Logotipo de HISPANA
Logotipo del Ministerio de Cultura
  • ¿Qué es Hispana?
  • Búsqueda
  • Directorio de colecciones
  • Contacto
  • es
    • Español
    • Euskara
    • English
    • Galego
    • Català
    • Valencià
Está en:  › Datos de registro
Linked Open Data
$p$-adic deformations of cohomology classes of subgroups of $GL(n,\mathbb{Z})$
Identificadores del recurso
https://www.raco.cat/index.php/CollectaneaMathematica/article/view/56362
2038-4815
Procedencia
(RACO: Revistes Catalanes amb Accés Obert)

Ficha

Título:
$p$-adic deformations of cohomology classes of subgroups of $GL(n,\mathbb{Z})$
Descripción:
We construct $p$-adic analytic families of $p$-ordinary cohomology classes in the cohomology of arithmetic subgroups of $GL(n)$ with coefficients in a family of representation spaces for $GL(n)$. These analytic families are parametrized by the highest weights of the coefficient modules. More precisely, we consider the cohomology of a compact $\mathbb{Z}_p$-module $\mathbb{D}$ of $p$-adic measures on a certain homogeneous space of $GL(n,\mathbb{Z}_p)$. For any dominant weight $\lambda$ with respect to a fixed choice $(B, T)$ of a Borel subgroup $B$ and a maximal split torus $T\subseteq B$ and for any finite "nebentype" character $\epsilon : T(\mathbb{Z}_p)\longrightarrow\mathbb{Z} ^x_p$ we construct a $\mathbb{Z}_p$-map from $\mathbb{D}$ to $V_{\lambda,\epsilon}$. These maps are equivariant for commuting actions of $T(\mathbb{Z}_p)$ and $\Gamma_\nu$ where $\Gamma_\nu \subseteq GL(n, \mathbb{Z})$ is a congruence subgroup analogous to $\Gamma_0(p^\nu)$ where $p^\nu$ is the conductor of $\epsilon$ . We also make the matrix $\pi := diag(1, p, p^2,\dots , p^{n-1})$ act equivariantly on all these modules. We obtain a $\Lambda := \mathbb{Z}_p[[T(\mathbb{Z}_p)]]$-module structure on $H^\ast(\Gamma,\mathbb{D})$ and Hecke actions on $H^\ast(\Gamma,\mathbb{D})$ and $H^\ast(\Gamma_\nu, V_{\lambda,\epsilon})$ with Hecke equivariant maps $\phi_{\lambda,\epsilon} : H^\ast(\Gamma,\mathbb{D})\longrightarrow H^\ast(\Gamma_\nu, V_{\lambda,\epsilon})$, where $\Gamma$ is a congruence subgroup of $GL(n,\mathbb{Z})$ of level prime to $p$ and $\Gamma_\nu$ is one of a certain family of congruence subgroups of $\Gamma$ with $p$ in their level. Let $\phi^0_ {\lambda,\epsilon}$ denote the map induced by $\phi_{\lambda,\epsilon}$ on the $\Gamma\pi\Gamma$-ordinary part of $H^\ast(\Gamma,\mathbb{D})$. Our main theorem states that the kernel of $\phi^0_{\lambda,\epsilon}$ is $I_{\lambda,\epsilon}H^\ast(\Gamma,\mathbb{D})^0$ where $I_{\lambda,\epsilon}$ is the kernel of the ring homomorphism induced on $\Lambda$ by the character $\lambda$ .
Fuente:
Collectanea Mathematica; 1997: Vol.: 48 Núm.: 1 -2; p. 1-30
0010-0757
Idioma:
English
Relación:
https://www.raco.cat/index.php/CollectaneaMathematica/article/view/56362/66666
Autor/Productor:
Ash, Avner
Stevens, G.
Editor:
Universitat de Barcelona
Derechos:
Aquesta revista ofereix el text complet de tots els seus articles, excepte els dels cinc darrers anys, que s'aniran alliberant periòdicament fins el 2010. A partir del 2011 requereix subscripció. Podeu accedir-hi aquí. L'accés als articles a text complet inclosos a RACO és gratuït, però els actes de reproducció, distribució, comunicació pública o transformació total o parcial estan subjectes a les condicions d'ús de cada revista i poden requerir el consentiment exprés i escrit dels autors i/o institucions editores.
Fecha:
1997
Tipo de recurso:
info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
Formato:
application/pdf

oai_dc

Descargar XML

    <?xml version="1.0" encoding="UTF-8" ?>

  1. <oai_dc:dc schemaLocation="http://www.openarchives.org/OAI/2.0/oai_dc/ http://www.openarchives.org/OAI/2.0/oai_dc.xsd">

    1. <dc:title lang="ca-ES">$p$-adic deformations of cohomology classes of subgroups of $GL(n,\mathbb{Z})$</dc:title>

    2. <dc:creator>Ash, Avner</dc:creator>

    3. <dc:creator>Stevens, G.</dc:creator>

    4. <dc:description lang="ca-ES">We construct $p$-adic analytic families of $p$-ordinary cohomology classes in the cohomology of arithmetic subgroups of $GL(n)$ with coefficients in a family of representation spaces for $GL(n)$. These analytic families are parametrized by the highest weights of the coefficient modules. More precisely, we consider the cohomology of a compact $\mathbb{Z}_p$-module $\mathbb{D}$ of $p$-adic measures on a certain homogeneous space of $GL(n,\mathbb{Z}_p)$. For any dominant weight $\lambda$ with respect to a fixed choice $(B, T)$ of a Borel subgroup $B$ and a maximal split torus $T\subseteq B$ and for any finite "nebentype" character $\epsilon : T(\mathbb{Z}_p)\longrightarrow\mathbb{Z} ^x_p$ we construct a $\mathbb{Z}_p$-map from $\mathbb{D}$ to $V_{\lambda,\epsilon}$. These maps are equivariant for commuting actions of $T(\mathbb{Z}_p)$ and $\Gamma_\nu$ where $\Gamma_\nu \subseteq GL(n, \mathbb{Z})$ is a congruence subgroup analogous to $\Gamma_0(p^\nu)$ where $p^\nu$ is the conductor of $\epsilon$ . We also make the matrix $\pi := diag(1, p, p^2,\dots , p^{n-1})$ act equivariantly on all these modules. We obtain a $\Lambda := \mathbb{Z}_p[[T(\mathbb{Z}_p)]]$-module structure on $H^\ast(\Gamma,\mathbb{D})$ and Hecke actions on $H^\ast(\Gamma,\mathbb{D})$ and $H^\ast(\Gamma_\nu, V_{\lambda,\epsilon})$ with Hecke equivariant maps $\phi_{\lambda,\epsilon} : H^\ast(\Gamma,\mathbb{D})\longrightarrow H^\ast(\Gamma_\nu, V_{\lambda,\epsilon})$, where $\Gamma$ is a congruence subgroup of $GL(n,\mathbb{Z})$ of level prime to $p$ and $\Gamma_\nu$ is one of a certain family of congruence subgroups of $\Gamma$ with $p$ in their level. Let $\phi^0_ {\lambda,\epsilon}$ denote the map induced by $\phi_{\lambda,\epsilon}$ on the $\Gamma\pi\Gamma$-ordinary part of $H^\ast(\Gamma,\mathbb{D})$. Our main theorem states that the kernel of $\phi^0_{\lambda,\epsilon}$ is $I_{\lambda,\epsilon}H^\ast(\Gamma,\mathbb{D})^0$ where $I_{\lambda,\epsilon}$ is the kernel of the ring homomorphism induced on $\Lambda$ by the character $\lambda$ .</dc:description>

    5. <dc:publisher lang="0">Universitat de Barcelona</dc:publisher>

    6. <dc:date>1997</dc:date>

    7. <dc:type>info:eu-repo/semantics/article</dc:type>

    8. <dc:type>info:eu-repo/semantics/publishedVersion</dc:type>

    9. <dc:format>application/pdf</dc:format>

    10. <dc:identifier>https://www.raco.cat/index.php/CollectaneaMathematica/article/view/56362</dc:identifier>

    11. <dc:identifier>2038-4815</dc:identifier>

    12. <dc:source lang="ca-ES">Collectanea Mathematica; 1997: Vol.: 48 Núm.: 1 -2; p. 1-30</dc:source>

    13. <dc:source lang="0">0010-0757</dc:source>

    14. <dc:language>eng</dc:language>

    15. <dc:relation>https://www.raco.cat/index.php/CollectaneaMathematica/article/view/56362/66666</dc:relation>

    16. <dc:rights>Aquesta revista ofereix el text complet de tots els seus articles, excepte els dels cinc darrers anys, que s'aniran alliberant periòdicament fins el 2010. A partir del 2011 requereix subscripció. Podeu accedir-hi aquí. L'accés als articles a text complet inclosos a RACO és gratuït, però els actes de reproducció, distribució, comunicació pública o transformació total o parcial estan subjectes a les condicions d'ús de cada revista i poden requerir el consentiment exprés i escrit dels autors i/o institucions editores.</dc:rights>

    </oai_dc:dc>

marcxml

Descargar XML

    <?xml version="1.0" encoding="UTF-8" ?>

  1. <record schemaLocation="http://www.loc.gov/MARC21/slim http://www.loc.gov/standards/marcxml/schema/MARC21slim.xsd">

    1. <leader>naa a 5a 4500</leader>

    2. <controlfield tag="008">AAMMDDs1997||||spc|||||s|||||0|| 0|eng|c</controlfield>

    3. <controlfield tag="007">cr |||||||||||</controlfield>

    4. <datafield ind1="1" ind2="0" tag="245">

      1. <subfield code="a">$p$-adic deformations of cohomology classes of subgroups of $GL(n,\mathbb{Z})$</subfield>

      2. <subfield code="h">[Recurs electrònic]</subfield>

      </datafield>

    5. <datafield ind1="1" ind2=" " tag="100">

      1. <subfield code="a">Ash, Avner</subfield>

      </datafield>

    6. <datafield ind1="1" ind2=" " tag="700">

      1. <subfield code="a">Stevens, G.</subfield>

      </datafield>

    7. <datafield ind1=" " ind2=" " tag="520">

      1. <subfield code="a">We construct $p$-adic analytic families of $p$-ordinary cohomology classes in the cohomology of arithmetic subgroups of $GL(n)$ with coefficients in a family of representation spaces for $GL(n)$. These analytic families are parametrized by the highest weights of the coefficient modules. More precisely, we consider the cohomology of a compact $\mathbb{Z}_p$-module $\mathbb{D}$ of $p$-adic measures on a certain homogeneous space of $GL(n,\mathbb{Z}_p)$. For any dominant weight $\lambda$ with respect to a fixed choice $(B, T)$ of a Borel subgroup $B$ and a maximal split torus $T\subseteq B$ and for any finite "nebentype" character $\epsilon : T(\mathbb{Z}_p)\longrightarrow\mathbb{Z} ^x_p$ we construct a $\mathbb{Z}_p$-map from $\mathbb{D}$ to $V_{\lambda,\epsilon}$. These maps are equivariant for commuting actions of $T(\mathbb{Z}_p)$ and $\Gamma_\nu$ where $\Gamma_\nu \subseteq GL(n, \mathbb{Z})$ is a congruence subgroup analogous to $\Gamma_0(p^\nu)$ where $p^\nu$ is the conductor of $\epsilon$ . We also make the matrix $\pi := diag(1, p, p^2,\dots , p^{n-1})$ act equivariantly on all these modules. We obtain a $\Lambda := \mathbb{Z}_p[[T(\mathbb{Z}_p)]]$-module structure on $H^\ast(\Gamma,\mathbb{D})$ and Hecke actions on $H^\ast(\Gamma,\mathbb{D})$ and $H^\ast(\Gamma_\nu, V_{\lambda,\epsilon})$ with Hecke equivariant maps $\phi_{\lambda,\epsilon} : H^\ast(\Gamma,\mathbb{D})\longrightarrow H^\ast(\Gamma_\nu, V_{\lambda,\epsilon})$, where $\Gamma$ is a congruence subgroup of $GL(n,\mathbb{Z})$ of level prime to $p$ and $\Gamma_\nu$ is one of a certain family of congruence subgroups of $\Gamma$ with $p$ in their level. Let $\phi^0_ {\lambda,\epsilon}$ denote the map induced by $\phi_{\lambda,\epsilon}$ on the $\Gamma\pi\Gamma$-ordinary part of $H^\ast(\Gamma,\mathbb{D})$. Our main theorem states that the kernel of $\phi^0_{\lambda,\epsilon}$ is $I_{\lambda,\epsilon}H^\ast(\Gamma,\mathbb{D})^0$ where $I_{\lambda,\epsilon}$ is the kernel of the ring homomorphism induced on $\Lambda$ by the character $\lambda$ .</subfield>

      </datafield>

    8. <datafield ind1="4" ind2="0" tag="856">

      1. <subfield code="z">Accés lliure</subfield>

      2. <subfield code="u">https://www.raco.cat/index.php/CollectaneaMathematica/article/view/56362</subfield>

      </datafield>

    9. <datafield ind1="0" ind2=" " tag="730">

      1. <subfield code="a">RACO (Articles)</subfield>

      </datafield>

    10. <datafield ind1="1" ind2=" " tag="773">

      1. <subfield code="t">Collectanea Mathematica</subfield>

      2. <subfield code="d">[s.l.] : Universitat de Barcelona, 1997</subfield>

      3. <subfield code="x">2038-4815</subfield>

      4. <subfield code="g">1997: Vol.: 48 Núm.: 1 -2, p. 1-30</subfield>

      </datafield>

    11. <datafield ind1=" " ind2="4" tag="655">

      1. <subfield code="a">Articles de revistes electròniques</subfield>

      </datafield>

    </record>

nlm

Descargar XML

    <?xml version="1.0" encoding="UTF-8" ?>

  1. <article lang="CA" schemaLocation="http://dtd.nlm.nih.gov/publishing/2.3 http://dtd.nlm.nih.gov/publishing/2.3/xsd/journalpublishing.xsd">

    1. <front>

      1. <journal-meta>

        1. <journal-id journal-id-type="other">CollectaneaMathematica</journal-id>

        2. <journal-title>Collectanea Mathematica</journal-title>

        3. <issn pub-type="epub">2038-4815</issn>

        4. <issn pub-type="ppub">0010-0757</issn>

        5. <publisher>

          1. <publisher-name>Universitat de Barcelona</publisher-name>

          </publisher>

        </journal-meta>

      2. <article-meta>

        1. <article-id pub-id-type="other">56362</article-id>

        2. <article-categories>

          1. <subj-group subj-group-type="heading">

            1. <subject>Articles</subject>

            </subj-group>

          </article-categories>

        3. <title-group>

          1. <article-title>$p$-adic deformations of cohomology classes of subgroups of $GL(n,\mathbb{Z})$</article-title>

          </title-group>

        4. <contrib-group>

          1. <contrib contrib-type="author" corresp="yes">

            1. <name name-style="western">

              1. <surname>Ash</surname>

              2. <given-names>Avner</given-names>

              </name>

            2. <email />

            </contrib>

          2. <contrib contrib-type="author">

            1. <name name-style="western">

              1. <surname>Stevens</surname>

              2. <given-names>G.</given-names>

              </name>

            2. <email />

            </contrib>

          3. <contrib contrib-type="editor">

            1. <name>

              1. <surname>Consorci de Biblioteques Universitaries de Catalunya</surname>

              2. <given-names>CBUC -</given-names>

              </name>

            </contrib>

          4. <contrib contrib-type="editor">

            1. <name>

              1. <surname>Coll</surname>

              2. <given-names>Josep</given-names>

              </name>

            </contrib>

          5. <contrib contrib-type="editor">

            1. <name>

              1. <surname>Exportació de revistes</surname>

              2. <given-names>UB</given-names>

              </name>

            </contrib>

          6. <contrib contrib-type="editor">

            1. <name>

              1. <surname>Universitat de Barcelona</surname>

              2. <given-names>CRAI</given-names>

              </name>

            </contrib>

          7. <contrib contrib-type="jmanager">

            1. <name>

              1. <surname>Consorci de Biblioteques Universitaries de Catalunya</surname>

              2. <given-names>CBUC -</given-names>

              </name>

            </contrib>

          8. <contrib contrib-type="jmanager">

            1. <name>

              1. <surname>Coll</surname>

              2. <given-names>Josep</given-names>

              </name>

            </contrib>

          9. <contrib contrib-type="jmanager">

            1. <name>

              1. <surname>Exportació de revistes</surname>

              2. <given-names>UB</given-names>

              </name>

            </contrib>

          10. <contrib contrib-type="jmanager">

            1. <name>

              1. <surname>Universitat de Barcelona</surname>

              2. <given-names>CRAI</given-names>

              </name>

            </contrib>

          </contrib-group>

        5. <pub-date pub-type="epub">

          1. <day>11</day>

          2. <month>01</month>

          3. <year>1997</year>

          </pub-date>

        6. <pub-date pub-type="collection">

          1. <year>1997</year>

          </pub-date>

        7. <issue-id pub-id-type="other">4550</issue-id>

        8. <issue-title>Vol.: 48 Núm.: 1 -2</issue-title>

        9. <permissions>

          1. <copyright-year>1997</copyright-year>

          </permissions>

        10. <self-uri href="https://www.raco.cat/index.php/CollectaneaMathematica/article/view/56362" />
        11. <self-uri content-type="application/pdf" href="https://www.raco.cat/index.php/CollectaneaMathematica/article/view/56362/66666" />
        12. <abstract lang="CA">

          1. <p>We construct $p$-adic analytic families of $p$-ordinary cohomology classes in the cohomology of arithmetic subgroups of $GL(n)$ with coefficients in a family of representation spaces for $GL(n)$. These analytic families are parametrized by the highest weights of the coefficient modules. More precisely, we consider the cohomology of a compact $\mathbb{Z}_p$-module $\mathbb{D}$ of $p$-adic measures on a certain homogeneous space of $GL(n,\mathbb{Z}_p)$. For any dominant weight $\lambda$ with respect to a fixed choice $(B, T)$ of a Borel subgroup $B$ and a maximal split torus $T\subseteq B$ and for any finite "nebentype" character $\epsilon : T(\mathbb{Z}_p)\longrightarrow\mathbb{Z} ^x_p$ we construct a $\mathbb{Z}_p$-map from $\mathbb{D}$ to $V_{\lambda,\epsilon}$. These maps are equivariant for commuting actions of $T(\mathbb{Z}_p)$ and $\Gamma_\nu$ where $\Gamma_\nu \subseteq GL(n, \mathbb{Z})$ is a congruence subgroup analogous to $\Gamma_0(p^\nu)$ where $p^\nu$ is the conductor of $\epsilon$ . We also make the matrix $\pi := diag(1, p, p^2,\dots , p^{n-1})$ act equivariantly on all these modules. We obtain a $\Lambda := \mathbb{Z}_p[[T(\mathbb{Z}_p)]]$-module structure on $H^\ast(\Gamma,\mathbb{D})$ and Hecke actions on $H^\ast(\Gamma,\mathbb{D})$ and $H^\ast(\Gamma_\nu, V_{\lambda,\epsilon})$ with Hecke equivariant maps $\phi_{\lambda,\epsilon} : H^\ast(\Gamma,\mathbb{D})\longrightarrow H^\ast(\Gamma_\nu, V_{\lambda,\epsilon})$, where $\Gamma$ is a congruence subgroup of $GL(n,\mathbb{Z})$ of level prime to $p$ and $\Gamma_\nu$ is one of a certain family of congruence subgroups of $\Gamma$ with $p$ in their level. Let $\phi^0_ {\lambda,\epsilon}$ denote the map induced by $\phi_{\lambda,\epsilon}$ on the $\Gamma\pi\Gamma$-ordinary part of $H^\ast(\Gamma,\mathbb{D})$. Our main theorem states that the kernel of $\phi^0_{\lambda,\epsilon}$ is $I_{\lambda,\epsilon}H^\ast(\Gamma,\mathbb{D})^0$ where $I_{\lambda,\epsilon}$ is the kernel of the ring homomorphism induced on $\Lambda$ by the character $\lambda$ .</p>

          </abstract>

        </article-meta>

      </front>

    </article>

oai_marc

Descargar XML

    <?xml version="1.0" encoding="UTF-8" ?>

  1. <oai_marc catForm="u" encLvl="3" level="m" status="c" type="a" schemaLocation="http://www.openarchives.org/OAI/1.1/oai_marc http://www.openarchives.org/OAI/1.1/oai_marc.xsd">

    1. <fixfield id="008">"970111 1997 eng "</fixfield>

    2. <varfield i1=" " i2=" " id="042">

      1. <subfield label="a">dc</subfield>

      </varfield>

    3. <varfield i1="0" i2="0" id="245">

      1. <subfield label="a">$p$-adic deformations of cohomology classes of subgroups of $GL(n,\mathbb{Z})$</subfield>

      </varfield>

    4. <varfield i1=" " i2=" " id="720">

      1. <subfield label="a">Ash, Avner</subfield>

      </varfield>

    5. <varfield i1=" " i2=" " id="720">

      1. <subfield label="a">Stevens, G.</subfield>

      </varfield>

    6. <varfield i1=" " i2=" " id="653">

      1. <subfield label="a" />

      </varfield>

    7. <varfield i1=" " i2=" " id="520">

      1. <subfield label="a">We construct $p$-adic analytic families of $p$-ordinary cohomology classes in the cohomology of arithmetic subgroups of $GL(n)$ with coefficients in a family of representation spaces for $GL(n)$. These analytic families are parametrized by the highest weights of the coefficient modules. More precisely, we consider the cohomology of a compact $\mathbb{Z}_p$-module $\mathbb{D}$ of $p$-adic measures on a certain homogeneous space of $GL(n,\mathbb{Z}_p)$. For any dominant weight $\lambda$ with respect to a fixed choice $(B, T)$ of a Borel subgroup $B$ and a maximal split torus $T\subseteq B$ and for any finite "nebentype" character $\epsilon : T(\mathbb{Z}_p)\longrightarrow\mathbb{Z} ^x_p$ we construct a $\mathbb{Z}_p$-map from $\mathbb{D}$ to $V_{\lambda,\epsilon}$. These maps are equivariant for commuting actions of $T(\mathbb{Z}_p)$ and $\Gamma_\nu$ where $\Gamma_\nu \subseteq GL(n, \mathbb{Z})$ is a congruence subgroup analogous to $\Gamma_0(p^\nu)$ where $p^\nu$ is the conductor of $\epsilon$ . We also make the matrix $\pi := diag(1, p, p^2,\dots , p^{n-1})$ act equivariantly on all these modules. We obtain a $\Lambda := \mathbb{Z}_p[[T(\mathbb{Z}_p)]]$-module structure on $H^\ast(\Gamma,\mathbb{D})$ and Hecke actions on $H^\ast(\Gamma,\mathbb{D})$ and $H^\ast(\Gamma_\nu, V_{\lambda,\epsilon})$ with Hecke equivariant maps $\phi_{\lambda,\epsilon} : H^\ast(\Gamma,\mathbb{D})\longrightarrow H^\ast(\Gamma_\nu, V_{\lambda,\epsilon})$, where $\Gamma$ is a congruence subgroup of $GL(n,\mathbb{Z})$ of level prime to $p$ and $\Gamma_\nu$ is one of a certain family of congruence subgroups of $\Gamma$ with $p$ in their level. Let $\phi^0_ {\lambda,\epsilon}$ denote the map induced by $\phi_{\lambda,\epsilon}$ on the $\Gamma\pi\Gamma$-ordinary part of $H^\ast(\Gamma,\mathbb{D})$. Our main theorem states that the kernel of $\phi^0_{\lambda,\epsilon}$ is $I_{\lambda,\epsilon}H^\ast(\Gamma,\mathbb{D})^0$ where $I_{\lambda,\epsilon}$ is the kernel of the ring homomorphism induced on $\Lambda$ by the character $\lambda$ .</subfield>

      </varfield>

    8. <varfield i1=" " i2=" " id="260">

      1. <subfield label="b">Universitat de Barcelona</subfield>

      </varfield>

    9. <varfield i1=" " i2=" " id="720">

      1. <subfield label="a" />

      </varfield>

    10. <varfield i1=" " i2=" " id="260">

      1. <subfield label="c">1997-01-11 00:00:00</subfield>

      </varfield>

    11. <varfield i1=" " i2="7" id="655">

      1. <subfield label="a" />

      </varfield>

    12. <varfield i1=" " i2=" " id="856">

      1. <subfield label="q">application/pdf</subfield>

      </varfield>

    13. <varfield i1="4" i2="0" id="856">

      1. <subfield label="u">https://www.raco.cat/index.php/CollectaneaMathematica/article/view/56362</subfield>

      </varfield>

    14. <varfield i1="0" i2=" " id="786">

      1. <subfield label="n">Collectanea Mathematica; 1997: Vol.: 48 Núm.: 1 -2</subfield>

      </varfield>

    15. <varfield i1=" " i2=" " id="546">

      1. <subfield label="a">eng</subfield>

      </varfield>

    16. <varfield i1=" " i2=" " id="500">

      1. <subfield label="a" />

      </varfield>

    17. <varfield i1=" " i2=" " id="500">

      1. <subfield label="a" />

      </varfield>

    18. <varfield i1=" " i2=" " id="500">

      1. <subfield label="a" />

      </varfield>

    19. <varfield i1=" " i2=" " id="540">

      1. <subfield label="a" />

      </varfield>

    </oai_marc>

rfc1807

Descargar XML

    <?xml version="1.0" encoding="UTF-8" ?>

  1. <rfc1807 schemaLocation="http://info.internet.isi.edu:80/in-notes/rfc/files/rfc1807.txt http://www.openarchives.org/OAI/1.1/rfc1807.xsd">

    1. <bib-version>v2</bib-version>

    2. <id>https://www.raco.cat/index.php/CollectaneaMathematica/article/view/56362</id>

    3. <entry>2014-03-14T10:41:09Z</entry>

    4. <organization>Collectanea Mathematica</organization>

    5. <organization>1997: Vol.: 48 Núm.: 1 -2; 1-30</organization>

    6. <title>$p$-adic deformations of cohomology classes of subgroups of $GL(n,\mathbb{Z})$</title>

    7. <type />
    8. <author>Ash, Avner</author>

    9. <author>Stevens, G.</author>

    10. <date>1997-01-11 00:00:00</date>

    11. <copyright />
    12. <other_access>url:https://www.raco.cat/index.php/CollectaneaMathematica/article/view/56362</other_access>

    13. <keyword />
    14. <period />
    15. <period />
    16. <period />
    17. <monitoring />
    18. <language>eng</language>

    19. <abstract>We construct $p$-adic analytic families of $p$-ordinary cohomology classes in the cohomology of arithmetic subgroups of $GL(n)$ with coefficients in a family of representation spaces for $GL(n)$. These analytic families are parametrized by the highest weights of the coefficient modules. More precisely, we consider the cohomology of a compact $\mathbb{Z}_p$-module $\mathbb{D}$ of $p$-adic measures on a certain homogeneous space of $GL(n,\mathbb{Z}_p)$. For any dominant weight $\lambda$ with respect to a fixed choice $(B, T)$ of a Borel subgroup $B$ and a maximal split torus $T\subseteq B$ and for any finite "nebentype" character $\epsilon : T(\mathbb{Z}_p)\longrightarrow\mathbb{Z} ^x_p$ we construct a $\mathbb{Z}_p$-map from $\mathbb{D}$ to $V_{\lambda,\epsilon}$. These maps are equivariant for commuting actions of $T(\mathbb{Z}_p)$ and $\Gamma_\nu$ where $\Gamma_\nu \subseteq GL(n, \mathbb{Z})$ is a congruence subgroup analogous to $\Gamma_0(p^\nu)$ where $p^\nu$ is the conductor of $\epsilon$ . We also make the matrix $\pi := diag(1, p, p^2,\dots , p^{n-1})$ act equivariantly on all these modules. We obtain a $\Lambda := \mathbb{Z}_p[[T(\mathbb{Z}_p)]]$-module structure on $H^\ast(\Gamma,\mathbb{D})$ and Hecke actions on $H^\ast(\Gamma,\mathbb{D})$ and $H^\ast(\Gamma_\nu, V_{\lambda,\epsilon})$ with Hecke equivariant maps $\phi_{\lambda,\epsilon} : H^\ast(\Gamma,\mathbb{D})\longrightarrow H^\ast(\Gamma_\nu, V_{\lambda,\epsilon})$, where $\Gamma$ is a congruence subgroup of $GL(n,\mathbb{Z})$ of level prime to $p$ and $\Gamma_\nu$ is one of a certain family of congruence subgroups of $\Gamma$ with $p$ in their level. Let $\phi^0_ {\lambda,\epsilon}$ denote the map induced by $\phi_{\lambda,\epsilon}$ on the $\Gamma\pi\Gamma$-ordinary part of $H^\ast(\Gamma,\mathbb{D})$. Our main theorem states that the kernel of $\phi^0_{\lambda,\epsilon}$ is $I_{\lambda,\epsilon}H^\ast(\Gamma,\mathbb{D})^0$ where $I_{\lambda,\epsilon}$ is the kernel of the ring homomorphism induced on $\Lambda$ by the character $\lambda$ .</abstract>

    </rfc1807>

Hispana

Portal de acceso al patrimonio digital y el agregador nacional de contenidos a Europeana.

Contacto

Accede a nuestro formulario y te contestaremos con la mayor brevedad.

Contacto

X

Tweets by Hispana_roai

Facebook

HISPANA
© Ministerio de Cultura
  • Aviso Legal