>
<field name="url">https://docusalut.com/bitstream/20.500.13003/10904/3/000352134700162.pdf.txt</field>
<field name="checksum">8fc135df2198dbd6684f1ff0dab18371</field>
<field name="checksumAlgorithm">MD5</field>
<field name="sid">3</field>
<field name="drm">open access</field>
</element>
</element>
</element>
<element name="bundle">
<field name="name">THUMBNAIL</field>
<element name="bitstreams">
<element name="bitstream">
<field name="name">000352134700162.pdf.jpg</field>
<field name="originalName">000352134700162.pdf.jpg</field>
<field name="description">IM Thumbnail</field>
<field name="format">image/jpeg</field>
<field name="size">21394</field>
<field name="url">https://docusalut.com/bitstream/20.500.13003/10904/4/000352134700162.pdf.jpg</field>
<field name="checksum">10c752f9df425a67da6e8018c08fcf96</field>
<field name="checksumAlgorithm">MD5</field>
<field name="sid">4</field>
<field name="drm">open access</field>
</element>
</element>
</element>
</element>
<element name="others">
<field name="handle">20.500.13003/10904</field>
<field name="identifier">oai:docusalut.com:20.500.13003/10904</field>
<field name="lastModifyDate">2023-03-10 13:50:26.435</field>
<field name="drm">open access</field>
</element>
<element name="repository">
<field name="name">Docusalut</field>
<field name="mail">docusalut@bibliosalut.com</field>
</element>
</metadata>