<?xml version="1.0" encoding="UTF-8" ?>
<oai_dc:dc schemaLocation="http://www.openarchives.org/OAI/2.0/oai_dc/ http://www.openarchives.org/OAI/2.0/oai_dc.xsd">
<dc:title>3D Point cloud to BIM: semi-automated framework to define IFC alignment entities from MLS-acquired LiDAR data of highway roads</dc:title>
<dc:creator>Soilán Rodríguez, Mario</dc:creator>
<dc:creator>Justo Dominguez, Andrés</dc:creator>
<dc:creator>Sánchez Rodríguez, Ana</dc:creator>
<dc:creator>Riveiro Rodríguez, Belén</dc:creator>
<dc:subject>3311.02 Ingeniería de Control</dc:subject>
<dc:subject>3305.06 Ingeniería Civil</dc:subject>
<dc:subject>3307.07 Dispositivos láser</dc:subject>
<dc:description>Building information modeling (BIM) is a process that has shown great potential in the building industry, but it has not reached the same level of maturity for transportation infrastructure. There is a standardization need for information exchange and management processes in the infrastructure that integrates BIM and Geographic Information Systems (GIS). Currently, the Industry Foundation Classes standard has harmonized different infrastructures under the Industry Foundation Classes (IFC) 4.3 release. Furthermore, the usage of remote sensing technologies such as laser scanning for infrastructure monitoring is becoming more common. This paper presents a semi-automated framework that takes as input a raw point cloud from a mobile mapping system, and outputs an IFC-compliant file that models the alignment and the centreline of each road lane in a highway road. The point cloud processing methodology is validated for two of its key steps, namely road marking processing and alignment and road line extraction, and a UML diagram is designed for the definition of the alignment entity from the point cloud data.</dc:description>
<dc:description>Horizon 2020 Framework Programme | Ref. 769255</dc:description>
<dc:description>Ministerio de Ciencia, Innovación y Universidades | Ref. RTI2018-095893-B-C21</dc:description>
<dc:description>Ministerio de Ciencia e Innovación y Universidades | Ref. FJC2018-035550-I</dc:description>
<dc:date>2021-02-01T07:54:48Z</dc:date>
<dc:date>2021-02-01T07:54:48Z</dc:date>
<dc:date>2020-07-17</dc:date>
<dc:date>2021-01-27T11:25:19Z</dc:date>
<dc:type>article</dc:type>
<dc:identifier>Remote Sensing, 12(14): 2301 (2020)</dc:identifier>
<dc:identifier>20724292</dc:identifier>
<dc:identifier>http://hdl.handle.net/11093/1718</dc:identifier>
<dc:identifier>10.3390/rs12142301</dc:identifier>
<dc:identifier>https://www.mdpi.com/2072-4292/12/14/2301</dc:identifier>
<dc:language>eng</dc:language>
<dc:rights>Creative Commons Attribution (CC BY) license</dc:rights>
<dc:rights>(http://creativecommons.org/licenses/by/4.0/)</dc:rights>
<dc:rights>openAccess</dc:rights>
<dc:publisher>Remote Sensing</dc:publisher>
<dc:publisher>Enxeñaría dos recursos naturais e medio ambiente</dc:publisher>
<dc:publisher>Enxeñaría dos materiais, mecánica aplicada e construción</dc:publisher>
<dc:publisher>Xeotecnoloxías Aplicadas</dc:publisher>
</oai_dc:dc>
<?xml version="1.0" encoding="UTF-8" ?>
<d:DIDL schemaLocation="urn:mpeg:mpeg21:2002:02-DIDL-NS http://standards.iso.org/ittf/PubliclyAvailableStandards/MPEG-21_schema_files/did/didl.xsd">
<d:DIDLInfo>
<dcterms:created schemaLocation="http://purl.org/dc/terms/ http://dublincore.org/schemas/xmls/qdc/dcterms.xsd">2021-02-01T07:54:48Z</dcterms:created>
</d:DIDLInfo>
<d:Item id="hdl_11093_1718">
<d:Descriptor>
<d:Statement mimeType="application/xml; charset=utf-8">
<dii:Identifier schemaLocation="urn:mpeg:mpeg21:2002:01-DII-NS http://standards.iso.org/ittf/PubliclyAvailableStandards/MPEG-21_schema_files/dii/dii.xsd">urn:hdl:11093/1718</dii:Identifier>
</d:Statement>
</d:Descriptor>
<d:Descriptor>
<d:Statement mimeType="application/xml; charset=utf-8">
<oai_dc:dc schemaLocation="http://www.openarchives.org/OAI/2.0/oai_dc/ http://www.openarchives.org/OAI/2.0/oai_dc.xsd">
<dc:title>3D Point cloud to BIM: semi-automated framework to define IFC alignment entities from MLS-acquired LiDAR data of highway roads</dc:title>
<dc:creator>Soilán Rodríguez, Mario</dc:creator>
<dc:creator>Justo Dominguez, Andrés</dc:creator>
<dc:creator>Sánchez Rodríguez, Ana</dc:creator>
<dc:creator>Riveiro Rodríguez, Belén</dc:creator>
<dc:description>Building information modeling (BIM) is a process that has shown great potential in the building industry, but it has not reached the same level of maturity for transportation infrastructure. There is a standardization need for information exchange and management processes in the infrastructure that integrates BIM and Geographic Information Systems (GIS). Currently, the Industry Foundation Classes standard has harmonized different infrastructures under the Industry Foundation Classes (IFC) 4.3 release. Furthermore, the usage of remote sensing technologies such as laser scanning for infrastructure monitoring is becoming more common. This paper presents a semi-automated framework that takes as input a raw point cloud from a mobile mapping system, and outputs an IFC-compliant file that models the alignment and the centreline of each road lane in a highway road. The point cloud processing methodology is validated for two of its key steps, namely road marking processing and alignment and road line extraction, and a UML diagram is designed for the definition of the alignment entity from the point cloud data.</dc:description>
<dc:date>2021-02-01T07:54:48Z</dc:date>
<dc:date>2021-02-01T07:54:48Z</dc:date>
<dc:date>2020-07-17</dc:date>
<dc:date>2021-01-27T11:25:19Z</dc:date>
<dc:type>article</dc:type>
<dc:identifier>Remote Sensing, 12(14): 2301 (2020)</dc:identifier>
<dc:identifier>20724292</dc:identifier>
<dc:identifier>http://hdl.handle.net/11093/1718</dc:identifier>
<dc:identifier>10.3390/rs12142301</dc:identifier>
<dc:identifier>https://www.mdpi.com/2072-4292/12/14/2301</dc:identifier>
<dc:language>eng</dc:language>
<dc:rights>(http://creativecommons.org/licenses/by/4.0/)</dc:rights>
<dc:rights>openAccess</dc:rights>
<dc:rights>Creative Commons Attribution (CC BY) license</dc:rights>
<dc:publisher>Remote Sensing</dc:publisher>
<dc:publisher>Enxeñaría dos recursos naturais e medio ambiente</dc:publisher>
<dc:publisher>Enxeñaría dos materiais, mecánica aplicada e construción</dc:publisher>
<dc:publisher>Xeotecnoloxías Aplicadas</dc:publisher>
</oai_dc:dc>
</d:Statement>
</d:Descriptor>
<d:Component id="11093_1718_1">
</d:Component>
</d:Item>
</d:DIDL>
<?xml version="1.0" encoding="UTF-8" ?>
<dim:dim schemaLocation="http://www.dspace.org/xmlns/dspace/dim http://www.dspace.org/schema/dim.xsd">
<dim:field authority="7875" confidence="500" element="contributor" mdschema="dc" qualifier="author">Soilán Rodríguez, Mario</dim:field>
<dim:field authority="8476" confidence="500" element="contributor" mdschema="dc" qualifier="author">Justo Dominguez, Andrés</dim:field>
<dim:field authority="8322" confidence="500" element="contributor" mdschema="dc" qualifier="author">Sánchez Rodríguez, Ana</dim:field>
<dim:field authority="5319" confidence="500" element="contributor" mdschema="dc" qualifier="author">Riveiro Rodríguez, Belén</dim:field>
<dim:field element="date" mdschema="dc" qualifier="accessioned">2021-02-01T07:54:48Z</dim:field>
<dim:field element="date" mdschema="dc" qualifier="available">2021-02-01T07:54:48Z</dim:field>
<dim:field element="date" mdschema="dc" qualifier="issued">2020-07-17</dim:field>
<dim:field element="date" mdschema="dc" qualifier="updated">2021-01-27T11:25:19Z</dim:field>
<dim:field element="identifier" lang="spa" mdschema="dc" qualifier="citation">Remote Sensing, 12(14): 2301 (2020)</dim:field>
<dim:field element="identifier" mdschema="dc" qualifier="issn">20724292</dim:field>
<dim:field element="identifier" mdschema="dc" qualifier="uri">http://hdl.handle.net/11093/1718</dim:field>
<dim:field element="identifier" mdschema="dc" qualifier="doi">10.3390/rs12142301</dim:field>
<dim:field element="identifier" lang="spa" mdschema="dc" qualifier="editor">https://www.mdpi.com/2072-4292/12/14/2301</dim:field>
<dim:field element="description" lang="spa" mdschema="dc" qualifier="abstract">Building information modeling (BIM) is a process that has shown great potential in the building industry, but it has not reached the same level of maturity for transportation infrastructure. There is a standardization need for information exchange and management processes in the infrastructure that integrates BIM and Geographic Information Systems (GIS). Currently, the Industry Foundation Classes standard has harmonized different infrastructures under the Industry Foundation Classes (IFC) 4.3 release. Furthermore, the usage of remote sensing technologies such as laser scanning for infrastructure monitoring is becoming more common. This paper presents a semi-automated framework that takes as input a raw point cloud from a mobile mapping system, and outputs an IFC-compliant file that models the alignment and the centreline of each road lane in a highway road. The point cloud processing methodology is validated for two of its key steps, namely road marking processing and alignment and road line extraction, and a UML diagram is designed for the definition of the alignment entity from the point cloud data.</dim:field>
<dim:field element="description" lang="spa" mdschema="dc" qualifier="sponsorship">Horizon 2020 Framework Programme | Ref. 769255</dim:field>
<dim:field element="description" lang="spa" mdschema="dc" qualifier="sponsorship">Ministerio de Ciencia, Innovación y Universidades | Ref. RTI2018-095893-B-C21</dim:field>
<dim:field element="description" lang="spa" mdschema="dc" qualifier="sponsorship">Ministerio de Ciencia e Innovación y Universidades | Ref. FJC2018-035550-I</dim:field>
<dim:field element="language" lang="spa" mdschema="dc" qualifier="iso">eng</dim:field>
<dim:field element="publisher" lang="spa" mdschema="dc">Remote Sensing</dim:field>
<dim:field element="publisher" lang="spa" mdschema="dc" qualifier="departamento">Enxeñaría dos recursos naturais e medio ambiente</dim:field>
<dim:field element="publisher" lang="spa" mdschema="dc" qualifier="departamento">Enxeñaría dos materiais, mecánica aplicada e construción</dim:field>
<dim:field element="publisher" lang="spa" mdschema="dc" qualifier="grupoinvestigacion">Xeotecnoloxías Aplicadas</dim:field>
<dim:field element="rights" mdschema="dc">Creative Commons Attribution (CC BY) license</dim:field>
<dim:field element="rights" mdschema="dc" qualifier="uri">(http://creativecommons.org/licenses/by/4.0/)</dim:field>
<dim:field element="rights" lang="spa" mdschema="dc" qualifier="accessRights">openAccess</dim:field>
<dim:field element="title" lang="spa" mdschema="dc">3D Point cloud to BIM: semi-automated framework to define IFC alignment entities from MLS-acquired LiDAR data of highway roads</dim:field>
<dim:field element="type" lang="spa" mdschema="dc">article</dim:field>
<dim:field element="subject" lang="spa" mdschema="dc" qualifier="unesco">3311.02 Ingeniería de Control</dim:field>
<dim:field element="subject" lang="spa" mdschema="dc" qualifier="unesco">3305.06 Ingeniería Civil</dim:field>
<dim:field element="subject" lang="spa" mdschema="dc" qualifier="unesco">3307.07 Dispositivos láser</dim:field>
<dim:field element="computerCitation" lang="spa" mdschema="dc">pub_title=Remote Sensing|volume=12|journal_number=14|start_pag=2301|end_pag=</dim:field>
</dim:dim>
<?xml version="1.0" encoding="UTF-8" ?>
<thesis schemaLocation="http://www.ndltd.org/standards/metadata/etdms/1.0/ http://www.ndltd.org/standards/metadata/etdms/1.0/etdms.xsd">
<title>3D Point cloud to BIM: semi-automated framework to define IFC alignment entities from MLS-acquired LiDAR data of highway roads</title>
<creator>Soilán Rodríguez, Mario</creator>
<creator>Justo Dominguez, Andrés</creator>
<creator>Sánchez Rodríguez, Ana</creator>
<creator>Riveiro Rodríguez, Belén</creator>
<description>Building information modeling (BIM) is a process that has shown great potential in the building industry, but it has not reached the same level of maturity for transportation infrastructure. There is a standardization need for information exchange and management processes in the infrastructure that integrates BIM and Geographic Information Systems (GIS). Currently, the Industry Foundation Classes standard has harmonized different infrastructures under the Industry Foundation Classes (IFC) 4.3 release. Furthermore, the usage of remote sensing technologies such as laser scanning for infrastructure monitoring is becoming more common. This paper presents a semi-automated framework that takes as input a raw point cloud from a mobile mapping system, and outputs an IFC-compliant file that models the alignment and the centreline of each road lane in a highway road. The point cloud processing methodology is validated for two of its key steps, namely road marking processing and alignment and road line extraction, and a UML diagram is designed for the definition of the alignment entity from the point cloud data.</description>
<date>2021-02-01</date>
<date>2021-02-01</date>
<date>2020-07-17</date>
<date>2021-01-27</date>
<type>article</type>
<identifier>Remote Sensing, 12(14): 2301 (2020)</identifier>
<identifier>20724292</identifier>
<identifier>http://hdl.handle.net/11093/1718</identifier>
<identifier>10.3390/rs12142301</identifier>
<identifier>https://www.mdpi.com/2072-4292/12/14/2301</identifier>
<language>eng</language>
<rights>(http://creativecommons.org/licenses/by/4.0/)</rights>
<rights>openAccess</rights>
<rights>Creative Commons Attribution (CC BY) license</rights>
<publisher>Remote Sensing</publisher>
<publisher>Enxeñaría dos recursos naturais e medio ambiente</publisher>
<publisher>Enxeñaría dos materiais, mecánica aplicada e construción</publisher>
<publisher>Xeotecnoloxías Aplicadas</publisher>
</thesis>
<?xml version="1.0" encoding="UTF-8" ?>
<record schemaLocation="http://www.loc.gov/MARC21/slim http://www.loc.gov/standards/marcxml/schema/MARC21slim.xsd">
<leader>00925njm 22002777a 4500</leader>
<datafield ind1=" " ind2=" " tag="042">
<subfield code="a">dc</subfield>
</datafield>
<datafield ind1=" " ind2=" " tag="720">
<subfield code="a">Soilán Rodríguez, Mario</subfield>
<subfield code="e">author</subfield>
</datafield>
<datafield ind1=" " ind2=" " tag="720">
<subfield code="a">Justo Dominguez, Andrés</subfield>
<subfield code="e">author</subfield>
</datafield>
<datafield ind1=" " ind2=" " tag="720">
<subfield code="a">Sánchez Rodríguez, Ana</subfield>
<subfield code="e">author</subfield>
</datafield>
<datafield ind1=" " ind2=" " tag="720">
<subfield code="a">Riveiro Rodríguez, Belén</subfield>
<subfield code="e">author</subfield>
</datafield>
<datafield ind1=" " ind2=" " tag="260">
<subfield code="c">2020-07-17</subfield>
</datafield>
<datafield ind1=" " ind2=" " tag="520">
<subfield code="a">Building information modeling (BIM) is a process that has shown great potential in the building industry, but it has not reached the same level of maturity for transportation infrastructure. There is a standardization need for information exchange and management processes in the infrastructure that integrates BIM and Geographic Information Systems (GIS). Currently, the Industry Foundation Classes standard has harmonized different infrastructures under the Industry Foundation Classes (IFC) 4.3 release. Furthermore, the usage of remote sensing technologies such as laser scanning for infrastructure monitoring is becoming more common. This paper presents a semi-automated framework that takes as input a raw point cloud from a mobile mapping system, and outputs an IFC-compliant file that models the alignment and the centreline of each road lane in a highway road. The point cloud processing methodology is validated for two of its key steps, namely road marking processing and alignment and road line extraction, and a UML diagram is designed for the definition of the alignment entity from the point cloud data.</subfield>
</datafield>
<datafield ind1="8" ind2=" " tag="024">
<subfield code="a">Remote Sensing, 12(14): 2301 (2020)</subfield>
</datafield>
<datafield ind1="8" ind2=" " tag="024">
<subfield code="a">20724292</subfield>
</datafield>
<datafield ind1="8" ind2=" " tag="024">
<subfield code="a">http://hdl.handle.net/11093/1718</subfield>
</datafield>
<datafield ind1="8" ind2=" " tag="024">
<subfield code="a">10.3390/rs12142301</subfield>
</datafield>
<datafield ind1="8" ind2=" " tag="024">
<subfield code="a">https://www.mdpi.com/2072-4292/12/14/2301</subfield>
</datafield>
<datafield ind1="0" ind2="0" tag="245">
<subfield code="a">3D Point cloud to BIM: semi-automated framework to define IFC alignment entities from MLS-acquired LiDAR data of highway roads</subfield>
</datafield>
</record>
<?xml version="1.0" encoding="UTF-8" ?>
<mets ID=" DSpace_ITEM_11093-1718" OBJID=" hdl:11093/1718" PROFILE="DSpace METS SIP Profile 1.0" TYPE="DSpace ITEM" schemaLocation="http://www.loc.gov/METS/ http://www.loc.gov/standards/mets/mets.xsd">
<metsHdr CREATEDATE="2023-04-16T19:07:48Z">
<agent ROLE="CUSTODIAN" TYPE="ORGANIZATION">
<name>Investigo</name>
</agent>
</metsHdr>
<dmdSec ID="DMD_11093_1718">
<mdWrap MDTYPE="MODS">
<xmlData schemaLocation="http://www.loc.gov/mods/v3 http://www.loc.gov/standards/mods/v3/mods-3-1.xsd">
<mods:mods schemaLocation="http://www.loc.gov/mods/v3 http://www.loc.gov/standards/mods/v3/mods-3-1.xsd">
<mods:name>
<mods:role>
<mods:roleTerm type="text">author</mods:roleTerm>
</mods:role>
<mods:namePart>Soilán Rodríguez, Mario</mods:namePart>
</mods:name>
<mods:name>
<mods:role>
<mods:roleTerm type="text">author</mods:roleTerm>
</mods:role>
<mods:namePart>Justo Dominguez, Andrés</mods:namePart>
</mods:name>
<mods:name>
<mods:role>
<mods:roleTerm type="text">author</mods:roleTerm>
</mods:role>
<mods:namePart>Sánchez Rodríguez, Ana</mods:namePart>
</mods:name>
<mods:name>
<mods:role>
<mods:roleTerm type="text">author</mods:roleTerm>
</mods:role>
<mods:namePart>Riveiro Rodríguez, Belén</mods:namePart>
</mods:name>
<mods:extension>
<mods:dateAccessioned encoding="iso8601">2021-02-01T07:54:48Z</mods:dateAccessioned>
</mods:extension>
<mods:extension>
<mods:dateAvailable encoding="iso8601">2021-02-01T07:54:48Z</mods:dateAvailable>
</mods:extension>
<mods:originInfo>
<mods:dateIssued encoding="iso8601">2020-07-17</mods:dateIssued>
</mods:originInfo>
<mods:identifier type="citation">Remote Sensing, 12(14): 2301 (2020)</mods:identifier>
<mods:identifier type="issn">20724292</mods:identifier>
<mods:identifier type="uri">http://hdl.handle.net/11093/1718</mods:identifier>
<mods:identifier type="doi">10.3390/rs12142301</mods:identifier>
<mods:identifier type="editor">https://www.mdpi.com/2072-4292/12/14/2301</mods:identifier>
<mods:abstract>Building information modeling (BIM) is a process that has shown great potential in the building industry, but it has not reached the same level of maturity for transportation infrastructure. There is a standardization need for information exchange and management processes in the infrastructure that integrates BIM and Geographic Information Systems (GIS). Currently, the Industry Foundation Classes standard has harmonized different infrastructures under the Industry Foundation Classes (IFC) 4.3 release. Furthermore, the usage of remote sensing technologies such as laser scanning for infrastructure monitoring is becoming more common. This paper presents a semi-automated framework that takes as input a raw point cloud from a mobile mapping system, and outputs an IFC-compliant file that models the alignment and the centreline of each road lane in a highway road. The point cloud processing methodology is validated for two of its key steps, namely road marking processing and alignment and road line extraction, and a UML diagram is designed for the definition of the alignment entity from the point cloud data.</mods:abstract>
<mods:language>
<mods:languageTerm authority="rfc3066">eng</mods:languageTerm>
</mods:language>
<mods:accessCondition type="useAndReproduction">Creative Commons Attribution (CC BY) license</mods:accessCondition>
<mods:titleInfo>
<mods:title>3D Point cloud to BIM: semi-automated framework to define IFC alignment entities from MLS-acquired LiDAR data of highway roads</mods:title>
</mods:titleInfo>
<mods:genre>article</mods:genre>
</mods:mods>
</xmlData>
</mdWrap>
</dmdSec>
<amdSec ID="TMD_11093_1718">
<rightsMD ID="RIG_11093_1718">
<mdWrap MDTYPE="OTHER" MIMETYPE="text/plain" OTHERMDTYPE="DSpaceDepositLicense">
<binData>TElDRU5DSUEgSU5WRVNUSUdPCgpDb24gb2JqZXRvIGRlIHF1ZSBJbnZlc3RpZ28gcHVlZGEgYXJjaGl2YXIgeSBkaWZ1bmRpciBsb3MgZG9jdW1lbnRvcyBxdWUgc2UgZGVwb3NpdGFuIGVuIMOpbCwgc2UgbmVjZXNpdGEgbGEgYXV0b3JpemFjacOzbiBkZSBsYS9zIGF1dG9yYS9zIG8gYXV0b3IvZXMgZGUgbG9zIGRvY3VtZW50b3MgbWVkaWFudGUgbGEgcHJlc2VudGUgbGljZW5jaWEgZGUgZGlzdHJpYnVjacOzbiBubyBleGNsdXNpdmEgKOKAnExpY2VuY2lhIEludmVzdGlnb+KAnSkuIAoKQWwgb3RvcmdhciBlc3RhIGxpY2VuY2lhLCBsYS9zIGF1dG9yYS9zIG8gYXV0b3IvZXMgZGUgbG9zIGRvY3VtZW50b3MgbWFudGllbmVuIGVuIHN1IHBvZGVyIGxhIHRvdGFsaWRhZCBkZSBsb3MgZGVyZWNob3MgZGUgYXV0b3IsIHB1ZGllbmRvLCBwb3IgdGFudG8sIGhhY2VyIHVzbyBkZWwgdHJhYmFqbyBkZXBvc2l0YWRvIGVuIGxhIGZvcm1hIGVuIHF1ZSBlc3RpbWVuIG9wb3J0dW5vIChkZXBvc2l0YXJsbyBlbiBvdHJvcyByZXBvc2l0b3Jpb3MsIHB1YmxpY2FybG8gZW4gbWVkaW9zIGNvbWVyY2lhbGVzLCBkaWZ1bmRpw6luZG9sbyBlbiBzdSBww6FnaW5hIHdlYiwgZXRjLikuIAoKUG9yIGZhdm9yLCBsZWEgYXRlbnRhbWVudGUgbG9zIHTDqXJtaW5vcyBxdWUgYSBjb250aW51YWNpw7NuIHNlIHNlw7FhbGFuLCBlbiBsb3MgY3VhbGVzIHVzdGVkIHBlcm1pdGUgbyBhdXRvcml6YSBlbCBkZXDDs3NpdG8geSBkaWZ1c2nDs24gZGUgc3UgZG9jdW1lbnRvIGVuIEludmVzdGlnbzoKCkVuIHN1IGNvbmRpY2nDs24gZGUgYXV0b3IvYSBvIHByb3BpZXRhcmlvL2EgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCB1c3RlZDoKCjEuLSBPdG9yZ2EgYSBsYSBVbml2ZXJzaWRhZGUgZGUgVmlnbyBlbCBkZXJlY2hvIG5vIGV4Y2x1c2l2byBhIGFyY2hpdmFyLCByZXByb2R1Y2lyLCBjb252ZXJ0aXIgZW4gbGEgZm9ybWEgcXVlIG3DoXMgYWJham8gc2UgZGVzY3JpYmUsIGNvbXVuaWNhciBvIGRpc3RyaWJ1aXIgdW5pdmVyc2FsbWVudGUgZWwgZG9jdW1lbnRvIGVuIGZvcm1hdG8gZWxlY3Ryw7NuaWNvOwoKMi4tIEF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWRlIGRlIFZpZ28gYSBjb25zZXJ2YXIgbcOhcyBkZSB1bmEgY29waWEgZGUgc3UgZG9jdW1lbnRvIHkgYSBxdWUsIHNpbiBhbHRlcmFyIHN1IGNvbnRlbmlkbywgbG8gcHVlZGEgY29udmVydGlyIGEgY3VhbHF1aWVyIG90cm8gZm9ybWF0byBkZSBmaWNoZXJvLCBtZWRpbyBvIHNvcG9ydGUsIGNvbiBwcm9ww7NzaXRvcyBkZSBzZWd1cmlkYWQsIHByZXNlcnZhY2nDs24geSBhY2Nlc287IAoKMy4tIE1hbmlmaWVzdGEgcXVlIGVsIGRvY3VtZW50byBkZXBvc2l0YWRvIGVzIHVuIHRyYWJham8gb3JpZ2luYWwgc3V5byB5IHF1ZSBlc3TDoSBsZWdpdGltYWRvIHBhcmEgb3RvcmdhciBsb3MgZGVyZWNob3MgY29udGVuaWRvcyBlbiBsYSBwcmVzZW50ZSBsaWNlbmNpYSBkZSBkaXN0cmlidWNpw7NuLiBEZSBsYSBtaXNtYSBmb3JtYSBkZWNsYXJhIHF1ZSwgZW4gbGEgbWVkaWRhIGRlIGxvIHF1ZSBsZSByZXN1bHRhIHBvc2libGUgY29ub2Nlciwgc3UgZG9jdW1lbnRvIG5vIGluZnJpbmdlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciwgZGUgbmluZ3VuYSBvdHJhIHBlcnNvbmEgbyBlbnRpZGFkOwoKNC4tIEFmaXJtYSBxdWUsIGVuIGVsIGNhc28gZGUgcXVlIHNlIHRyYXRlIGRlIHVuYSBvYnJhIGNvbiBtw6FzIGRlIHVuYSBhdXRvcsOtYSwgbGEgZGVwb3NpdGEgZW4gbm9tYnJlIHkgY29uIGVsIGNvbnNlbnRpbWllbnRvIGRlbCByZXN0byBkZSBjb2F1dG9yZXMgZSBjb2F1dG9yYXM7IAoKNS4tIERlY2xhcmEgcXVlLCBlbiBlbCBjYXNvIGRlIHF1ZSBlbCBkb2N1bWVudG8gY29udGVuZ2EgbWF0ZXJpYWwgZGVsIHF1ZSBubyBwb3NlZSBsb3MgZGVyZWNob3MgZGUgYXV0b3IsIGhhIG9idGVuaWRvIGVsIHBlcm1pc28gZGUgbGEgcGVyc29uYSBwcm9waWV0YXJpYSBkZSB0YWxlcyBkZXJlY2hvcyBwYXJhIG90b3JnYXIgYSBsYSBVbml2ZXJzaWRhZGUgZGUgVmlnbyBsb3MgZGVyZWNob3MgcmVxdWVyaWRvcyBwb3IgZXN0YSBsaWNlbmNpYSwgYXPDrSBjb21vIHF1ZSBlc2UgbWF0ZXJpYWwgY3V5b3MgZGVyZWNob3MgY29ycmVzcG9uZGVuIGEgdGVyY2VyYXMgcGVyc29uYXMgZXN0w6EgY2xhcmFtZW50ZSBpZGVudGlmaWNhZG8geSByZWNvbm9jaWRvIGVuIGVsIHRleHRvIG8gY29udGVuaWRvIGRlbCBkb2N1bWVudG8gZGVwb3NpdGFkbzsgCgo2Li0gUmVjb25vY2UgcXVlIHNpIGVsIGRvY3VtZW50byBzZSBiYXNhIGVuIHRyYWJham9zIHBhdHJvY2luYWRvcyBvIGZpbmFuY2lhZG9zIHBvciB1bmEgb3JnYW5pemFjacOzbiBvIGluc3RpdHVjacOzbiBkaWZlcmVudGUgZGUgbGEgVW5pdmVyc2lkYWRlIGRlIFZpZ28sIGhhIGN1bXBsaWRvIGNvbiBjdWFscXVpZXIgZGVyZWNobyB1IG9ibGlnYWNpw7NuIGVzdGFibGVjaWRhIHBvciBlbCBjb3JyZXNwb25kaWVudGUgY29udHJhdG8gbyBhY3VlcmRvIGNvbiBkaWNoYSBvcmdhbml6YWNpw7NuLgoKCkVuIHZpcnR1ZCBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSwgbGEgVW5pdmVyc2lkYWRlIGRlIFZpZ28gc2UgY29tcHJvbWV0ZSBhIGlkZW50aWZpY2FyIGNsYXJhbWVudGUgZWwgbm9tYnJlIGRlIGxhL3MgYXV0b3JhL3MgbyBhdXRvci9lcyBjb21vIHByb3BpZXRhcmlhcy9vcyBkZSBsb3MgZGVyZWNob3MgZGVsIGRvY3VtZW50byBkZXBvc2l0YWRvLCBzaW4gcmVhbGl6YXIgYWx0ZXJhY2nDs24gYWxndW5hIGRlbCBtaXNtbyBleGNlcHRvIGxhcyBwZXJtaXRpZGFzIHBvciBlc3RhIGxpY2VuY2lhLgoKCkxJQ0VOWkEgSU5WRVNUSUdPCgpDbyBvYnhlY3RvIGRlIHF1ZSBJbnZlc3RpZ28gcG9pZGEgYXJxdWl2YXIgZSBkaWZ1bmRpciBvcyBkb2N1bWVudG9zIHF1ZSBzZSBkZXBvc2l0YW4gbmVsLCBuZWNlc8OtdGFzZSBhIGF1dG9yaXphY2nDs24gZGFzIGF1dG9yYXMgb3UgYXV0b3JlcyBkb3MgZG9jdW1lbnRvcyBtZWRpYW50ZSBhIHByZXNlbnRlIGxpY2VuemEgZGUgZGlzdHJpYnVjacOzbiBub24gZXhjbHVzaXZhICjCq0xpY2VuemEgSW52ZXN0aWdvwrspLgoKQW8gb3V0b3JnYXIgZXN0YSBsaWNlbnphLCBhcyBhdXRvcmFzIG91IGF1dG9yZXMgZG9zIGRvY3VtZW50b3MgbWFudGXDsWVuIG5vIHNldSBwb2RlciBhIHRvdGFsaWRhZGUgZG9zIGRlcmVpdG9zIGRlIGF1dG9yIGUgcG9kZW4sIHBvbG8gdGFudG8sIGZhY2VyIHVzbyBkbyB0cmFiYWxsbyBkZXBvc2l0YWRvIG5hIGZvcm1hIGVuIHF1ZSBlc3RpbWUgb3BvcnR1bm8gKGRlcG9zaXRhbG8gbm91dHJvcyByZXBvc2l0b3Jpb3MsIHB1YmxpY2FsbyBlbiBtZWRpb3MgY29tZXJjaWFpcywgZGlmdW5kaWxvIGEgdHJhdsOpcyBkYSBzw7phIHDDoXhpbmEgd2ViLCBldGMuKS4KClBvciBmYXZvciwgbGVhIGF0ZW50YW1lbnRlIG9zIHRlcm1vcyBxdWUgYSBjb250aW51YWNpw7NuIHNlIHNpbmFsYW4sIG5vcyBjYWxlcyB2b3N0ZWRlIHBlcm1pdGUgb3UgYXV0b3JpemEgbyBkZXDDs3NpdG8gZSBkaWZ1c2nDs24gZG8gc2V1IGRvY3VtZW50byBlbiBJbnZlc3RpZ286CgpOYSBzw7phIGNvbmRpY2nDs24gZGUgYXV0b3IvYXV0b3JhIG91IHByb3BpZXRhcmlhL3Byb3BpZXRhcmlvIGRvcyBkZXJlaXRvcyBkZSBhdXRvciwgdm9zdGVkZToKCjEuLSBPdXTDs3JnYWxsZSDDoSBVbml2ZXJzaWRhZGUgZGUgVmlnbyBvIGRlcmVpdG8gbm9uIGV4Y2x1c2l2byBhIGFycXVpdmFyLCByZXByb2R1Y2lyLCBjb252ZXJ0ZXIgbmEgZm9ybWEgcXVlIG3DoWlzIGFiYWl4byBzZSBkZXNjcmliZSwgY29tdW5pY2FyIG91IGRpc3RyaWJ1w61yIHVuaXZlcnNhbG1lbnRlIG8gZG9jdW1lbnRvIGVuIGZvcm1hdG8gZWxlY3Ryw7NuaWNvLgoKMi4tIEF1dG9yw616YWxsZSDDoSBVbml2ZXJzaWRhZGUgZGUgVmlnbyBhIGNvbnNlcnZhciBtw6FpcyBkdW5oYSBjb3BpYSBkbyBzZXUgZG9jdW1lbnRvIGUgYSBxdWUsIHNlbiBhbHRlcmFyIG8gc2V1IGNvbnRpZG8sIG8gcG9pZGEgY29udmVydGVyIGEgY2FscXVlcmEgb3V0cm8gZm9ybWF0byBkZSBmaWNoZWlybywgbWVkaW8gb3Ugc29wb3J0ZSwgY29uIHByb3DDs3NpdG9zIGRlIHNlZ3VyaWRhZGUsIHByZXNlcnZhY2nDs24gZSBhY2Nlc28uCgozLi0gTWFuaWZlc3RhIHF1ZSBvIGRvY3VtZW50byBkZXBvc2l0YWRvIMOpIHVuIHRyYWJhbGxvIG9yaXhpbmFsIHByb3BpbyBlIHF1ZSBlc3TDoSBsZXhpdGltYWRvIHBhcmEgb3V0b3JnYXIgb3MgZGVyZWl0b3MgY29udGlkb3MgbmEgcHJlc2VudGUgbGljZW56YSBkZSBkaXN0cmlidWNpw7NuLiBEYSBtZXNtYSBmb3JtYSBkZWNsYXJhIHF1ZSwgbmEgbWVkaWRhIGRvIHF1ZSBsbGUgcmVzdWx0YSBwb3NpYmxlIGNvw7FlY2VyLCBvIHNldSBkb2N1bWVudG8gbm9uIGluZnJpbnhlIG9zIGRlcmVpdG9zIGRlIGF1dG9yLCBkZSBuaW5ndW5oYSBvdXRyYSBwZXJzb2Egb3UgZW50aWRhZGUuCgo0Li0gQWZpcm1hIHF1ZSwgbm8gY2FzbyBkZSBxdWUgc2UgdHJhdGUgZHVuaGEgb2JyYSBjb24gbcOhaXMgZHVuaGEgYXV0b3LDrWEsIGRlcG9zw610YWEgZW4gbm9tZSBlIGNvIGNvbnNlbnRpbWVudG8gZG8gcmVzdG8gZGUgY29hdXRvcmVzIGUgY29hdXRvcmFzLgoKNS4tIERlY2xhcmEgcXVlLCBubyBjYXNvIGRlIHF1ZSBvIGRvY3VtZW50byBjb250ZcOxYSBtYXRlcmlhbCBkbyBxdWUgbm9uIHBvc8O6ZSBvcyBkZXJlaXRvcyBkZSBhdXRvciwgb2J0aXZvIG8gcGVybWlzbyBkYSBwZXJzb2EgcHJvcGlldGFyaWEgZGUgdGFsZXMgZGVyZWl0b3MgcGFyYSBvdXRvcmdhcmxsZSDDoSBVbml2ZXJzaWRhZGUgZGUgVmlnbyBvcyBkZXJlaXRvcyByZXF1aXJpZG9zIHBvciBlc3RhIGxpY2VuemEsIGFzw60gY29tbyBxdWUgZXNlIG1hdGVyaWFsIGN1eG9zIGRlcmVpdG9zIGNvcnJlc3BvbmRlbiBhIHRlcmNlaXJhcyBwZXJzb2FzIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIGUgcmVjb8OxZWNpZG8gbm8gdGV4dG8gb3UgY29udGlkbyBkbyBkb2N1bWVudG8gZGVwb3NpdGFkby4KCjYuLSBSZWNvw7FlY2UgcXVlIHNlIG8gZG9jdW1lbnRvIHNlIGJhc2VhIGVuIHRyYWJhbGxvcyBwYXRyb2NpbmFkb3Mgb3UgZmluYW5jaWFkb3MgcG9yIHVuaGEgb3JnYW5pemFjacOzbiBvdSBpbnN0aXR1Y2nDs24gZGlmZXJlbnRlIGRhIFVuaXZlcnNpZGFkZSBkZSBWaWdvLCBjdW1wcml1IGNvbiBjYWxxdWVyYSBkZXJlaXRvIG91IG9icmlnYSBlc3RhYmxlY2lkYSBwb2xvIGNvcnJlc3BvbmRlbnRlIGNvbnRyYXRvIG91IGFjb3JkbyBjb2EgZGV2YW5kaXRhIG9yZ2FuaXphY2nDs24uIAoKCkVuIHZpcnR1ZGUgZGEgcHJlc2VudGUgbGljZW56YSwgYSBVbml2ZXJzaWRhZGUgZGUgVmlnbyBjb21wcm9tw6l0ZXNlIGEgaWRlbnRpZmljYXIgY2xhcmFtZW50ZSBvIG5vbWUgZGFzIGF1dG9yYXMgZSBhdXRvcmVzLCBhc8OtIGNvbW8gZGFzIHByb3BpZXRhcmlhcyBvdSBwcm9waWV0YXJpb3MgZG9zIGRlcmVpdG9zIGRvIGRvY3VtZW50byBkZXBvc2l0YWRvLCBzZW4gcmVhbGl6YXJsbGUgbmluZ3VuaGEgbW9kaWZpY2FjacOzbiBhZ8OhcyBhcyBwZXJtaXRpZGFzIHBvciBlc3RhIGxpY2VuemEuCg==</binData>
</mdWrap>
</rightsMD>
</amdSec>
<amdSec ID="FO_11093_1718_1">
<techMD ID="TECH_O_11093_1718_1">
<mdWrap MDTYPE="PREMIS">
<xmlData schemaLocation="http://www.loc.gov/standards/premis http://www.loc.gov/standards/premis/PREMIS-v1-0.xsd">
<premis:premis>
<premis:object>
<premis:objectIdentifier>
<premis:objectIdentifierType>URL</premis:objectIdentifierType>
<premis:objectIdentifierValue>https://www.investigo.biblioteca.uvigo.es/xmlui/bitstream/11093/1718/1/Soil%c3%a1n_Mario_2020_3DP_clo_toB.pdf</premis:objectIdentifierValue>
</premis:objectIdentifier>
<premis:objectCategory>File</premis:objectCategory>
<premis:objectCharacteristics>
<premis:fixity>
<premis:messageDigestAlgorithm>MD5</premis:messageDigestAlgorithm>
<premis:messageDigest>967f86e38a1055c135c3e704b353061e</premis:messageDigest>
</premis:fixity>
<premis:size>11050166</premis:size>
<premis:format>
<premis:formatDesignation>
<premis:formatName>application/pdf</premis:formatName>
</premis:formatDesignation>
</premis:format>
</premis:objectCharacteristics>
<premis:originalName>Soilán_Mario_2020_3DP_clo_toB.pdf</premis:originalName>
</premis:object>
</premis:premis>
</xmlData>
</mdWrap>
</techMD>
</amdSec>
<amdSec ID="FT_11093_1718_4">
<techMD ID="TECH_T_11093_1718_4">
<mdWrap MDTYPE="PREMIS">
<xmlData schemaLocation="http://www.loc.gov/standards/premis http://www.loc.gov/standards/premis/PREMIS-v1-0.xsd">
<premis:premis>
<premis:object>
<premis:objectIdentifier>
<premis:objectIdentifierType>URL</premis:objectIdentifierType>
<premis:objectIdentifierValue>https://www.investigo.biblioteca.uvigo.es/xmlui/bitstream/11093/1718/4/Soil%c3%a1n_Mario_2020_3DP_clo_toB.pdf.txt</premis:objectIdentifierValue>
</premis:objectIdentifier>
<premis:objectCategory>File</premis:objectCategory>
<premis:objectCharacteristics>
<premis:fixity>
<premis:messageDigestAlgorithm>MD5</premis:messageDigestAlgorithm>
<premis:messageDigest>1cee29a82f01152723d4721b34b6687c</premis:messageDigest>
</premis:fixity>
<premis:size>98963</premis:size>
<premis:format>
<premis:formatDesignation>
<premis:formatName>text/plain</premis:formatName>
</premis:formatDesignation>
</premis:format>
</premis:objectCharacteristics>
<premis:originalName>Soilán_Mario_2020_3DP_clo_toB.pdf.txt</premis:originalName>
</premis:object>
</premis:premis>
</xmlData>
</mdWrap>
</techMD>
</amdSec>
<fileSec>
<fileGrp USE="ORIGINAL">
<file ADMID="FO_11093_1718_1" CHECKSUM="967f86e38a1055c135c3e704b353061e" CHECKSUMTYPE="MD5" GROUPID="GROUP_BITSTREAM_11093_1718_1" ID="BITSTREAM_ORIGINAL_11093_1718_1" MIMETYPE="application/pdf" SEQ="1" SIZE="11050166">
</file>
</fileGrp>
<fileGrp USE="TEXT">
<file ADMID="FT_11093_1718_4" CHECKSUM="1cee29a82f01152723d4721b34b6687c" CHECKSUMTYPE="MD5" GROUPID="GROUP_BITSTREAM_11093_1718_4" ID="BITSTREAM_TEXT_11093_1718_4" MIMETYPE="text/plain" SEQ="4" SIZE="98963">
</file>
</fileGrp>
</fileSec>
<structMap LABEL="DSpace Object" TYPE="LOGICAL">
<div ADMID="DMD_11093_1718" TYPE="DSpace Object Contents">
<div TYPE="DSpace BITSTREAM">
</div>
</div>
</structMap>
</mets>
<?xml version="1.0" encoding="UTF-8" ?>
<mods:mods schemaLocation="http://www.loc.gov/mods/v3 http://www.loc.gov/standards/mods/v3/mods-3-1.xsd">
<mods:name>
<mods:namePart>Soilán Rodríguez, Mario</mods:namePart>
</mods:name>
<mods:name>
<mods:namePart>Justo Dominguez, Andrés</mods:namePart>
</mods:name>
<mods:name>
<mods:namePart>Sánchez Rodríguez, Ana</mods:namePart>
</mods:name>
<mods:name>
<mods:namePart>Riveiro Rodríguez, Belén</mods:namePart>
</mods:name>
<mods:extension>
<mods:dateAvailable encoding="iso8601">2021-02-01T07:54:48Z</mods:dateAvailable>
</mods:extension>
<mods:extension>
<mods:dateAccessioned encoding="iso8601">2021-02-01T07:54:48Z</mods:dateAccessioned>
</mods:extension>
<mods:originInfo>
<mods:dateIssued encoding="iso8601">2020-07-17</mods:dateIssued>
</mods:originInfo>
<mods:identifier type="citation">Remote Sensing, 12(14): 2301 (2020)</mods:identifier>
<mods:identifier type="issn">20724292</mods:identifier>
<mods:identifier type="uri">http://hdl.handle.net/11093/1718</mods:identifier>
<mods:identifier type="doi">10.3390/rs12142301</mods:identifier>
<mods:identifier type="editor">https://www.mdpi.com/2072-4292/12/14/2301</mods:identifier>
<mods:abstract>Building information modeling (BIM) is a process that has shown great potential in the building industry, but it has not reached the same level of maturity for transportation infrastructure. There is a standardization need for information exchange and management processes in the infrastructure that integrates BIM and Geographic Information Systems (GIS). Currently, the Industry Foundation Classes standard has harmonized different infrastructures under the Industry Foundation Classes (IFC) 4.3 release. Furthermore, the usage of remote sensing technologies such as laser scanning for infrastructure monitoring is becoming more common. This paper presents a semi-automated framework that takes as input a raw point cloud from a mobile mapping system, and outputs an IFC-compliant file that models the alignment and the centreline of each road lane in a highway road. The point cloud processing methodology is validated for two of its key steps, namely road marking processing and alignment and road line extraction, and a UML diagram is designed for the definition of the alignment entity from the point cloud data.</mods:abstract>
<mods:language>
<mods:languageTerm>eng</mods:languageTerm>
</mods:language>
<mods:accessCondition type="useAndReproduction">(http://creativecommons.org/licenses/by/4.0/)</mods:accessCondition>
<mods:accessCondition type="useAndReproduction">openAccess</mods:accessCondition>
<mods:accessCondition type="useAndReproduction">Creative Commons Attribution (CC BY) license</mods:accessCondition>
<mods:titleInfo>
<mods:title>3D Point cloud to BIM: semi-automated framework to define IFC alignment entities from MLS-acquired LiDAR data of highway roads</mods:title>
</mods:titleInfo>
<mods:genre>article</mods:genre>
</mods:mods>
<?xml version="1.0" encoding="UTF-8" ?>
<atom:entry schemaLocation="http://www.w3.org/2005/Atom http://www.kbcafe.com/rss/atom.xsd.xml">
<atom:id>http://hdl.handle.net/11093/1718/ore.xml</atom:id>
<atom:published>2021-02-01T07:54:48Z</atom:published>
<atom:updated>2021-02-01T07:54:48Z</atom:updated>
<atom:source>
<atom:generator>Investigo</atom:generator>
</atom:source>
<atom:title>3D Point cloud to BIM: semi-automated framework to define IFC alignment entities from MLS-acquired LiDAR data of highway roads</atom:title>
<atom:author>
<atom:name>Soilán Rodríguez, Mario</atom:name>
</atom:author>
<atom:author>
<atom:name>Justo Dominguez, Andrés</atom:name>
</atom:author>
<atom:author>
<atom:name>Sánchez Rodríguez, Ana</atom:name>
</atom:author>
<atom:author>
<atom:name>Riveiro Rodríguez, Belén</atom:name>
</atom:author>
<oreatom:triples>
<rdf:Description about="http://hdl.handle.net/11093/1718/ore.xml#atom">
<dcterms:modified>2021-02-01T07:54:48Z</dcterms:modified>
</rdf:Description>
<rdf:Description about="https://www.investigo.biblioteca.uvigo.es/xmlui/bitstream/11093/1718/4/Soil%c3%a1n_Mario_2020_3DP_clo_toB.pdf.txt">
<dcterms:description>TEXT</dcterms:description>
</rdf:Description>
<rdf:Description about="https://www.investigo.biblioteca.uvigo.es/xmlui/bitstream/11093/1718/1/Soil%c3%a1n_Mario_2020_3DP_clo_toB.pdf">
<dcterms:description>ORIGINAL</dcterms:description>
</rdf:Description>
<rdf:Description about="https://www.investigo.biblioteca.uvigo.es/xmlui/bitstream/11093/1718/2/license.txt">
<dcterms:description>LICENSE</dcterms:description>
</rdf:Description>
<rdf:Description about="https://www.investigo.biblioteca.uvigo.es/xmlui/bitstream/11093/1718/3/sword.zip">
<dcterms:description>SWORD</dcterms:description>
</rdf:Description>
</oreatom:triples>
</atom:entry>
<?xml version="1.0" encoding="UTF-8" ?>
<qdc:qualifieddc schemaLocation="http://purl.org/dc/elements/1.1/ http://dublincore.org/schemas/xmls/qdc/2006/01/06/dc.xsd http://purl.org/dc/terms/ http://dublincore.org/schemas/xmls/qdc/2006/01/06/dcterms.xsd http://dspace.org/qualifieddc/ http://www.ukoln.ac.uk/metadata/dcmi/xmlschema/qualifieddc.xsd">
<dc:title>3D Point cloud to BIM: semi-automated framework to define IFC alignment entities from MLS-acquired LiDAR data of highway roads</dc:title>
<dc:creator>Soilán Rodríguez, Mario</dc:creator>
<dc:creator>Justo Dominguez, Andrés</dc:creator>
<dc:creator>Sánchez Rodríguez, Ana</dc:creator>
<dc:creator>Riveiro Rodríguez, Belén</dc:creator>
<dcterms:abstract>Building information modeling (BIM) is a process that has shown great potential in the building industry, but it has not reached the same level of maturity for transportation infrastructure. There is a standardization need for information exchange and management processes in the infrastructure that integrates BIM and Geographic Information Systems (GIS). Currently, the Industry Foundation Classes standard has harmonized different infrastructures under the Industry Foundation Classes (IFC) 4.3 release. Furthermore, the usage of remote sensing technologies such as laser scanning for infrastructure monitoring is becoming more common. This paper presents a semi-automated framework that takes as input a raw point cloud from a mobile mapping system, and outputs an IFC-compliant file that models the alignment and the centreline of each road lane in a highway road. The point cloud processing methodology is validated for two of its key steps, namely road marking processing and alignment and road line extraction, and a UML diagram is designed for the definition of the alignment entity from the point cloud data.</dcterms:abstract>
<dcterms:dateAccepted>2021-02-01T07:54:48Z</dcterms:dateAccepted>
<dcterms:available>2021-02-01T07:54:48Z</dcterms:available>
<dcterms:created>2021-02-01T07:54:48Z</dcterms:created>
<dcterms:issued>2020-07-17</dcterms:issued>
<dc:type>article</dc:type>
<dc:identifier>Remote Sensing, 12(14): 2301 (2020)</dc:identifier>
<dc:identifier>20724292</dc:identifier>
<dc:identifier>http://hdl.handle.net/11093/1718</dc:identifier>
<dc:identifier>10.3390/rs12142301</dc:identifier>
<dc:identifier>https://www.mdpi.com/2072-4292/12/14/2301</dc:identifier>
<dc:language>eng</dc:language>
<dc:rights>(http://creativecommons.org/licenses/by/4.0/)</dc:rights>
<dc:rights>openAccess</dc:rights>
<dc:rights>Creative Commons Attribution (CC BY) license</dc:rights>
<dc:publisher>Remote Sensing</dc:publisher>
<dc:publisher>Enxeñaría dos recursos naturais e medio ambiente</dc:publisher>
<dc:publisher>Enxeñaría dos materiais, mecánica aplicada e construción</dc:publisher>
<dc:publisher>Xeotecnoloxías Aplicadas</dc:publisher>
</qdc:qualifieddc>
<?xml version="1.0" encoding="UTF-8" ?>
<rdf:RDF schemaLocation="http://www.openarchives.org/OAI/2.0/rdf/ http://www.openarchives.org/OAI/2.0/rdf.xsd">
<ow:Publication about="oai:www.investigo.biblioteca.uvigo.es:11093/1718">
<dc:title>3D Point cloud to BIM: semi-automated framework to define IFC alignment entities from MLS-acquired LiDAR data of highway roads</dc:title>
<dc:creator>Soilán Rodríguez, Mario</dc:creator>
<dc:creator>Justo Dominguez, Andrés</dc:creator>
<dc:creator>Sánchez Rodríguez, Ana</dc:creator>
<dc:creator>Riveiro Rodríguez, Belén</dc:creator>
<dc:description>Building information modeling (BIM) is a process that has shown great potential in the building industry, but it has not reached the same level of maturity for transportation infrastructure. There is a standardization need for information exchange and management processes in the infrastructure that integrates BIM and Geographic Information Systems (GIS). Currently, the Industry Foundation Classes standard has harmonized different infrastructures under the Industry Foundation Classes (IFC) 4.3 release. Furthermore, the usage of remote sensing technologies such as laser scanning for infrastructure monitoring is becoming more common. This paper presents a semi-automated framework that takes as input a raw point cloud from a mobile mapping system, and outputs an IFC-compliant file that models the alignment and the centreline of each road lane in a highway road. The point cloud processing methodology is validated for two of its key steps, namely road marking processing and alignment and road line extraction, and a UML diagram is designed for the definition of the alignment entity from the point cloud data.</dc:description>
<dc:date>2021-02-01T07:54:48Z</dc:date>
<dc:date>2021-02-01T07:54:48Z</dc:date>
<dc:date>2020-07-17</dc:date>
<dc:date>2021-01-27T11:25:19Z</dc:date>
<dc:type>article</dc:type>
<dc:identifier>Remote Sensing, 12(14): 2301 (2020)</dc:identifier>
<dc:identifier>20724292</dc:identifier>
<dc:identifier>http://hdl.handle.net/11093/1718</dc:identifier>
<dc:identifier>10.3390/rs12142301</dc:identifier>
<dc:identifier>https://www.mdpi.com/2072-4292/12/14/2301</dc:identifier>
<dc:language>eng</dc:language>
<dc:rights>(http://creativecommons.org/licenses/by/4.0/)</dc:rights>
<dc:rights>openAccess</dc:rights>
<dc:rights>Creative Commons Attribution (CC BY) license</dc:rights>
<dc:publisher>Remote Sensing</dc:publisher>
<dc:publisher>Enxeñaría dos recursos naturais e medio ambiente</dc:publisher>
<dc:publisher>Enxeñaría dos materiais, mecánica aplicada e construción</dc:publisher>
<dc:publisher>Xeotecnoloxías Aplicadas</dc:publisher>
</ow:Publication>
</rdf:RDF>
<?xml version="1.0" encoding="UTF-8" ?>
<oai_dc:dc schemaLocation="http://www.openarchives.org/OAI/2.0/oai_dc/ http://www.openarchives.org/OAI/2.0/oai_dc.xsd">
<dcterms:dateAccepted>2021-02-01T07:54:48Z</dcterms:dateAccepted>
<dcterms:available>2021-02-01T07:54:48Z</dcterms:available>
<dcterms:issued>2020-07-17</dcterms:issued>
<dcterms:identifier_bibliographicCitation lang="spa">Remote Sensing, 12(14): 2301 (2020)</dcterms:identifier_bibliographicCitation>
<dcterms:identifier_issn>20724292</dcterms:identifier_issn>
<dcterms:identifier_doi>10.3390/rs12142301</dcterms:identifier_doi>
<dcterms:identifier type="dcterms:URI">http://hdl.handle.net/11093/1718</dcterms:identifier>
<dcterms:identifier_editor lang="spa">https://www.mdpi.com/2072-4292/12/14/2301</dcterms:identifier_editor>
<dcterms:abstract lang="spa">Building information modeling (BIM) is a process that has shown great potential in the building industry, but it has not reached the same level of maturity for transportation infrastructure. There is a standardization need for information exchange and management processes in the infrastructure that integrates BIM and Geographic Information Systems (GIS). Currently, the Industry Foundation Classes standard has harmonized different infrastructures under the Industry Foundation Classes (IFC) 4.3 release. Furthermore, the usage of remote sensing technologies such as laser scanning for infrastructure monitoring is becoming more common. This paper presents a semi-automated framework that takes as input a raw point cloud from a mobile mapping system, and outputs an IFC-compliant file that models the alignment and the centreline of each road lane in a highway road. The point cloud processing methodology is validated for two of its key steps, namely road marking processing and alignment and road line extraction, and a UML diagram is designed for the definition of the alignment entity from the point cloud data.</dcterms:abstract>
<dcterms:description_sponsorship lang="spa">Horizon 2020 Framework Programme | Ref. 769255</dcterms:description_sponsorship>
<dcterms:description_sponsorship lang="spa">Ministerio de Ciencia, Innovación y Universidades | Ref. RTI2018-095893-B-C21</dcterms:description_sponsorship>
<dcterms:description_sponsorship lang="spa">Ministerio de Ciencia e Innovación y Universidades | Ref. FJC2018-035550-I</dcterms:description_sponsorship>
<dcterms:language type="dcterms:ISO639-2" lang="spa">eng</dcterms:language>
<dcterms:publisher lang="spa">Remote Sensing</dcterms:publisher>
<dcterms:rights>Creative Commons Attribution (CC BY) license</dcterms:rights>
<dcterms:accessRights lang="spa">openAccess</dcterms:accessRights>
<dcterms:rights_uri type="dcterms:URI">(http://creativecommons.org/licenses/by/4.0/)</dcterms:rights_uri>
<dcterms:title lang="spa">3D Point cloud to BIM: semi-automated framework to define IFC alignment entities from MLS-acquired LiDAR data of highway roads</dcterms:title>
<dcterms:type lang="spa">article</dcterms:type>
<dcterms:computerCitation lang="spa">pub_title=Remote Sensing|volume=12|journal_number=14|start_pag=2301|end_pag=</dcterms:computerCitation>
<dcterms:publisher_department lang="spa">Enxeñaría dos recursos naturais e medio ambiente</dcterms:publisher_department>
<dcterms:publisher_department lang="spa">Enxeñaría dos materiais, mecánica aplicada e construción</dcterms:publisher_department>
<dcterms:publisher_group lang="spa">Xeotecnoloxías Aplicadas</dcterms:publisher_group>
<dcterms:subject lang="spa">3311.02 Ingeniería de Control</dcterms:subject>
<dcterms:subject lang="spa">3305.06 Ingeniería Civil</dcterms:subject>
<dcterms:subject lang="spa">3307.07 Dispositivos láser</dcterms:subject>
<dcterms:authorList>7875#8476#8322#5319</dcterms:authorList>
</oai_dc:dc>
Se ha omitido la presentación del registro por ser demasiado largo. Si lo desea, puede descargárselo en el enlace anterior.