<?xml version="1.0" encoding="UTF-8" ?>
<oai_dc:dc schemaLocation="http://www.openarchives.org/OAI/2.0/oai_dc/ http://www.openarchives.org/OAI/2.0/oai_dc.xsd">
<dc:title>A comprehensive study on development of a biocathode for cleaner production of hydrogen in a microbial electrolysis cell</dc:title>
<dc:creator>Jafary, T.</dc:creator>
<dc:creator>Daud, W.</dc:creator>
<dc:creator>Ghasemi, M.</dc:creator>
<dc:creator>Kim, B.H.</dc:creator>
<dc:creator>Carmona, A.</dc:creator>
<dc:creator>Abu Bakar, M.H.</dc:creator>
<dc:creator>Jahim, J.M.</dc:creator>
<dc:creator>Ismail, M.</dc:creator>
<dc:subject>Q Science (General)</dc:subject>
<dc:subject>QD Chemistry</dc:subject>
<dc:subject>TD Environmental technology. Sanitary engineering</dc:subject>
<dc:description>A biocathode microbial electrolysis cell (MEC) can be considered as an environmentally friendly and self-generative alternative to an abiocathode MEC for the cleaner production of hydrogen in a novel microbial electrolysis system. For the first time, this research focused on the development of the MEC biocathode out of sulphate-reducing bacteria (SRB) for the purpose of hydrogen production based on the previously proposed hypothesis. SRB were initially enriched from a mixed culture source during the ex-situ SRB enrichment stage. Two different MEC bioathodes-namely, the MEC origin (MEC-O) biocathode and the microbial fuel cell-MEC (MFC-MEC) biocathode-were then developed through two different enrichment procedures during the in-situ SRB enrichment stage. Hydrogen gas was the main product of the MEC-O biocathode with a low detection of methane, while methane was detected as the sole product of the MFC-MEC biocathode system. Therefore, the MEC-O biocathode system was selected during the enhancement stage to increase the biocathode MEC performance. It was shown in the study, that in the enhancement stage of the MEC-O biocathode, the concentration of sodium sulphate in the cathodic medium, the hydrogen supply during the enrichment stage and pH of the cathodic medium could significantly affect the MEC performance in terms of the hydrogen production rate, the onset potential for the hydrogen evolution reaction (HER) and the cathodic charge transfer resistance. The hydrogen production was improved significantly by about 6 times from 0.31 to 1.85 m(3) H-2/(m(3) d) during the enhancement stage, while the methane production was totally hindered. The linear sweep voltammetry analysis displayed a 430-mV (equal to about 1 kWh/m(3) of energy input) reduction of the HER onset potential in the biocathode system compared to that of a non-inoculated graphite felt cathode. Moreover, the electrochemical impedance spectroscopy showed that the cathodic charge transfer resistance of the MEC biocathode reduced by 300 times compared to that of a non-inoculated graphite felt cathode. (C) 2017 Elsevier Ltd. All rights reserved.</dc:description>
<dc:date>2017</dc:date>
<dc:type>Article</dc:type>
<dc:type>PeerReviewed</dc:type>
<dc:relation>http://dx.doi.org/10.1016/j.jclepro.2017.07.033</dc:relation>
<dc:identifier>Jafary, T. and Daud, W. and Ghasemi, M. and Kim, B.H. and Carmona, A. and Abu Bakar, M.H. and Jahim, J.M. and Ismail, M. (2017) A comprehensive study on development of a biocathode for cleaner production of hydrogen in a microbial electrolysis cell. Journal of Cleaner Production, 164. pp. 1135-1144. ISSN 09596526</dc:identifier>
<dc:relation>http://eprints.imdea-agua.org:13000/805/</dc:relation>
</oai_dc:dc>
<?xml version="1.0" encoding="UTF-8" ?>
<didl:DIDL DIDLDocumentId="http://eprints.imdea-agua.org:13000/id/eprint/805" schemaLocation="urn:mpeg:mpeg21:2002:02-DIDL-NS http://standards.iso.org/ittf/PubliclyAvailableStandards/MPEG-21_schema_files/did/didl.xsd urn:mpeg:mpeg21:2002:01-DII-NS http://standards.iso.org/ittf/PubliclyAvailableStandards/MPEG-21_schema_files/dii/dii.xsd urn:mpeg:mpeg21:2005:01-DIP-NS http://standards.iso.org/ittf/PubliclyAvailableStandards/MPEG-21_schema_files/dip/dip.xsd">
<didl:Item>
<didl:Descriptor>
<didl:Statement mimeType="application/xml">
<dii:Identifier>http://eprints.imdea-agua.org:13000/id/eprint/805</dii:Identifier>
</didl:Statement>
</didl:Descriptor>
<didl:Descriptor>
<didl:Statement mimeType="application/xml">
<dcterms:modified>2020-03-23T15:45:46Z</dcterms:modified>
</didl:Statement>
</didl:Descriptor>
<didl:Component>
</didl:Component>
<didl:Item>
<didl:Descriptor>
<didl:Statement mimeType="application/xml">
<dip:ObjectType>info:eu-repo/semantics/descriptiveMetadata</dip:ObjectType>
</didl:Statement>
</didl:Descriptor>
<didl:Component>
<didl:Resource mimeType="application/xml">
<oai_dc:dc schemaLocation="http://www.openarchives.org/OAI/2.0/oai_dc/ http://www.openarchives.org/OAI/2.0/oai_dc.xsd">
<dc:title>A comprehensive study on development of a biocathode for cleaner production of hydrogen in a microbial electrolysis cell</dc:title>
<dc:creator>Jafary, T.</dc:creator>
<dc:creator>Daud, W.</dc:creator>
<dc:creator>Ghasemi, M.</dc:creator>
<dc:creator>Kim, B.H.</dc:creator>
<dc:creator>Carmona, A.</dc:creator>
<dc:creator>Abu Bakar, M.H.</dc:creator>
<dc:creator>Jahim, J.M.</dc:creator>
<dc:creator>Ismail, M.</dc:creator>
<dc:subject>Q Science (General)</dc:subject>
<dc:subject>QD Chemistry</dc:subject>
<dc:subject>TD Environmental technology. Sanitary engineering</dc:subject>
<dc:description>A biocathode microbial electrolysis cell (MEC) can be considered as an environmentally friendly and self-generative alternative to an abiocathode MEC for the cleaner production of hydrogen in a novel microbial electrolysis system. For the first time, this research focused on the development of the MEC biocathode out of sulphate-reducing bacteria (SRB) for the purpose of hydrogen production based on the previously proposed hypothesis. SRB were initially enriched from a mixed culture source during the ex-situ SRB enrichment stage. Two different MEC bioathodes-namely, the MEC origin (MEC-O) biocathode and the microbial fuel cell-MEC (MFC-MEC) biocathode-were then developed through two different enrichment procedures during the in-situ SRB enrichment stage. Hydrogen gas was the main product of the MEC-O biocathode with a low detection of methane, while methane was detected as the sole product of the MFC-MEC biocathode system. Therefore, the MEC-O biocathode system was selected during the enhancement stage to increase the biocathode MEC performance. It was shown in the study, that in the enhancement stage of the MEC-O biocathode, the concentration of sodium sulphate in the cathodic medium, the hydrogen supply during the enrichment stage and pH of the cathodic medium could significantly affect the MEC performance in terms of the hydrogen production rate, the onset potential for the hydrogen evolution reaction (HER) and the cathodic charge transfer resistance. The hydrogen production was improved significantly by about 6 times from 0.31 to 1.85 m(3) H-2/(m(3) d) during the enhancement stage, while the methane production was totally hindered. The linear sweep voltammetry analysis displayed a 430-mV (equal to about 1 kWh/m(3) of energy input) reduction of the HER onset potential in the biocathode system compared to that of a non-inoculated graphite felt cathode. Moreover, the electrochemical impedance spectroscopy showed that the cathodic charge transfer resistance of the MEC biocathode reduced by 300 times compared to that of a non-inoculated graphite felt cathode. (C) 2017 Elsevier Ltd. All rights reserved.</dc:description>
<dc:date>2017</dc:date>
<dc:type>Article</dc:type>
<dc:type>PeerReviewed</dc:type>
<dc:relation>http://dx.doi.org/10.1016/j.jclepro.2017.07.033</dc:relation>
<dc:identifier>Jafary, T. and Daud, W. and Ghasemi, M. and Kim, B.H. and Carmona, A. and Abu Bakar, M.H. and Jahim, J.M. and Ismail, M. (2017) A comprehensive study on development of a biocathode for cleaner production of hydrogen in a microbial electrolysis cell. Journal of Cleaner Production, 164. pp. 1135-1144. ISSN 09596526</dc:identifier>
<dc:relation>http://eprints.imdea-agua.org:13000/805/</dc:relation>
</oai_dc:dc>
</didl:Resource>
</didl:Component>
</didl:Item>
<didl:Item>
<didl:Descriptor>
<didl:Statement mimeType="application/xml">
<dip:ObjectType>info:eu-repo/semantics/humanStartPage</dip:ObjectType>
</didl:Statement>
</didl:Descriptor>
<didl:Component>
</didl:Component>
</didl:Item>
</didl:Item>
</didl:DIDL>
<?xml version="1.0" encoding="UTF-8" ?>
<mets:mets LABEL="Eprints Item" OBJID="eprint_805" schemaLocation="http://www.loc.gov/METS/ http://www.loc.gov/standards/mets/mets.xsd http://www.loc.gov/mods/v3 http://www.loc.gov/standards/mods/v3/mods-3-3.xsd">
<mets:metsHdr CREATEDATE="2022-09-20T09:11:58Z">
<mets:agent ROLE="CUSTODIAN" TYPE="ORGANIZATION">
<mets:name>IMDEA AGUA</mets:name>
</mets:agent>
</mets:metsHdr>
<mets:dmdSec ID="DMD_eprint_805_mods">
<mets:mdWrap MDTYPE="MODS">
<mets:xmlData>
<mods:titleInfo>
<mods:title>A comprehensive study on development of a biocathode for cleaner production of hydrogen in a microbial electrolysis cell</mods:title>
</mods:titleInfo>
<mods:name type="personal">
<mods:namePart type="given">T.</mods:namePart>
<mods:namePart type="family">Jafary</mods:namePart>
<mods:role>
<mods:roleTerm type="text">author</mods:roleTerm>
</mods:role>
</mods:name>
<mods:name type="personal">
<mods:namePart type="given">W.</mods:namePart>
<mods:namePart type="family">Daud</mods:namePart>
<mods:role>
<mods:roleTerm type="text">author</mods:roleTerm>
</mods:role>
</mods:name>
<mods:name type="personal">
<mods:namePart type="given">M.</mods:namePart>
<mods:namePart type="family">Ghasemi</mods:namePart>
<mods:role>
<mods:roleTerm type="text">author</mods:roleTerm>
</mods:role>
</mods:name>
<mods:name type="personal">
<mods:namePart type="given">B.H.</mods:namePart>
<mods:namePart type="family">Kim</mods:namePart>
<mods:role>
<mods:roleTerm type="text">author</mods:roleTerm>
</mods:role>
</mods:name>
<mods:name type="personal">
<mods:namePart type="given">A.</mods:namePart>
<mods:namePart type="family">Carmona</mods:namePart>
<mods:role>
<mods:roleTerm type="text">author</mods:roleTerm>
</mods:role>
</mods:name>
<mods:name type="personal">
<mods:namePart type="given">M.H.</mods:namePart>
<mods:namePart type="family">Abu Bakar</mods:namePart>
<mods:role>
<mods:roleTerm type="text">author</mods:roleTerm>
</mods:role>
</mods:name>
<mods:name type="personal">
<mods:namePart type="given">J.M.</mods:namePart>
<mods:namePart type="family">Jahim</mods:namePart>
<mods:role>
<mods:roleTerm type="text">author</mods:roleTerm>
</mods:role>
</mods:name>
<mods:name type="personal">
<mods:namePart type="given">M.</mods:namePart>
<mods:namePart type="family">Ismail</mods:namePart>
<mods:role>
<mods:roleTerm type="text">author</mods:roleTerm>
</mods:role>
</mods:name>
<mods:abstract>A biocathode microbial electrolysis cell (MEC) can be considered as an environmentally friendly and self-generative alternative to an abiocathode MEC for the cleaner production of hydrogen in a novel microbial electrolysis system. For the first time, this research focused on the development of the MEC biocathode out of sulphate-reducing bacteria (SRB) for the purpose of hydrogen production based on the previously proposed hypothesis. SRB were initially enriched from a mixed culture source during the ex-situ SRB enrichment stage. Two different MEC bioathodes-namely, the MEC origin (MEC-O) biocathode and the microbial fuel cell-MEC (MFC-MEC) biocathode-were then developed through two different enrichment procedures during the in-situ SRB enrichment stage. Hydrogen gas was the main product of the MEC-O biocathode with a low detection of methane, while methane was detected as the sole product of the MFC-MEC biocathode system. Therefore, the MEC-O biocathode system was selected during the enhancement stage to increase the biocathode MEC performance. It was shown in the study, that in the enhancement stage of the MEC-O biocathode, the concentration of sodium sulphate in the cathodic medium, the hydrogen supply during the enrichment stage and pH of the cathodic medium could significantly affect the MEC performance in terms of the hydrogen production rate, the onset potential for the hydrogen evolution reaction (HER) and the cathodic charge transfer resistance. The hydrogen production was improved significantly by about 6 times from 0.31 to 1.85 m(3) H-2/(m(3) d) during the enhancement stage, while the methane production was totally hindered. The linear sweep voltammetry analysis displayed a 430-mV (equal to about 1 kWh/m(3) of energy input) reduction of the HER onset potential in the biocathode system compared to that of a non-inoculated graphite felt cathode. Moreover, the electrochemical impedance spectroscopy showed that the cathodic charge transfer resistance of the MEC biocathode reduced by 300 times compared to that of a non-inoculated graphite felt cathode. (C) 2017 Elsevier Ltd. All rights reserved.</mods:abstract>
<mods:classification authority="lcc">Q Science (General)</mods:classification>
<mods:classification authority="lcc">QD Chemistry</mods:classification>
<mods:classification authority="lcc">TD Environmental technology. Sanitary engineering</mods:classification>
<mods:originInfo>
<mods:dateIssued encoding="iso8061">2017</mods:dateIssued>
</mods:originInfo>
<mods:genre>Article</mods:genre>
</mets:xmlData>
</mets:mdWrap>
</mets:dmdSec>
<mets:amdSec ID="TMD_eprint_805">
<mets:rightsMD ID="rights_eprint_805_mods">
<mets:mdWrap MDTYPE="MODS">
<mets:xmlData>
<mods:useAndReproduction>
<p>
<strong>For work being deposited by its own author:</strong>
</p>
<p>
<strong>For work being deposited by someone other than its author:</strong>
</p>
<p>Clicking on the deposit button indicates your agreement to these terms.</p>
</mods:useAndReproduction>
</mets:xmlData>
</mets:mdWrap>
</mets:rightsMD>
</mets:amdSec>
<mets:structMap>
</mets:structMap>
</mets:mets>
<?xml version="1.0" encoding="UTF-8" ?>
<?xml version="1.0" encoding="UTF-8" ?>
<rdf:RDF>
<rdf:Description about="">
<rdfs:comment datatype="http://www.w3.org/2001/XMLSchema#string">The repository administrator has not yet configured an RDF license.</rdfs:comment>
</rdf:Description>
<rdf:Description about="http://eprints.imdea-agua.org:13000/805/">
<dc:format>text/html</dc:format>
<dc:title>HTML Summary of #805 A comprehensive study on development of a biocathode for cleaner production of hydrogen in a microbial electrolysis cell</dc:title>
</rdf:Description>
<rdf:Description about="http://eprints.imdea-agua.org:13000/id/eprint/805#authors">
</rdf:Description>
<rdf:Description about="http://eprints.imdea-agua.org:13000/id/eprint/805">
<bibo:abstract datatype="http://www.w3.org/2001/XMLSchema#string">A biocathode microbial electrolysis cell (MEC) can be considered as an environmentally friendly and self-generative alternative to an abiocathode MEC for the cleaner production of hydrogen in a novel microbial electrolysis system. For the first time, this research focused on the development of the MEC biocathode out of sulphate-reducing bacteria (SRB) for the purpose of hydrogen production based on the previously proposed hypothesis. SRB were initially enriched from a mixed culture source during the ex-situ SRB enrichment stage. Two different MEC bioathodes-namely, the MEC origin (MEC-O) biocathode and the microbial fuel cell-MEC (MFC-MEC) biocathode-were then developed through two different enrichment procedures during the in-situ SRB enrichment stage. Hydrogen gas was the main product of the MEC-O biocathode with a low detection of methane, while methane was detected as the sole product of the MFC-MEC biocathode system. Therefore, the MEC-O biocathode system was selected during the enhancement stage to increase the biocathode MEC performance. It was shown in the study, that in the enhancement stage of the MEC-O biocathode, the concentration of sodium sulphate in the cathodic medium, the hydrogen supply during the enrichment stage and pH of the cathodic medium could significantly affect the MEC performance in terms of the hydrogen production rate, the onset potential for the hydrogen evolution reaction (HER) and the cathodic charge transfer resistance. The hydrogen production was improved significantly by about 6 times from 0.31 to 1.85 m(3) H-2/(m(3) d) during the enhancement stage, while the methane production was totally hindered. The linear sweep voltammetry analysis displayed a 430-mV (equal to about 1 kWh/m(3) of energy input) reduction of the HER onset potential in the biocathode system compared to that of a non-inoculated graphite felt cathode. Moreover, the electrochemical impedance spectroscopy showed that the cathodic charge transfer resistance of the MEC biocathode reduced by 300 times compared to that of a non-inoculated graphite felt cathode. (C) 2017 Elsevier Ltd. All rights reserved.</bibo:abstract>
<bibo:volume>164</bibo:volume>
<dct:date>2017</dct:date>
<dct:title datatype="http://www.w3.org/2001/XMLSchema#string">A comprehensive study on development of a biocathode for cleaner production of hydrogen in a microbial electrolysis cell</dct:title>
</rdf:Description>
<rdf:Description about="http://eprints.imdea-agua.org:13000/id/subject/Q1">
<skos:prefLabel lang="en">Q Science (General)</skos:prefLabel>
</rdf:Description>
<rdf:Description about="http://eprints.imdea-agua.org:13000/id/subject/QD">
<skos:prefLabel lang="en">QD Chemistry</skos:prefLabel>
</rdf:Description>
<rdf:Description about="http://eprints.imdea-agua.org:13000/id/subject/TD">
<skos:prefLabel lang="en">TD Environmental technology. Sanitary engineering</skos:prefLabel>
</rdf:Description>
<rdf:Description about="http://eprints.imdea-agua.org:13000/id/person/ext-3f604710b30f7e2d5efedcedb32102cd">
<foaf:familyName datatype="http://www.w3.org/2001/XMLSchema#string">Ghasemi</foaf:familyName>
<foaf:givenName datatype="http://www.w3.org/2001/XMLSchema#string">M.</foaf:givenName>
<foaf:name datatype="http://www.w3.org/2001/XMLSchema#string">M. Ghasemi</foaf:name>
</rdf:Description>
<rdf:Description about="http://eprints.imdea-agua.org:13000/id/person/ext-8f48bee322fdb972823dad5cc2416e28">
<foaf:familyName datatype="http://www.w3.org/2001/XMLSchema#string">Kim</foaf:familyName>
<foaf:givenName datatype="http://www.w3.org/2001/XMLSchema#string">B.H.</foaf:givenName>
<foaf:name datatype="http://www.w3.org/2001/XMLSchema#string">B.H. Kim</foaf:name>
</rdf:Description>
<rdf:Description about="http://eprints.imdea-agua.org:13000/id/person/ext-86ed2dce735cb9c98e5e44af6c7aff2b">
<foaf:familyName datatype="http://www.w3.org/2001/XMLSchema#string">Jafary</foaf:familyName>
<foaf:givenName datatype="http://www.w3.org/2001/XMLSchema#string">T.</foaf:givenName>
<foaf:name datatype="http://www.w3.org/2001/XMLSchema#string">T. Jafary</foaf:name>
</rdf:Description>
<rdf:Description about="http://eprints.imdea-agua.org:13000/id/person/ext-a871f0912770ee42a2aa0f5fd2ddfce5">
<foaf:familyName datatype="http://www.w3.org/2001/XMLSchema#string">Daud</foaf:familyName>
<foaf:givenName datatype="http://www.w3.org/2001/XMLSchema#string">W.</foaf:givenName>
<foaf:name datatype="http://www.w3.org/2001/XMLSchema#string">W. Daud</foaf:name>
</rdf:Description>
<rdf:Description about="http://eprints.imdea-agua.org:13000/id/person/ext-alessandro.carmona@gmail.com">
<foaf:familyName datatype="http://www.w3.org/2001/XMLSchema#string">Carmona</foaf:familyName>
<foaf:givenName datatype="http://www.w3.org/2001/XMLSchema#string">A.</foaf:givenName>
<foaf:name datatype="http://www.w3.org/2001/XMLSchema#string">A. Carmona</foaf:name>
</rdf:Description>
<rdf:Description about="http://eprints.imdea-agua.org:13000/id/person/ext-d56ed044b384ef3b4a3e0308769dcd49">
<foaf:familyName datatype="http://www.w3.org/2001/XMLSchema#string">Abu Bakar</foaf:familyName>
<foaf:givenName datatype="http://www.w3.org/2001/XMLSchema#string">M.H.</foaf:givenName>
<foaf:name datatype="http://www.w3.org/2001/XMLSchema#string">M.H. Abu Bakar</foaf:name>
</rdf:Description>
<rdf:Description about="http://eprints.imdea-agua.org:13000/id/person/ext-df0fba50fcca2178582f34c7ddab7e2d">
<foaf:familyName datatype="http://www.w3.org/2001/XMLSchema#string">Jahim</foaf:familyName>
<foaf:givenName datatype="http://www.w3.org/2001/XMLSchema#string">J.M.</foaf:givenName>
<foaf:name datatype="http://www.w3.org/2001/XMLSchema#string">J.M. Jahim</foaf:name>
</rdf:Description>
<rdf:Description about="http://eprints.imdea-agua.org:13000/id/person/ext-e6cd5ca20fd1c63fca5a3e2b8178295a">
<foaf:familyName datatype="http://www.w3.org/2001/XMLSchema#string">Ismail</foaf:familyName>
<foaf:givenName datatype="http://www.w3.org/2001/XMLSchema#string">M.</foaf:givenName>
<foaf:name datatype="http://www.w3.org/2001/XMLSchema#string">M. Ismail</foaf:name>
</rdf:Description>
<rdf:Description about="http://eprints.imdea-agua.org:13000/id/publication/ext-09596526">
<bibo:issn>09596526</bibo:issn>
<foaf:name datatype="http://www.w3.org/2001/XMLSchema#string">Journal of Cleaner Production</foaf:name>
</rdf:Description>
</rdf:RDF>
<?xml version="1.0" encoding="UTF-8" ?>