Logotipo de HISPANA
Logotipo del Ministerio de Cultura
  • ¿Qué es Hispana?
  • Búsqueda
  • Directorio de colecciones
  • Contacto
  • es
    • Español
    • Euskara
    • English
    • Galego
    • Català
    • Valencià
Está en:  › Datos de registro
Linked Open Data
The Invariant Two-Parameter Function of Algebras ψ
Identificadores del recurso
Escobar, J. M., Núñez-Valdés, J., & Pérez-Fernández, P. (2019). The Invariant Two-Parameter Function of Algebras ψ. Mathematical and Computational Applications, 24(4), 89.
http://hdl.handle.net/10481/58913
10.3390/mca24040089
Procedencia
(Ilíberis: fondo bibliográfico histórico de la Universidad de Granada)

Ficha

Título:
The Invariant Two-Parameter Function of Algebras ψ
Tema:
Invariant functions
Contractions of algebras
Lie algebras
Malcev algebras
Heisenberg algebras
Descripción:
At present, the research on invariant functions for algebras is very extended since Hrivnák and Novotný defined in 2007 the invariant functions y and j as a tool to study the Inönü–Wigner contractions (IW-contractions), previously introduced by those authors in 1953. In this paper, we introduce a new invariant two-parameter function of algebras, which we call ¯y, as a tool which makes easier the computations and allows researchers to deal with contractions of algebras. Our study of this new function is mainly focused in Malcev algebras of the type Lie, although it can also be used with any other types of algebras. The main goal of the paper is to prove, by means of this function, that the five-dimensional classical-mechanical model built upon certain types of five-dimensional Lie algebras cannot be obtained as a limit process of a quantum-mechanical model based on a fifth Heisenberg algebra. As an example of other applications of the new function obtained, its computation in the case of the Lie algebra induced by the Lorentz group SO(3, 1) is shown and some open physical problems related to contractions are also formulated.
This research was funded by the Spanish Ministerio de Ciencia e Innovación and Junta de Andalucía via grants No. MTM2013-40455-P and No. FQM-326 (J.N.-V.) and No. FQM-160 (P.P.-F.).
Idioma:
English
Autor/Productor:
Escobar, José María
Núñez-Valdés, Juan
Pérez Fernández, Pedro
Editor:
MDPI
Derechos:
Atribución 3.0 España
http://creativecommons.org/licenses/by/3.0/es/
info:eu-repo/semantics/openAccess
Fecha:
2020-01-20T08:34:35Z
2019-10-14
Tipo de recurso:
info:eu-repo/semantics/article

oai_dc

Descargar XML

    <?xml version="1.0" encoding="UTF-8" ?>

  1. <oai_dc:dc schemaLocation="http://www.openarchives.org/OAI/2.0/oai_dc/ http://www.openarchives.org/OAI/2.0/oai_dc.xsd">

    1. <dc:title>The Invariant Two-Parameter Function of Algebras ψ</dc:title>

    2. <dc:creator>Escobar, José María</dc:creator>

    3. <dc:creator>Núñez-Valdés, Juan</dc:creator>

    4. <dc:creator>Pérez Fernández, Pedro</dc:creator>

    5. <dc:subject>Invariant functions</dc:subject>

    6. <dc:subject>Contractions of algebras</dc:subject>

    7. <dc:subject>Lie algebras</dc:subject>

    8. <dc:subject>Malcev algebras</dc:subject>

    9. <dc:subject>Heisenberg algebras</dc:subject>

    10. <dc:description>At present, the research on invariant functions for algebras is very extended since Hrivnák and Novotný defined in 2007 the invariant functions y and j as a tool to study the Inönü–Wigner contractions (IW-contractions), previously introduced by those authors in 1953. In this paper, we introduce a new invariant two-parameter function of algebras, which we call ¯y, as a tool which makes easier the computations and allows researchers to deal with contractions of algebras. Our study of this new function is mainly focused in Malcev algebras of the type Lie, although it can also be used with any other types of algebras. The main goal of the paper is to prove, by means of this function, that the five-dimensional classical-mechanical model built upon certain types of five-dimensional Lie algebras cannot be obtained as a limit process of a quantum-mechanical model based on a fifth Heisenberg algebra. As an example of other applications of the new function obtained, its computation in the case of the Lie algebra induced by the Lorentz group SO(3, 1) is shown and some open physical problems related to contractions are also formulated.</dc:description>

    11. <dc:description>This research was funded by the Spanish Ministerio de Ciencia e Innovación and Junta de Andalucía via grants No. MTM2013-40455-P and No. FQM-326 (J.N.-V.) and No. FQM-160 (P.P.-F.).</dc:description>

    12. <dc:date>2020-01-20T08:34:35Z</dc:date>

    13. <dc:date>2020-01-20T08:34:35Z</dc:date>

    14. <dc:date>2019-10-14</dc:date>

    15. <dc:type>info:eu-repo/semantics/article</dc:type>

    16. <dc:identifier>Escobar, J. M., Núñez-Valdés, J., & Pérez-Fernández, P. (2019). The Invariant Two-Parameter Function of Algebras ψ. Mathematical and Computational Applications, 24(4), 89.</dc:identifier>

    17. <dc:identifier>http://hdl.handle.net/10481/58913</dc:identifier>

    18. <dc:identifier>10.3390/mca24040089</dc:identifier>

    19. <dc:language>eng</dc:language>

    20. <dc:rights>Atribución 3.0 España</dc:rights>

    21. <dc:rights>http://creativecommons.org/licenses/by/3.0/es/</dc:rights>

    22. <dc:rights>info:eu-repo/semantics/openAccess</dc:rights>

    23. <dc:publisher>MDPI</dc:publisher>

    </oai_dc:dc>

edm

Descargar XML

    <?xml version="1.0" encoding="UTF-8" ?>

  1. <rdf:RDF schemaLocation="http://www.w3.org/1999/02/22-rdf-syntax-ns# http://www.europeana.eu/schemas/edm/EDM.xsd">

    1. <edm:ProvidedCHO about="http://hdl.handle.net/10481/58913">

      1. <dc:creator>Escobar, José María</dc:creator>

      2. <dc:creator>Núñez-Valdés, Juan</dc:creator>

      3. <dc:creator>Pérez Fernández, Pedro</dc:creator>

      4. <dc:date>2019-10-14</dc:date>

      5. <dc:description>At present, the research on invariant functions for algebras is very extended since Hrivnák and Novotný defined in 2007 the invariant functions y and j as a tool to study the Inönü–Wigner contractions (IW-contractions), previously introduced by those authors in 1953. In this paper, we introduce a new invariant two-parameter function of algebras, which we call ¯y, as a tool which makes easier the computations and allows researchers to deal with contractions of algebras. Our study of this new function is mainly focused in Malcev algebras of the type Lie, although it can also be used with any other types of algebras. The main goal of the paper is to prove, by means of this function, that the five-dimensional classical-mechanical model built upon certain types of five-dimensional Lie algebras cannot be obtained as a limit process of a quantum-mechanical model based on a fifth Heisenberg algebra. As an example of other applications of the new function obtained, its computation in the case of the Lie algebra induced by the Lorentz group SO(3, 1) is shown and some open physical problems related to contractions are also formulated.</dc:description>

      6. <dc:identifier>http://hdl.handle.net/10481/58913</dc:identifier>

      7. <dc:language>eng</dc:language>

      8. <dc:publisher>MDPI</dc:publisher>

      9. <dc:title>The Invariant Two-Parameter Function of Algebras ψ</dc:title>

      10. <dc:type>info:eu-repo/semantics/article</dc:type>

      11. <edm:type>TEXT</edm:type>

      </edm:ProvidedCHO>

    2. <ore:Aggregation about="http://hdl.handle.net/10481/58913#aggregation">

      1. <edm:aggregatedCHO resource="http://hdl.handle.net/10481/58913" />
      2. <edm:dataProvider>DIGIBUG. Repositorio Institucional de la Universidad de Granada</edm:dataProvider>

      3. <edm:isShownAt resource="http://hdl.handle.net/10481/58913" />
      4. <edm:isShownBy resource="https://digibug.ugr.es/bitstream/10481/58913/1/Escobar-Invariant.pdf" />
      5. <edm:provider>Hispana</edm:provider>

      6. <edm:rights resource="http://creativecommons.org/licenses/by/4.0/" />

      </ore:Aggregation>

    3. <edm:WebResource about="https://digibug.ugr.es/bitstream/10481/58913/1/Escobar-Invariant.pdf">

      1. <edm:rights resource="http://creativecommons.org/licenses/by/4.0/" />

      </edm:WebResource>

    </rdf:RDF>

Hispana

Portal de acceso al patrimonio digital y el agregador nacional de contenidos a Europeana.

Contacto

Accede a nuestro formulario y te contestaremos con la mayor brevedad.

Contacto

X

Tweets by Hispana_roai

Facebook

HISPANA
© Ministerio de Cultura
  • Aviso Legal