<?xml version="1.0" encoding="UTF-8" ?>
<oai_dc:dc schemaLocation="http://www.openarchives.org/OAI/2.0/oai_dc/ http://www.openarchives.org/OAI/2.0/oai_dc.xsd">
<dc:title>A data mining approach using cortical thickness for diagnosis and characterization of essential tremor.</dc:title>
<dc:creator>Serrano, J. Ignacio</dc:creator>
<dc:creator>Romero Muñoz, Juan Pablo</dc:creator>
<dc:creator>Del Castillo, María Dolores</dc:creator>
<dc:creator>Rocon, Eduardo</dc:creator>
<dc:creator>Louis, Elan D.</dc:creator>
<dc:creator>Benito León, Julián</dc:creator>
<dc:subject>Essential tremor</dc:subject>
<dc:subject>Temblor esencial</dc:subject>
<dc:description>Essential tremor (ET) is one of the most prevalent movement disorders. Being that it is a common disorder, its diagnosis is considered routine. However, misdiagnoses may occur regularly. Over the past decade, several studies have identified brain morphometric changes in ET, but these changes remain poorly understood. Here, we tested the informativeness of measuring cortical thickness for the purposes of ET diagnosis, applying feature selection and machine learning methods to a study sample of 18 patients with ET and 18 age- and sex-matched healthy control subjects. We found that cortical thickness features alone distinguished the two, ET from controls, with 81% diagnostic accuracy. More specifically, roughness (i.e., the standard deviation of cortical thickness) of the right inferior parietal and right fusiform areas was shown to play a key role in ET characterization. Moreover, these features allowed us to identify subgroups of ET patients as well as healthy subjects at risk for ET. Since treatment of tremors is disease specific, accurate and early diagnosis plays an important role in tremor management. Supporting the clinical diagnosis with novel computer approaches based on the objective evaluation of neuroimage data, like the one presented here, may represent a significant step in this direction.</dc:description>
<dc:description>post-print</dc:description>
<dc:description>1720 KB</dc:description>
<dc:date>2017-06-07T10:03:49Z</dc:date>
<dc:date>2017-06-07T10:03:49Z</dc:date>
<dc:date>2017-05-19</dc:date>
<dc:type>article</dc:type>
<dc:identifier>1476-4687</dc:identifier>
<dc:identifier>http://hdl.handle.net/10641/1305</dc:identifier>
<dc:language>eng</dc:language>
<dc:rights>Atribución-NoComercial-SinDerivadas 3.0 España</dc:rights>
<dc:rights>http://creativecommons.org/licenses/by-nc-nd/3.0/es/</dc:rights>
<dc:rights>openAccess</dc:rights>
<dc:publisher>Nature. Scientific Reports</dc:publisher>
</oai_dc:dc>
<?xml version="1.0" encoding="UTF-8" ?>
<d:DIDL schemaLocation="urn:mpeg:mpeg21:2002:02-DIDL-NS http://standards.iso.org/ittf/PubliclyAvailableStandards/MPEG-21_schema_files/did/didl.xsd">
<d:DIDLInfo>
<dcterms:created schemaLocation="http://purl.org/dc/terms/ http://dublincore.org/schemas/xmls/qdc/dcterms.xsd">2017-06-07T10:03:49Z</dcterms:created>
</d:DIDLInfo>
<d:Item id="hdl_10641_1305">
<d:Descriptor>
<d:Statement mimeType="application/xml; charset=utf-8">
<dii:Identifier schemaLocation="urn:mpeg:mpeg21:2002:01-DII-NS http://standards.iso.org/ittf/PubliclyAvailableStandards/MPEG-21_schema_files/dii/dii.xsd">urn:hdl:10641/1305</dii:Identifier>
</d:Statement>
</d:Descriptor>
<d:Descriptor>
<d:Statement mimeType="application/xml; charset=utf-8">
<oai_dc:dc schemaLocation="http://www.openarchives.org/OAI/2.0/oai_dc/ http://www.openarchives.org/OAI/2.0/oai_dc.xsd">
<dc:title>A data mining approach using cortical thickness for diagnosis and characterization of essential tremor.</dc:title>
<dc:creator>Serrano, J. Ignacio</dc:creator>
<dc:creator>Romero Muñoz, Juan Pablo</dc:creator>
<dc:creator>Del Castillo, María Dolores</dc:creator>
<dc:creator>Rocon, Eduardo</dc:creator>
<dc:creator>Louis, Elan D.</dc:creator>
<dc:creator>Benito León, Julián</dc:creator>
<dc:subject>Essential tremor</dc:subject>
<dc:subject>Temblor esencial</dc:subject>
<dc:description>Essential tremor (ET) is one of the most prevalent movement disorders. Being that it is a common disorder, its diagnosis is considered routine. However, misdiagnoses may occur regularly. Over the past decade, several studies have identified brain morphometric changes in ET, but these changes remain poorly understood. Here, we tested the informativeness of measuring cortical thickness for the purposes of ET diagnosis, applying feature selection and machine learning methods to a study sample of 18 patients with ET and 18 age- and sex-matched healthy control subjects. We found that cortical thickness features alone distinguished the two, ET from controls, with 81% diagnostic accuracy. More specifically, roughness (i.e., the standard deviation of cortical thickness) of the right inferior parietal and right fusiform areas was shown to play a key role in ET characterization. Moreover, these features allowed us to identify subgroups of ET patients as well as healthy subjects at risk for ET. Since treatment of tremors is disease specific, accurate and early diagnosis plays an important role in tremor management. Supporting the clinical diagnosis with novel computer approaches based on the objective evaluation of neuroimage data, like the one presented here, may represent a significant step in this direction.</dc:description>
<dc:date>2017-06-07T10:03:49Z</dc:date>
<dc:date>2017-06-07T10:03:49Z</dc:date>
<dc:date>2017-05-19</dc:date>
<dc:type>article</dc:type>
<dc:identifier>1476-4687</dc:identifier>
<dc:identifier>http://hdl.handle.net/10641/1305</dc:identifier>
<dc:language>eng</dc:language>
<dc:rights>http://creativecommons.org/licenses/by-nc-nd/3.0/es/</dc:rights>
<dc:rights>openAccess</dc:rights>
<dc:rights>Atribución-NoComercial-SinDerivadas 3.0 España</dc:rights>
<dc:publisher>Nature. Scientific Reports</dc:publisher>
</oai_dc:dc>
</d:Statement>
</d:Descriptor>
<d:Component id="10641_1305_1">
</d:Component>
</d:Item>
</d:DIDL>
<?xml version="1.0" encoding="UTF-8" ?>
<dim:dim schemaLocation="http://www.dspace.org/xmlns/dspace/dim http://www.dspace.org/schema/dim.xsd">
<dim:field authority="b7f08fc9-a7c6-4e47-bdee-d327071ed218" confidence="500" element="contributor" mdschema="dc" qualifier="author">Serrano, J. Ignacio</dim:field>
<dim:field authority="142" confidence="500" element="contributor" mdschema="dc" qualifier="author">Romero Muñoz, Juan Pablo</dim:field>
<dim:field authority="4b3d0394-8418-4d7f-8d72-f7438c3942f4" confidence="500" element="contributor" mdschema="dc" qualifier="author">Del Castillo, María Dolores</dim:field>
<dim:field authority="da398744-1be2-4a64-8436-0d37a5b46915" confidence="500" element="contributor" mdschema="dc" qualifier="author">Rocon, Eduardo</dim:field>
<dim:field authority="c6d77c01-e712-4f99-972e-ff3bea9d46fd" confidence="500" element="contributor" mdschema="dc" qualifier="author">Louis, Elan D.</dim:field>
<dim:field authority="13e941d9-fccb-4911-9704-31c790a773e6" confidence="500" element="contributor" mdschema="dc" qualifier="author">Benito León, Julián</dim:field>
<dim:field element="date" mdschema="dc" qualifier="accessioned">2017-06-07T10:03:49Z</dim:field>
<dim:field element="date" mdschema="dc" qualifier="available">2017-06-07T10:03:49Z</dim:field>
<dim:field element="date" mdschema="dc" qualifier="issued">2017-05-19</dim:field>
<dim:field element="identifier" mdschema="dc" qualifier="issn">1476-4687</dim:field>
<dim:field element="identifier" mdschema="dc" qualifier="uri">http://hdl.handle.net/10641/1305</dim:field>
<dim:field element="description" lang="eng" mdschema="dc" qualifier="abstract">Essential tremor (ET) is one of the most prevalent movement disorders. Being that it is a common disorder, its diagnosis is considered routine. However, misdiagnoses may occur regularly. Over the past decade, several studies have identified brain morphometric changes in ET, but these changes remain poorly understood. Here, we tested the informativeness of measuring cortical thickness for the purposes of ET diagnosis, applying feature selection and machine learning methods to a study sample of 18 patients with ET and 18 age- and sex-matched healthy control subjects. We found that cortical thickness features alone distinguished the two, ET from controls, with 81% diagnostic accuracy. More specifically, roughness (i.e., the standard deviation of cortical thickness) of the right inferior parietal and right fusiform areas was shown to play a key role in ET characterization. Moreover, these features allowed us to identify subgroups of ET patients as well as healthy subjects at risk for ET. Since treatment of tremors is disease specific, accurate and early diagnosis plays an important role in tremor management. Supporting the clinical diagnosis with novel computer approaches based on the objective evaluation of neuroimage data, like the one presented here, may represent a significant step in this direction.</dim:field>
<dim:field element="description" lang="spa" mdschema="dc" qualifier="version">post-print</dim:field>
<dim:field element="description" lang="spa" mdschema="dc" qualifier="extent">1720 KB</dim:field>
<dim:field element="language" lang="spa" mdschema="dc" qualifier="iso">eng</dim:field>
<dim:field element="publisher" lang="spa" mdschema="dc">Nature. Scientific Reports</dim:field>
<dim:field element="rights" lang="*" mdschema="dc">Atribución-NoComercial-SinDerivadas 3.0 España</dim:field>
<dim:field element="rights" lang="*" mdschema="dc" qualifier="uri">http://creativecommons.org/licenses/by-nc-nd/3.0/es/</dim:field>
<dim:field element="rights" lang="spa" mdschema="dc" qualifier="accessRights">openAccess</dim:field>
<dim:field element="subject" lang="spa" mdschema="dc">Essential tremor</dim:field>
<dim:field element="subject" lang="spa" mdschema="dc">Temblor esencial</dim:field>
<dim:field element="title" lang="spa" mdschema="dc">A data mining approach using cortical thickness for diagnosis and characterization of essential tremor.</dim:field>
<dim:field element="type" lang="spa" mdschema="dc">article</dim:field>
</dim:dim>
<?xml version="1.0" encoding="UTF-8" ?>
<thesis schemaLocation="http://www.ndltd.org/standards/metadata/etdms/1.0/ http://www.ndltd.org/standards/metadata/etdms/1.0/etdms.xsd">
<title>A data mining approach using cortical thickness for diagnosis and characterization of essential tremor.</title>
<creator>Serrano, J. Ignacio</creator>
<creator>Romero Muñoz, Juan Pablo</creator>
<creator>Del Castillo, María Dolores</creator>
<creator>Rocon, Eduardo</creator>
<creator>Louis, Elan D.</creator>
<creator>Benito León, Julián</creator>
<subject>Essential tremor</subject>
<subject>Temblor esencial</subject>
<description>Essential tremor (ET) is one of the most prevalent movement disorders. Being that it is a common disorder, its diagnosis is considered routine. However, misdiagnoses may occur regularly. Over the past decade, several studies have identified brain morphometric changes in ET, but these changes remain poorly understood. Here, we tested the informativeness of measuring cortical thickness for the purposes of ET diagnosis, applying feature selection and machine learning methods to a study sample of 18 patients with ET and 18 age- and sex-matched healthy control subjects. We found that cortical thickness features alone distinguished the two, ET from controls, with 81% diagnostic accuracy. More specifically, roughness (i.e., the standard deviation of cortical thickness) of the right inferior parietal and right fusiform areas was shown to play a key role in ET characterization. Moreover, these features allowed us to identify subgroups of ET patients as well as healthy subjects at risk for ET. Since treatment of tremors is disease specific, accurate and early diagnosis plays an important role in tremor management. Supporting the clinical diagnosis with novel computer approaches based on the objective evaluation of neuroimage data, like the one presented here, may represent a significant step in this direction.</description>
<date>2017-06-07</date>
<date>2017-06-07</date>
<date>2017-05-19</date>
<type>article</type>
<identifier>1476-4687</identifier>
<identifier>http://hdl.handle.net/10641/1305</identifier>
<language>eng</language>
<rights>http://creativecommons.org/licenses/by-nc-nd/3.0/es/</rights>
<rights>openAccess</rights>
<rights>Atribución-NoComercial-SinDerivadas 3.0 España</rights>
<publisher>Nature. Scientific Reports</publisher>
</thesis>
<?xml version="1.0" encoding="UTF-8" ?>
<record schemaLocation="http://www.loc.gov/MARC21/slim http://www.loc.gov/standards/marcxml/schema/MARC21slim.xsd">
<leader>00925njm 22002777a 4500</leader>
<datafield ind1=" " ind2=" " tag="042">
<subfield code="a">dc</subfield>
</datafield>
<datafield ind1=" " ind2=" " tag="720">
<subfield code="a">Serrano, J. Ignacio</subfield>
<subfield code="e">author</subfield>
</datafield>
<datafield ind1=" " ind2=" " tag="720">
<subfield code="a">Romero Muñoz, Juan Pablo</subfield>
<subfield code="e">author</subfield>
</datafield>
<datafield ind1=" " ind2=" " tag="720">
<subfield code="a">Del Castillo, María Dolores</subfield>
<subfield code="e">author</subfield>
</datafield>
<datafield ind1=" " ind2=" " tag="720">
<subfield code="a">Rocon, Eduardo</subfield>
<subfield code="e">author</subfield>
</datafield>
<datafield ind1=" " ind2=" " tag="720">
<subfield code="a">Louis, Elan D.</subfield>
<subfield code="e">author</subfield>
</datafield>
<datafield ind1=" " ind2=" " tag="720">
<subfield code="a">Benito León, Julián</subfield>
<subfield code="e">author</subfield>
</datafield>
<datafield ind1=" " ind2=" " tag="260">
<subfield code="c">2017-05-19</subfield>
</datafield>
<datafield ind1=" " ind2=" " tag="520">
<subfield code="a">Essential tremor (ET) is one of the most prevalent movement disorders. Being that it is a common disorder, its diagnosis is considered routine. However, misdiagnoses may occur regularly. Over the past decade, several studies have identified brain morphometric changes in ET, but these changes remain poorly understood. Here, we tested the informativeness of measuring cortical thickness for the purposes of ET diagnosis, applying feature selection and machine learning methods to a study sample of 18 patients with ET and 18 age- and sex-matched healthy control subjects. We found that cortical thickness features alone distinguished the two, ET from controls, with 81% diagnostic accuracy. More specifically, roughness (i.e., the standard deviation of cortical thickness) of the right inferior parietal and right fusiform areas was shown to play a key role in ET characterization. Moreover, these features allowed us to identify subgroups of ET patients as well as healthy subjects at risk for ET. Since treatment of tremors is disease specific, accurate and early diagnosis plays an important role in tremor management. Supporting the clinical diagnosis with novel computer approaches based on the objective evaluation of neuroimage data, like the one presented here, may represent a significant step in this direction.</subfield>
</datafield>
<datafield ind1="8" ind2=" " tag="024">
<subfield code="a">1476-4687</subfield>
</datafield>
<datafield ind1="8" ind2=" " tag="024">
<subfield code="a">http://hdl.handle.net/10641/1305</subfield>
</datafield>
<datafield ind1=" " ind2=" " tag="653">
<subfield code="a">Essential tremor</subfield>
</datafield>
<datafield ind1=" " ind2=" " tag="653">
<subfield code="a">Temblor esencial</subfield>
</datafield>
<datafield ind1="0" ind2="0" tag="245">
<subfield code="a">A data mining approach using cortical thickness for diagnosis and characterization of essential tremor.</subfield>
</datafield>
</record>
<?xml version="1.0" encoding="UTF-8" ?>
<mets ID=" DSpace_ITEM_10641-1305" OBJID=" hdl:10641/1305" PROFILE="DSpace METS SIP Profile 1.0" TYPE="DSpace ITEM" schemaLocation="http://www.loc.gov/METS/ http://www.loc.gov/standards/mets/mets.xsd">
<metsHdr CREATEDATE="2022-09-20T09:23:26Z">
<agent ROLE="CUSTODIAN" TYPE="ORGANIZATION">
<name>DDFV</name>
</agent>
</metsHdr>
<dmdSec ID="DMD_10641_1305">
<mdWrap MDTYPE="MODS">
<xmlData schemaLocation="http://www.loc.gov/mods/v3 http://www.loc.gov/standards/mods/v3/mods-3-1.xsd">
<mods:mods schemaLocation="http://www.loc.gov/mods/v3 http://www.loc.gov/standards/mods/v3/mods-3-1.xsd">
<mods:name>
<mods:role>
<mods:roleTerm type="text">author</mods:roleTerm>
</mods:role>
<mods:namePart>Serrano, J. Ignacio</mods:namePart>
</mods:name>
<mods:name>
<mods:role>
<mods:roleTerm type="text">author</mods:roleTerm>
</mods:role>
<mods:namePart>Romero Muñoz, Juan Pablo</mods:namePart>
</mods:name>
<mods:name>
<mods:role>
<mods:roleTerm type="text">author</mods:roleTerm>
</mods:role>
<mods:namePart>Del Castillo, María Dolores</mods:namePart>
</mods:name>
<mods:name>
<mods:role>
<mods:roleTerm type="text">author</mods:roleTerm>
</mods:role>
<mods:namePart>Rocon, Eduardo</mods:namePart>
</mods:name>
<mods:name>
<mods:role>
<mods:roleTerm type="text">author</mods:roleTerm>
</mods:role>
<mods:namePart>Louis, Elan D.</mods:namePart>
</mods:name>
<mods:name>
<mods:role>
<mods:roleTerm type="text">author</mods:roleTerm>
</mods:role>
<mods:namePart>Benito León, Julián</mods:namePart>
</mods:name>
<mods:extension>
<mods:dateAccessioned encoding="iso8601">2017-06-07T10:03:49Z</mods:dateAccessioned>
</mods:extension>
<mods:extension>
<mods:dateAvailable encoding="iso8601">2017-06-07T10:03:49Z</mods:dateAvailable>
</mods:extension>
<mods:originInfo>
<mods:dateIssued encoding="iso8601">2017-05-19</mods:dateIssued>
</mods:originInfo>
<mods:identifier type="issn">1476-4687</mods:identifier>
<mods:identifier type="uri">http://hdl.handle.net/10641/1305</mods:identifier>
<mods:abstract>Essential tremor (ET) is one of the most prevalent movement disorders. Being that it is a common disorder, its diagnosis is considered routine. However, misdiagnoses may occur regularly. Over the past decade, several studies have identified brain morphometric changes in ET, but these changes remain poorly understood. Here, we tested the informativeness of measuring cortical thickness for the purposes of ET diagnosis, applying feature selection and machine learning methods to a study sample of 18 patients with ET and 18 age- and sex-matched healthy control subjects. We found that cortical thickness features alone distinguished the two, ET from controls, with 81% diagnostic accuracy. More specifically, roughness (i.e., the standard deviation of cortical thickness) of the right inferior parietal and right fusiform areas was shown to play a key role in ET characterization. Moreover, these features allowed us to identify subgroups of ET patients as well as healthy subjects at risk for ET. Since treatment of tremors is disease specific, accurate and early diagnosis plays an important role in tremor management. Supporting the clinical diagnosis with novel computer approaches based on the objective evaluation of neuroimage data, like the one presented here, may represent a significant step in this direction.</mods:abstract>
<mods:language>
<mods:languageTerm authority="rfc3066">eng</mods:languageTerm>
</mods:language>
<mods:accessCondition type="useAndReproduction">Atribución-NoComercial-SinDerivadas 3.0 España</mods:accessCondition>
<mods:subject>
<mods:topic>Essential tremor</mods:topic>
</mods:subject>
<mods:subject>
<mods:topic>Temblor esencial</mods:topic>
</mods:subject>
<mods:titleInfo>
<mods:title>A data mining approach using cortical thickness for diagnosis and characterization of essential tremor.</mods:title>
</mods:titleInfo>
<mods:genre>article</mods:genre>
</mods:mods>
</xmlData>
</mdWrap>
</dmdSec>
<amdSec ID="TMD_10641_1305">
<rightsMD ID="RIG_10641_1305">
<mdWrap MDTYPE="OTHER" MIMETYPE="text/plain" OTHERMDTYPE="DSpaceDepositLicense">
<binData>LSBFbCByZXBvc2l0b3JpbyBpbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIEZyYW5jaXNjbyBkZSBWaXRvcmlhIGRlIE1hZHJpZCAoRERGViksIHBvbmUgYSBkaXNwb3NpY2nDs24gZGUgbG9zIHVzdWFyaW9zIGxhIHBsYXRhZm9ybWEgZGlnaXRhbCBhYmllcnRhIHkgZGUgYWNjZXNvIGxpYnJlIGRlIGxhIHByb2R1Y2Npw7NuIGNpZW50w61maWNhIGRlIGxhIGluc3RpdHVjacOzbi4KCi0gQSB0YWxlcyBmaW5lcywgbG9zIGF1dG9yZXMgZGVjbGFyYW4gcXVlIHNvbiB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCBkZSBsYSBvYnJhIHkgcXVlIMOpc3RhIGVzIG9yaWdpbmFsLgoKLSBNZWRpYW50ZSBsYSBhY2VwdGFjacOzbiBkZSBlc3RhIGxpY2VuY2lhLCBlbCBhdXRvciwgY29tbyB0aXR1bGFyIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciwgYXV0b3JpemEgeSBjZWRlIGEgbGEgVW5pdmVyc2lkYWQgRnJhbmNpc2NvIGRlIFZpdG9yaWEsIGRlIGZvcm1hIGdyYXR1aXRhIHkgbm8gZXhjbHVzaXZhLCBwb3IgZWwgbcOheGltbyBwbGF6byBsZWdhbCB5IGNvbiDDoW1iaXRvIHVuaXZlcnNhbCwgbG9zIGRlcmVjaG9zIGRlIHJlcHJvZHVjY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EsIGluY2x1aWRvIGVsIGRlcmVjaG8gZGUgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVsZWN0csOzbmljYSwgeSBsYSB0cmFuc2Zvcm1hY2nDs24gZGUgZm9ybWF0byBzb2JyZSBsYSBvYnJhIGluZGljYWRhLCBzaSBmdWVyYSBlbCBjYXNvLgoKLSBFbiBlbCBjYXNvIGRlIGNlc2nDs24gZGUgZGVyZWNob3MgZGUgZXhwbG90YWNpw7NuIGEgdGVyY2Vyb3MsIGRlY2xhcmEgcXVlIGN1ZW50YSBjb24gbGEgYXV0b3JpemFjacOzbiBkZSBkaWNob3MgdGl0dWxhcmVzIHkgcXVlIGhhIG9idGVuaWRvIGVsIHBlcm1pc28gc2luIHJlc3RyaWNjaW9uZXMgZGVsIHByb3BpZXRhcmlvIGRlbCBjb3B5cmlnaHQgcGFyYSBvdG9yZ2FyIGEgbGEgaW5zdGl0dWNpw7NuIGxvcyBkZXJlY2hvcyByZXF1ZXJpZG9zIHBhcmEgZXN0YSBsaWNlbmNpYSB5IHF1ZSBkaWNobyBwcm9waWV0YXJpbyBjb25vY2UgZWwgdGV4dG8gbyBlbCBjb250ZW5pZG8gZGUgbGEgb2JyYS4KCi0gU2kgZnVlcmEgdW5hIG9icmEgcGF0cm9jaW5hZGEgcG9yIGFsZ3VuYSBpbnN0aXR1Y2nDs24gZGlzdGludGEgYSBsYSBVbml2ZXJzaWRhZCBGcmFuY2lzY28gZGUgVml0b3JpYSwgZGVjbGFyYSBxdWUgZW4gY2FzbyBuZWNlc2FyaW8sIGN1ZW50YSBjb24gbG9zIHBlcm1pc29zIHBlcnRpbmVudGVzLCBkZSBsYSBpbnN0aXR1Y2nDs24gbyBlbnRpZGFkLCBxdWUgbGUgcGVybWl0YW4gbGEgZGlmdXNpw7NuIGRlIGRpY2hhIG9icmEuCgotIExhIFVuaXZlcnNpZGFkIEZyYW5jaXNjbyBkZSBWaXRvcmlhIG5vIHRpZW5lIGxhIHRpdHVsYXJpZGFkIGRlIGxvcyBkZXJlY2hvcyBzb2JyZSBsYSBvYnJhLCBxdWUgY29ycmVzcG9uZGVuIGFsIGF1dG9yLCBwZXJvIHNpbiBlbWJhcmdvIMOpc3RhIGxpY2VuY2lhIGRhIGRlcmVjaG8gYSByZXByb2R1Y2lybGEgZW4gdW4gc29wb3J0ZSBkaWdpdGFsLCBkaXN0cmlidWlyIGEgbG9zIHVzdWFyaW9zIGNvcGlhcyBlbGVjdHLDs25pY2FzIGRlIGxhIG9icmEgZW4gZm9ybWF0byBkaWdpdGFsLCBjb211bmljYWNpw7NuIHDDumJsaWNhIHkgc3UgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGEgdHJhdsOpcyBkZSB1biBhcmNoaXZvIGFiaWVydG8gaW5zdGl0dWNpb25hbC4KCi0gTGEgb2JyYSBzZSBwb25kcsOhIGEgZGlzcG9zaWNpw7NuIGRlIGxvcyB1c3VhcmlvcyBwYXJhIHF1ZSBoYWdhbiBkZSBlbGxhIHVuIHVzbyBqdXN0byB5IHJlc3BldHVvc28gY29uIGxvcyBkZXJlY2hvcyBkZSBhdXRvciwgc2VhIGNvbiBmaW5lcyBkZSBlc3R1ZGlvLCBpbnZlc3RpZ2FjacOzbiBvIGN1YWxxdWllciBvdHJvIGZpbiBsw61jaXRvLCB5IGRlIGFjdWVyZG8gYSBsYXMgY29uZGljaW9uZXMgZXN0YWJsZWNpZGFzIGVuIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMsIGRlIG1vZG8gcXVlIGxhcyBvYnJhcyBwdWVkYW4gc2VyIGRpc3RyaWJ1aWRhcywgY29waWFkYXMgeSBleGhpYmlkYXMgc2llbXByZSBxdWUgc2UgY2l0ZSBsYSBhdXRvcsOtYSB5IG5vIHNlIG9idGVuZ2EgYmVuZWZpY2lvIGNvbWVyY2lhbC4gUG9yIHRhbnRvLCBsYSBVbml2ZXJzaWRhZCBubyBhc3VtaXLDoSByZXNwb25zYWJpbGlkYWQgYWxndW5hIHBvciBsYSBmb3JtYSBlZmVjdGl2YSBlbiBxdWUgbG9zIHVzdWFyaW9zIHV0aWxpY2VuIGVsIG1hdGVyaWFsIHB1ZXN0byBhIHN1IGRpc3Bvc2ljacOzbi4KCi0gRWwgYXV0b3IgcG9kcsOhIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBsYSBvYnJhIGRlbCByZXBvc2l0b3JpbyBwb3IgY2F1c2EganVzdGlmaWNhZGEuIAoK</binData>
</mdWrap>
</rightsMD>
</amdSec>
<amdSec ID="FO_10641_1305_1">
<techMD ID="TECH_O_10641_1305_1">
<mdWrap MDTYPE="PREMIS">
<xmlData schemaLocation="http://www.loc.gov/standards/premis http://www.loc.gov/standards/premis/PREMIS-v1-0.xsd">
<premis:premis>
<premis:object>
<premis:objectIdentifier>
<premis:objectIdentifierType>URL</premis:objectIdentifierType>
<premis:objectIdentifierValue>http://ddfv.ufv.es/bitstream/10641/1305/1/data%20mining%20jp%20romero.pdf</premis:objectIdentifierValue>
</premis:objectIdentifier>
<premis:objectCategory>File</premis:objectCategory>
<premis:objectCharacteristics>
<premis:fixity>
<premis:messageDigestAlgorithm>MD5</premis:messageDigestAlgorithm>
<premis:messageDigest>aadfb19580e082b4134543bfaf580707</premis:messageDigest>
</premis:fixity>
<premis:size>1760817</premis:size>
<premis:format>
<premis:formatDesignation>
<premis:formatName>application/pdf</premis:formatName>
</premis:formatDesignation>
</premis:format>
</premis:objectCharacteristics>
<premis:originalName>data mining jp romero.pdf</premis:originalName>
</premis:object>
</premis:premis>
</xmlData>
</mdWrap>
</techMD>
</amdSec>
<amdSec ID="FT_10641_1305_4">
<techMD ID="TECH_T_10641_1305_4">
<mdWrap MDTYPE="PREMIS">
<xmlData schemaLocation="http://www.loc.gov/standards/premis http://www.loc.gov/standards/premis/PREMIS-v1-0.xsd">
<premis:premis>
<premis:object>
<premis:objectIdentifier>
<premis:objectIdentifierType>URL</premis:objectIdentifierType>
<premis:objectIdentifierValue>http://ddfv.ufv.es/bitstream/10641/1305/4/data%20mining%20jp%20romero.pdf.txt</premis:objectIdentifierValue>
</premis:objectIdentifier>
<premis:objectCategory>File</premis:objectCategory>
<premis:objectCharacteristics>
<premis:fixity>
<premis:messageDigestAlgorithm>MD5</premis:messageDigestAlgorithm>
<premis:messageDigest>6fef0395a83b6ecabe755d6e30105c1a</premis:messageDigest>
</premis:fixity>
<premis:size>79124</premis:size>
<premis:format>
<premis:formatDesignation>
<premis:formatName>text/plain</premis:formatName>
</premis:formatDesignation>
</premis:format>
</premis:objectCharacteristics>
<premis:originalName>data mining jp romero.pdf.txt</premis:originalName>
</premis:object>
</premis:premis>
</xmlData>
</mdWrap>
</techMD>
</amdSec>
<fileSec>
<fileGrp USE="ORIGINAL">
<file ADMID="FO_10641_1305_1" CHECKSUM="aadfb19580e082b4134543bfaf580707" CHECKSUMTYPE="MD5" GROUPID="GROUP_BITSTREAM_10641_1305_1" ID="BITSTREAM_ORIGINAL_10641_1305_1" MIMETYPE="application/pdf" SEQ="1" SIZE="1760817">
</file>
</fileGrp>
<fileGrp USE="TEXT">
<file ADMID="FT_10641_1305_4" CHECKSUM="6fef0395a83b6ecabe755d6e30105c1a" CHECKSUMTYPE="MD5" GROUPID="GROUP_BITSTREAM_10641_1305_4" ID="BITSTREAM_TEXT_10641_1305_4" MIMETYPE="text/plain" SEQ="4" SIZE="79124">
</file>
</fileGrp>
</fileSec>
<structMap LABEL="DSpace Object" TYPE="LOGICAL">
<div ADMID="DMD_10641_1305" TYPE="DSpace Object Contents">
<div TYPE="DSpace BITSTREAM">
</div>
</div>
</structMap>
</mets>
<?xml version="1.0" encoding="UTF-8" ?>
<mods:mods schemaLocation="http://www.loc.gov/mods/v3 http://www.loc.gov/standards/mods/v3/mods-3-1.xsd">
<mods:name>
<mods:namePart>Serrano, J. Ignacio</mods:namePart>
</mods:name>
<mods:name>
<mods:namePart>Romero Muñoz, Juan Pablo</mods:namePart>
</mods:name>
<mods:name>
<mods:namePart>Del Castillo, María Dolores</mods:namePart>
</mods:name>
<mods:name>
<mods:namePart>Rocon, Eduardo</mods:namePart>
</mods:name>
<mods:name>
<mods:namePart>Louis, Elan D.</mods:namePart>
</mods:name>
<mods:name>
<mods:namePart>Benito León, Julián</mods:namePart>
</mods:name>
<mods:extension>
<mods:dateAvailable encoding="iso8601">2017-06-07T10:03:49Z</mods:dateAvailable>
</mods:extension>
<mods:extension>
<mods:dateAccessioned encoding="iso8601">2017-06-07T10:03:49Z</mods:dateAccessioned>
</mods:extension>
<mods:originInfo>
<mods:dateIssued encoding="iso8601">2017-05-19</mods:dateIssued>
</mods:originInfo>
<mods:identifier type="issn">1476-4687</mods:identifier>
<mods:identifier type="uri">http://hdl.handle.net/10641/1305</mods:identifier>
<mods:abstract>Essential tremor (ET) is one of the most prevalent movement disorders. Being that it is a common disorder, its diagnosis is considered routine. However, misdiagnoses may occur regularly. Over the past decade, several studies have identified brain morphometric changes in ET, but these changes remain poorly understood. Here, we tested the informativeness of measuring cortical thickness for the purposes of ET diagnosis, applying feature selection and machine learning methods to a study sample of 18 patients with ET and 18 age- and sex-matched healthy control subjects. We found that cortical thickness features alone distinguished the two, ET from controls, with 81% diagnostic accuracy. More specifically, roughness (i.e., the standard deviation of cortical thickness) of the right inferior parietal and right fusiform areas was shown to play a key role in ET characterization. Moreover, these features allowed us to identify subgroups of ET patients as well as healthy subjects at risk for ET. Since treatment of tremors is disease specific, accurate and early diagnosis plays an important role in tremor management. Supporting the clinical diagnosis with novel computer approaches based on the objective evaluation of neuroimage data, like the one presented here, may represent a significant step in this direction.</mods:abstract>
<mods:language>
<mods:languageTerm>eng</mods:languageTerm>
</mods:language>
<mods:accessCondition type="useAndReproduction">http://creativecommons.org/licenses/by-nc-nd/3.0/es/</mods:accessCondition>
<mods:accessCondition type="useAndReproduction">openAccess</mods:accessCondition>
<mods:accessCondition type="useAndReproduction">Atribución-NoComercial-SinDerivadas 3.0 España</mods:accessCondition>
<mods:subject>
<mods:topic>Essential tremor</mods:topic>
</mods:subject>
<mods:subject>
<mods:topic>Temblor esencial</mods:topic>
</mods:subject>
<mods:titleInfo>
<mods:title>A data mining approach using cortical thickness for diagnosis and characterization of essential tremor.</mods:title>
</mods:titleInfo>
<mods:genre>article</mods:genre>
</mods:mods>
<?xml version="1.0" encoding="UTF-8" ?>
<atom:entry schemaLocation="http://www.w3.org/2005/Atom http://www.kbcafe.com/rss/atom.xsd.xml">
<atom:id>http://hdl.handle.net/10641/1305/ore.xml</atom:id>
<atom:published>2017-06-07T10:03:49Z</atom:published>
<atom:updated>2017-06-07T10:03:49Z</atom:updated>
<atom:source>
<atom:generator>DDFV</atom:generator>
</atom:source>
<atom:title>A data mining approach using cortical thickness for diagnosis and characterization of essential tremor.</atom:title>
<atom:author>
<atom:name>Serrano, J. Ignacio</atom:name>
</atom:author>
<atom:author>
<atom:name>Romero Muñoz, Juan Pablo</atom:name>
</atom:author>
<atom:author>
<atom:name>Del Castillo, María Dolores</atom:name>
</atom:author>
<atom:author>
<atom:name>Rocon, Eduardo</atom:name>
</atom:author>
<atom:author>
<atom:name>Louis, Elan D.</atom:name>
</atom:author>
<atom:author>
<atom:name>Benito León, Julián</atom:name>
</atom:author>
<oreatom:triples>
<rdf:Description about="http://hdl.handle.net/10641/1305/ore.xml#atom">
<dcterms:modified>2017-06-07T10:03:49Z</dcterms:modified>
</rdf:Description>
<rdf:Description about="http://ddfv.ufv.es/bitstream/10641/1305/5/data%20mining%20jp%20romero.pdf.jpg">
<dcterms:description>THUMBNAIL</dcterms:description>
</rdf:Description>
<rdf:Description about="http://ddfv.ufv.es/bitstream/10641/1305/1/data%20mining%20jp%20romero.pdf">
<dcterms:description>ORIGINAL</dcterms:description>
</rdf:Description>
<rdf:Description about="http://ddfv.ufv.es/bitstream/10641/1305/2/license_rdf">
<dcterms:description>CC-LICENSE</dcterms:description>
</rdf:Description>
<rdf:Description about="http://ddfv.ufv.es/bitstream/10641/1305/3/license.txt">
<dcterms:description>LICENSE</dcterms:description>
</rdf:Description>
<rdf:Description about="http://ddfv.ufv.es/bitstream/10641/1305/4/data%20mining%20jp%20romero.pdf.txt">
<dcterms:description>TEXT</dcterms:description>
</rdf:Description>
</oreatom:triples>
</atom:entry>
<?xml version="1.0" encoding="UTF-8" ?>
<qdc:qualifieddc schemaLocation="http://purl.org/dc/elements/1.1/ http://dublincore.org/schemas/xmls/qdc/2006/01/06/dc.xsd http://purl.org/dc/terms/ http://dublincore.org/schemas/xmls/qdc/2006/01/06/dcterms.xsd http://dspace.org/qualifieddc/ http://www.ukoln.ac.uk/metadata/dcmi/xmlschema/qualifieddc.xsd">
<dc:title>A data mining approach using cortical thickness for diagnosis and characterization of essential tremor.</dc:title>
<dc:creator>Serrano, J. Ignacio</dc:creator>
<dc:creator>Romero Muñoz, Juan Pablo</dc:creator>
<dc:creator>Del Castillo, María Dolores</dc:creator>
<dc:creator>Rocon, Eduardo</dc:creator>
<dc:creator>Louis, Elan D.</dc:creator>
<dc:creator>Benito León, Julián</dc:creator>
<dc:subject>Essential tremor</dc:subject>
<dc:subject>Temblor esencial</dc:subject>
<dcterms:abstract>Essential tremor (ET) is one of the most prevalent movement disorders. Being that it is a common disorder, its diagnosis is considered routine. However, misdiagnoses may occur regularly. Over the past decade, several studies have identified brain morphometric changes in ET, but these changes remain poorly understood. Here, we tested the informativeness of measuring cortical thickness for the purposes of ET diagnosis, applying feature selection and machine learning methods to a study sample of 18 patients with ET and 18 age- and sex-matched healthy control subjects. We found that cortical thickness features alone distinguished the two, ET from controls, with 81% diagnostic accuracy. More specifically, roughness (i.e., the standard deviation of cortical thickness) of the right inferior parietal and right fusiform areas was shown to play a key role in ET characterization. Moreover, these features allowed us to identify subgroups of ET patients as well as healthy subjects at risk for ET. Since treatment of tremors is disease specific, accurate and early diagnosis plays an important role in tremor management. Supporting the clinical diagnosis with novel computer approaches based on the objective evaluation of neuroimage data, like the one presented here, may represent a significant step in this direction.</dcterms:abstract>
<dcterms:dateAccepted>2017-06-07T10:03:49Z</dcterms:dateAccepted>
<dcterms:available>2017-06-07T10:03:49Z</dcterms:available>
<dcterms:created>2017-06-07T10:03:49Z</dcterms:created>
<dcterms:issued>2017-05-19</dcterms:issued>
<dc:type>article</dc:type>
<dc:identifier>1476-4687</dc:identifier>
<dc:identifier>http://hdl.handle.net/10641/1305</dc:identifier>
<dc:language>eng</dc:language>
<dc:rights>http://creativecommons.org/licenses/by-nc-nd/3.0/es/</dc:rights>
<dc:rights>openAccess</dc:rights>
<dc:rights>Atribución-NoComercial-SinDerivadas 3.0 España</dc:rights>
<dc:publisher>Nature. Scientific Reports</dc:publisher>
</qdc:qualifieddc>
<?xml version="1.0" encoding="UTF-8" ?>
<rdf:RDF schemaLocation="http://www.openarchives.org/OAI/2.0/rdf/ http://www.openarchives.org/OAI/2.0/rdf.xsd">
<ow:Publication about="oai:ddfv.ufv.es:10641/1305">
<dc:title>A data mining approach using cortical thickness for diagnosis and characterization of essential tremor.</dc:title>
<dc:creator>Serrano, J. Ignacio</dc:creator>
<dc:creator>Romero Muñoz, Juan Pablo</dc:creator>
<dc:creator>Del Castillo, María Dolores</dc:creator>
<dc:creator>Rocon, Eduardo</dc:creator>
<dc:creator>Louis, Elan D.</dc:creator>
<dc:creator>Benito León, Julián</dc:creator>
<dc:subject>Essential tremor</dc:subject>
<dc:subject>Temblor esencial</dc:subject>
<dc:description>Essential tremor (ET) is one of the most prevalent movement disorders. Being that it is a common disorder, its diagnosis is considered routine. However, misdiagnoses may occur regularly. Over the past decade, several studies have identified brain morphometric changes in ET, but these changes remain poorly understood. Here, we tested the informativeness of measuring cortical thickness for the purposes of ET diagnosis, applying feature selection and machine learning methods to a study sample of 18 patients with ET and 18 age- and sex-matched healthy control subjects. We found that cortical thickness features alone distinguished the two, ET from controls, with 81% diagnostic accuracy. More specifically, roughness (i.e., the standard deviation of cortical thickness) of the right inferior parietal and right fusiform areas was shown to play a key role in ET characterization. Moreover, these features allowed us to identify subgroups of ET patients as well as healthy subjects at risk for ET. Since treatment of tremors is disease specific, accurate and early diagnosis plays an important role in tremor management. Supporting the clinical diagnosis with novel computer approaches based on the objective evaluation of neuroimage data, like the one presented here, may represent a significant step in this direction.</dc:description>
<dc:date>2017-06-07T10:03:49Z</dc:date>
<dc:date>2017-06-07T10:03:49Z</dc:date>
<dc:date>2017-05-19</dc:date>
<dc:type>article</dc:type>
<dc:identifier>1476-4687</dc:identifier>
<dc:identifier>http://hdl.handle.net/10641/1305</dc:identifier>
<dc:language>eng</dc:language>
<dc:rights>http://creativecommons.org/licenses/by-nc-nd/3.0/es/</dc:rights>
<dc:rights>openAccess</dc:rights>
<dc:rights>Atribución-NoComercial-SinDerivadas 3.0 España</dc:rights>
<dc:publisher>Nature. Scientific Reports</dc:publisher>
</ow:Publication>
</rdf:RDF>
<?xml version="1.0" encoding="UTF-8" ?>
<metadata schemaLocation="http://www.lyncode.com/xoai http://www.lyncode.com/xsd/xoai.xsd">
<element name="dc">
<element name="contributor">
<element name="author">
<element name="none">
<field name="value">Serrano, J. Ignacio</field>
<field name="authority">b7f08fc9-a7c6-4e47-bdee-d327071ed218</field>
<field name="confidence">500</field>
<field name="value">Romero Muñoz, Juan Pablo</field>
<field name="authority">142</field>
<field name="confidence">500</field>
<field name="value">Del Castillo, María Dolores</field>
<field name="authority">4b3d0394-8418-4d7f-8d72-f7438c3942f4</field>
<field name="confidence">500</field>
<field name="value">Rocon, Eduardo</field>
<field name="authority">da398744-1be2-4a64-8436-0d37a5b46915</field>
<field name="confidence">500</field>
<field name="value">Louis, Elan D.</field>
<field name="authority">c6d77c01-e712-4f99-972e-ff3bea9d46fd</field>
<field name="confidence">500</field>
<field name="value">Benito León, Julián</field>
<field name="authority">13e941d9-fccb-4911-9704-31c790a773e6</field>
<field name="confidence">500</field>
</element>
</element>
</element>
<element name="date">
<element name="accessioned">
<element name="none">
<field name="value">2017-06-07T10:03:49Z</field>
</element>
</element>
<element name="available">
<element name="none">
<field name="value">2017-06-07T10:03:49Z</field>
</element>
</element>
<element name="issued">
<element name="none">
<field name="value">2017-05-19</field>
</element>
</element>
</element>
<element name="identifier">
<element name="issn">
<element name="none">
<field name="value">1476-4687</field>
</element>
</element>
<element name="uri">
<element name="none">
<field name="value">http://hdl.handle.net/10641/1305</field>
</element>
</element>
</element>
<element name="description">
<element name="abstract">
<element name="eng">
<field name="value">Essential tremor (ET) is one of the most prevalent movement disorders. Being that it is a common disorder, its diagnosis is considered routine. However, misdiagnoses may occur regularly. Over the past decade, several studies have identified brain morphometric changes in ET, but these changes remain poorly understood. Here, we tested the informativeness of measuring cortical thickness for the purposes of ET diagnosis, applying feature selection and machine learning methods to a study sample of 18 patients with ET and 18 age- and sex-matched healthy control subjects. We found that cortical thickness features alone distinguished the two, ET from controls, with 81% diagnostic accuracy. More specifically, roughness (i.e., the standard deviation of cortical thickness) of the right inferior parietal and right fusiform areas was shown to play a key role in ET characterization. Moreover, these features allowed us to identify subgroups of ET patients as well as healthy subjects at risk for ET. Since treatment of tremors is disease specific, accurate and early diagnosis plays an important role in tremor management. Supporting the clinical diagnosis with novel computer approaches based on the objective evaluation of neuroimage data, like the one presented here, may represent a significant step in this direction.</field>
</element>
</element>
<element name="version">
<element name="spa">
<field name="value">post-print</field>
</element>
</element>
<element name="extent">
<element name="spa">
<field name="value">1720 KB</field>
</element>
</element>
</element>
<element name="language">
<element name="iso">
<element name="spa">
<field name="value">eng</field>
</element>
</element>
</element>
<element name="publisher">
<element name="spa">
<field name="value">Nature. Scientific Reports</field>
</element>
</element>
<element name="rights">
<element name="*">
<field name="value">Atribución-NoComercial-SinDerivadas 3.0 España</field>
</element>
<element name="uri">
<element name="*">
<field name="value">http://creativecommons.org/licenses/by-nc-nd/3.0/es/</field>
</element>
</element>
<element name="accessRights">
<element name="spa">
<field name="value">openAccess</field>
</element>
</element>
</element>
<element name="subject">
<element name="spa">
<field name="value">Essential tremor</field>
<field name="value">Temblor esencial</field>
</element>
</element>
<element name="title">
<element name="spa">
<field name="value">A data mining approach using cortical thickness for diagnosis and characterization of essential tremor.</field>
</element>
</element>
<element name="type">
<element name="spa">
<field name="value">article</field>
</element>
</element>
</element>
<element name="bundles">
<element name="bundle">
<field name="name">THUMBNAIL</field>
<element name="bitstreams">
<element name="bitstream">
<field name="name">data mining jp romero.pdf.jpg</field>
<field name="originalName">data mining jp romero.pdf.jpg</field>
<field name="description">Generated Thumbnail</field>
<field name="format">image/jpeg</field>
<field name="size">1892</field>
<field name="url">http://ddfv.ufv.es/bitstream/10641/1305/5/data%20mining%20jp%20romero.pdf.jpg</field>
<field name="checksum">ec052eb265feb71a0a0abba050670431</field>
<field name="checksumAlgorithm">MD5</field>
<field name="sid">5</field>
</element>
</element>
</element>
<element name="bundle">
<field name="name">ORIGINAL</field>
<element name="bitstreams">
<element name="bitstream">
<field name="name">data mining jp romero.pdf</field>
<field name="originalName">data mining jp romero.pdf</field>
<field name="format">application/pdf</field>
<field name="size">1760817</field>
<field name="url">http://ddfv.ufv.es/bitstream/10641/1305/1/data%20mining%20jp%20romero.pdf</field>
<field name="checksum">aadfb19580e082b4134543bfaf580707</field>
<field name="checksumAlgorithm">MD5</field>
<field name="sid">1</field>
</element>
</element>
</element>
<element name="bundle">
<field name="name">CC-LICENSE</field>
<element name="bitstreams">
<element name="bitstream">
<field name="name">license_rdf</field>
<field name="originalName">license_rdf</field>
<field name="format">application/rdf+xml; charset=utf-8</field>
<field name="size">1232</field>
<field name="url">http://ddfv.ufv.es/bitstream/10641/1305/2/license_rdf</field>
<field name="checksum">b51f25f83cca752633b6ec4c418dbcc7</field>
<field name="checksumAlgorithm">MD5</field>
<field name="sid">2</field>
</element>
</element>
</element>
<element name="bundle">
<field name="name">LICENSE</field>
<element name="bitstreams">
<element name="bitstream">
<field name="name">license.txt</field>
<field name="originalName">license.txt</field>
<field name="format">text/plain; charset=utf-8</field>
<field name="size">2418</field>
<field name="url">http://ddfv.ufv.es/bitstream/10641/1305/3/license.txt</field>
<field name="checksum">8b6e3a0bc6a1ca51936267b0e6e4740c</field>
<field name="checksumAlgorithm">MD5</field>
<field name="sid">3</field>
</element>
</element>
</element>
<element name="bundle">
<field name="name">TEXT</field>
<element name="bitstreams">
<element name="bitstream">
<field name="name">data mining jp romero.pdf.txt</field>
<field name="originalName">data mining jp romero.pdf.txt</field>
<field name="description">Extracted text</field>
<field name="format">text/plain</field>
<field name="size">79124</field>
<field name="url">http://ddfv.ufv.es/bitstream/10641/1305/4/data%20mining%20jp%20romero.pdf.txt</field>
<field name="checksum">6fef0395a83b6ecabe755d6e30105c1a</field>
<field name="checksumAlgorithm">MD5</field>
<field name="sid">4</field>
</element>
</element>
</element>
</element>
<element name="others">
<field name="handle">10641/1305</field>
<field name="identifier">oai:ddfv.ufv.es:10641/1305</field>
<field name="lastModifyDate">2019-07-23 17:59:02.919</field>
</element>
<element name="repository">
<field name="name">DDFV</field>
<field name="mail">dspace@ufv.es</field>
</element>
<element name="license">
<field name="bin">LSBFbCByZXBvc2l0b3JpbyBpbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIEZyYW5jaXNjbyBkZSBWaXRvcmlhIGRlIE1hZHJpZCAoRERGViksIHBvbmUgYSBkaXNwb3NpY2nDs24gZGUgbG9zIHVzdWFyaW9zIGxhIHBsYXRhZm9ybWEgZGlnaXRhbCBhYmllcnRhIHkgZGUgYWNjZXNvIGxpYnJlIGRlIGxhIHByb2R1Y2Npw7NuIGNpZW50w61maWNhIGRlIGxhIGluc3RpdHVjacOzbi4KCi0gQSB0YWxlcyBmaW5lcywgbG9zIGF1dG9yZXMgZGVjbGFyYW4gcXVlIHNvbiB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCBkZSBsYSBvYnJhIHkgcXVlIMOpc3RhIGVzIG9yaWdpbmFsLgoKLSBNZWRpYW50ZSBsYSBhY2VwdGFjacOzbiBkZSBlc3RhIGxpY2VuY2lhLCBlbCBhdXRvciwgY29tbyB0aXR1bGFyIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciwgYXV0b3JpemEgeSBjZWRlIGEgbGEgVW5pdmVyc2lkYWQgRnJhbmNpc2NvIGRlIFZpdG9yaWEsIGRlIGZvcm1hIGdyYXR1aXRhIHkgbm8gZXhjbHVzaXZhLCBwb3IgZWwgbcOheGltbyBwbGF6byBsZWdhbCB5IGNvbiDDoW1iaXRvIHVuaXZlcnNhbCwgbG9zIGRlcmVjaG9zIGRlIHJlcHJvZHVjY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EsIGluY2x1aWRvIGVsIGRlcmVjaG8gZGUgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVsZWN0csOzbmljYSwgeSBsYSB0cmFuc2Zvcm1hY2nDs24gZGUgZm9ybWF0byBzb2JyZSBsYSBvYnJhIGluZGljYWRhLCBzaSBmdWVyYSBlbCBjYXNvLgoKLSBFbiBlbCBjYXNvIGRlIGNlc2nDs24gZGUgZGVyZWNob3MgZGUgZXhwbG90YWNpw7NuIGEgdGVyY2Vyb3MsIGRlY2xhcmEgcXVlIGN1ZW50YSBjb24gbGEgYXV0b3JpemFjacOzbiBkZSBkaWNob3MgdGl0dWxhcmVzIHkgcXVlIGhhIG9idGVuaWRvIGVsIHBlcm1pc28gc2luIHJlc3RyaWNjaW9uZXMgZGVsIHByb3BpZXRhcmlvIGRlbCBjb3B5cmlnaHQgcGFyYSBvdG9yZ2FyIGEgbGEgaW5zdGl0dWNpw7NuIGxvcyBkZXJlY2hvcyByZXF1ZXJpZG9zIHBhcmEgZXN0YSBsaWNlbmNpYSB5IHF1ZSBkaWNobyBwcm9waWV0YXJpbyBjb25vY2UgZWwgdGV4dG8gbyBlbCBjb250ZW5pZG8gZGUgbGEgb2JyYS4KCi0gU2kgZnVlcmEgdW5hIG9icmEgcGF0cm9jaW5hZGEgcG9yIGFsZ3VuYSBpbnN0aXR1Y2nDs24gZGlzdGludGEgYSBsYSBVbml2ZXJzaWRhZCBGcmFuY2lzY28gZGUgVml0b3JpYSwgZGVjbGFyYSBxdWUgZW4gY2FzbyBuZWNlc2FyaW8sIGN1ZW50YSBjb24gbG9zIHBlcm1pc29zIHBlcnRpbmVudGVzLCBkZSBsYSBpbnN0aXR1Y2nDs24gbyBlbnRpZGFkLCBxdWUgbGUgcGVybWl0YW4gbGEgZGlmdXNpw7NuIGRlIGRpY2hhIG9icmEuCgotIExhIFVuaXZlcnNpZGFkIEZyYW5jaXNjbyBkZSBWaXRvcmlhIG5vIHRpZW5lIGxhIHRpdHVsYXJpZGFkIGRlIGxvcyBkZXJlY2hvcyBzb2JyZSBsYSBvYnJhLCBxdWUgY29ycmVzcG9uZGVuIGFsIGF1dG9yLCBwZXJvIHNpbiBlbWJhcmdvIMOpc3RhIGxpY2VuY2lhIGRhIGRlcmVjaG8gYSByZXByb2R1Y2lybGEgZW4gdW4gc29wb3J0ZSBkaWdpdGFsLCBkaXN0cmlidWlyIGEgbG9zIHVzdWFyaW9zIGNvcGlhcyBlbGVjdHLDs25pY2FzIGRlIGxhIG9icmEgZW4gZm9ybWF0byBkaWdpdGFsLCBjb211bmljYWNpw7NuIHDDumJsaWNhIHkgc3UgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGEgdHJhdsOpcyBkZSB1biBhcmNoaXZvIGFiaWVydG8gaW5zdGl0dWNpb25hbC4KCi0gTGEgb2JyYSBzZSBwb25kcsOhIGEgZGlzcG9zaWNpw7NuIGRlIGxvcyB1c3VhcmlvcyBwYXJhIHF1ZSBoYWdhbiBkZSBlbGxhIHVuIHVzbyBqdXN0byB5IHJlc3BldHVvc28gY29uIGxvcyBkZXJlY2hvcyBkZSBhdXRvciwgc2VhIGNvbiBmaW5lcyBkZSBlc3R1ZGlvLCBpbnZlc3RpZ2FjacOzbiBvIGN1YWxxdWllciBvdHJvIGZpbiBsw61jaXRvLCB5IGRlIGFjdWVyZG8gYSBsYXMgY29uZGljaW9uZXMgZXN0YWJsZWNpZGFzIGVuIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMsIGRlIG1vZG8gcXVlIGxhcyBvYnJhcyBwdWVkYW4gc2VyIGRpc3RyaWJ1aWRhcywgY29waWFkYXMgeSBleGhpYmlkYXMgc2llbXByZSBxdWUgc2UgY2l0ZSBsYSBhdXRvcsOtYSB5IG5vIHNlIG9idGVuZ2EgYmVuZWZpY2lvIGNvbWVyY2lhbC4gUG9yIHRhbnRvLCBsYSBVbml2ZXJzaWRhZCBubyBhc3VtaXLDoSByZXNwb25zYWJpbGlkYWQgYWxndW5hIHBvciBsYSBmb3JtYSBlZmVjdGl2YSBlbiBxdWUgbG9zIHVzdWFyaW9zIHV0aWxpY2VuIGVsIG1hdGVyaWFsIHB1ZXN0byBhIHN1IGRpc3Bvc2ljacOzbi4KCi0gRWwgYXV0b3IgcG9kcsOhIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBsYSBvYnJhIGRlbCByZXBvc2l0b3JpbyBwb3IgY2F1c2EganVzdGlmaWNhZGEuIAoK</field>
</element>
</metadata>