Logotipo de HISPANA
Logotipo del Ministerio de Cultura
  • WHAT IS HISPANA?
  • Search
  • DIRECTORY OF COLLECTIONS
  • Contact
  • en
    • Español
    • Euskara
    • English
    • Galego
    • Català
    • Valencià
Está en:  › Record data
Linked Open Data
β-Ketoenamine-linked covalent organic frameworks synthesized via gel-to-gel monomer exchange reaction: From aerogel monoliths to electrodes for supercapacitors
Identificadores del recurso
Advanced Functional Materials 34.40 (2024): 2403567
1616-301X (print)
1616-3028 (online)
http://hdl.handle.net/10486/712856
10.1002/adfm.202403567
2403567-1
40
2403567-8
34
Origin
(Biblos-e Archivo)

File

Title:
β-Ketoenamine-linked covalent organic frameworks synthesized via gel-to-gel monomer exchange reaction: From aerogel monoliths to electrodes for supercapacitors
Tema:
Aerogels
Covalent Organic Frameworks
Functional COF Composites
Porous Materials
Ultralight Monolithic Aerogels
Química
Description:
Covalent organic frameworks (COFs) possess intrinsic nanoscale pores,limiting mass transport and impacting their utility in many applications, suchas catalysis, supercapacitors, and gas storage, demanding efficient diffusionthroughout the material. Hierarchical porous structures, integrating largermacropores with inherent micro-/meso-pores, facilitate rapid mass transport.Recently, the fabrication of aerogel monoliths is reported exclusively fromimine-linked COFs, offering flexibility in aerogel composition. However,challenges in synthesizing robust 𝜷-ketoenamine-based COFs withcomparable surface areas prompted innovative synthetic approaches.Leveraging the dynamic nature of COF bonds, in this work efficient monomerexchange from imine to partially 𝜷-ketoenamine-linked COFs within the gelphase is demonstrated. These aerogels can be transformed into electrodesusing the compression technique. The new flexible electrodes-based𝜷-ketoenamine-linked COF composites with C super P exhibit superiordurability and redox activity. Through supercapacitor assembly, the𝜷-ketoenamine-linked COF electrodes outperform their imine-basedcounterparts, showcasing enhanced capacitance (88 mF cm−2 ) and stability athigh current densities (2.0 mA cm−2 ). These findings underscore the promiseof 𝜷-ketoenamine-linked COFs for pseudocapacitor energy storageapplications
This work was supported by the Spanish Ministry of Science and Innovation, through the “María de Maeztu” Programme for Units of Excellence in R&D (CEX2018-000805-M and CEX2023-001316-M), PDC2022133498-I00, TED2021-129886B-C42, PID2019-106268GB-C32, PID2022138908NB-C31, MAT2016-77608-C3-1-P, PCI2018-093081, PID2019108028GB-C21, and RTI2018-095622-B-I00), and the Catalan AGAUR (project 2017 SGR 238). The authors acknowledge the support from the “(MAD2D-CM)-UAM” project funded by Comunidad de Madrid, the Recovery, Transformation, and Resilience Plan, and NextGenerationEU from the European Union. This work was also funded by the CERCA Program/Generalitat de Catalunya. ICN2 was supported by the Severo Ochoa program from the Spanish MINECO (Grant No. SEV-2017-0706)
Idioma:
English
Relation:
Gobierno de España. PDC2022-133498-I00
Gobierno de España. TED2021-129886B-C42
Gobierno de España. PID2019-106268GB-C32
Gobierno de España. PID2022-138908NB-C31
Gobierno de España. MAT2016-77608-C3-1-P
Gobierno de España. PCI2018-093081
Gobierno de España. RTI2018-095622-B-I00
Autor/Productor:
Martín Illán, Jesús Ángel
Sierra Trujillo, Laura
Guillem Navajas, Ana
Suárez, José Antonio
Royuela Collado, Sergio
Rodríguez San Miguel, David
Maspoch, Daniel
Ocón Esteban, Pilar
Zamora Abanades, Félix Juan
Publisher:
Wiley
Otros colaboradores/productores:
UAM. Departamento de Química Física Aplicada
UAM. Departamento de Química Inorgánica
Rights:
http://creativecommons.org/licenses/by-nc/4.0/
open access
Date:
2024-05-16
Tipo de recurso:
journal article
info:eu-repo/semantics/publishedVersion
Format:
application/pdf

oai_dc

Download XML

    <?xml version="1.0" encoding="UTF-8" ?>

  1. <oai_dc:dc schemaLocation="http://www.openarchives.org/OAI/2.0/oai_dc/ http://www.openarchives.org/OAI/2.0/oai_dc.xsd">

    1. <dc:title>β-Ketoenamine-linked covalent organic frameworks synthesized via gel-to-gel monomer exchange reaction: From aerogel monoliths to electrodes for supercapacitors</dc:title>

    2. <dc:creator>Martín Illán, Jesús Ángel</dc:creator>

    3. <dc:creator>Sierra Trujillo, Laura</dc:creator>

    4. <dc:creator>Guillem Navajas, Ana</dc:creator>

    5. <dc:creator>Suárez, José Antonio</dc:creator>

    6. <dc:creator>Royuela Collado, Sergio</dc:creator>

    7. <dc:creator>Rodríguez San Miguel, David</dc:creator>

    8. <dc:creator>Maspoch, Daniel</dc:creator>

    9. <dc:creator>Ocón Esteban, Pilar</dc:creator>

    10. <dc:creator>Zamora Abanades, Félix Juan</dc:creator>

    11. <dc:contributor>UAM. Departamento de Química Física Aplicada</dc:contributor>

    12. <dc:contributor>UAM. Departamento de Química Inorgánica</dc:contributor>

    13. <dc:subject>Aerogels</dc:subject>

    14. <dc:subject>Covalent Organic Frameworks</dc:subject>

    15. <dc:subject>Functional COF Composites</dc:subject>

    16. <dc:subject>Porous Materials</dc:subject>

    17. <dc:subject>Ultralight Monolithic Aerogels</dc:subject>

    18. <dc:subject>Química</dc:subject>

    19. <dc:description>Covalent organic frameworks (COFs) possess intrinsic nanoscale pores,limiting mass transport and impacting their utility in many applications, suchas catalysis, supercapacitors, and gas storage, demanding efficient diffusionthroughout the material. Hierarchical porous structures, integrating largermacropores with inherent micro-/meso-pores, facilitate rapid mass transport.Recently, the fabrication of aerogel monoliths is reported exclusively fromimine-linked COFs, offering flexibility in aerogel composition. However,challenges in synthesizing robust ��-ketoenamine-based COFs withcomparable surface areas prompted innovative synthetic approaches.Leveraging the dynamic nature of COF bonds, in this work efficient monomerexchange from imine to partially ��-ketoenamine-linked COFs within the gelphase is demonstrated. These aerogels can be transformed into electrodesusing the compression technique. The new flexible electrodes-based��-ketoenamine-linked COF composites with C super P exhibit superiordurability and redox activity. Through supercapacitor assembly, the��-ketoenamine-linked COF electrodes outperform their imine-basedcounterparts, showcasing enhanced capacitance (88 mF cm−2 ) and stability athigh current densities (2.0 mA cm−2 ). These findings underscore the promiseof ��-ketoenamine-linked COFs for pseudocapacitor energy storageapplications</dc:description>

    20. <dc:description>This work was supported by the Spanish Ministry of Science and Innovation, through the “María de Maeztu” Programme for Units of Excellence in R&D (CEX2018-000805-M and CEX2023-001316-M), PDC2022133498-I00, TED2021-129886B-C42, PID2019-106268GB-C32, PID2022138908NB-C31, MAT2016-77608-C3-1-P, PCI2018-093081, PID2019108028GB-C21, and RTI2018-095622-B-I00), and the Catalan AGAUR (project 2017 SGR 238). The authors acknowledge the support from the “(MAD2D-CM)-UAM” project funded by Comunidad de Madrid, the Recovery, Transformation, and Resilience Plan, and NextGenerationEU from the European Union. This work was also funded by the CERCA Program/Generalitat de Catalunya. ICN2 was supported by the Severo Ochoa program from the Spanish MINECO (Grant No. SEV-2017-0706)</dc:description>

    21. <dc:date>2024-05-16</dc:date>

    22. <dc:type>journal article</dc:type>

    23. <dc:type>info:eu-repo/semantics/publishedVersion</dc:type>

    24. <dc:identifier>Advanced Functional Materials 34.40 (2024): 2403567</dc:identifier>

    25. <dc:identifier>1616-301X (print)</dc:identifier>

    26. <dc:identifier>1616-3028 (online)</dc:identifier>

    27. <dc:identifier>http://hdl.handle.net/10486/712856</dc:identifier>

    28. <dc:identifier>10.1002/adfm.202403567</dc:identifier>

    29. <dc:identifier>2403567-1</dc:identifier>

    30. <dc:identifier>40</dc:identifier>

    31. <dc:identifier>2403567-8</dc:identifier>

    32. <dc:identifier>34</dc:identifier>

    33. <dc:language>eng</dc:language>

    34. <dc:relation>Gobierno de España. PDC2022-133498-I00</dc:relation>

    35. <dc:relation>Gobierno de España. TED2021-129886B-C42</dc:relation>

    36. <dc:relation>Gobierno de España. PID2019-106268GB-C32</dc:relation>

    37. <dc:relation>Gobierno de España. PID2022-138908NB-C31</dc:relation>

    38. <dc:relation>Gobierno de España. MAT2016-77608-C3-1-P</dc:relation>

    39. <dc:relation>Gobierno de España. PCI2018-093081</dc:relation>

    40. <dc:relation>Gobierno de España. RTI2018-095622-B-I00</dc:relation>

    41. <dc:rights>http://creativecommons.org/licenses/by-nc/4.0/</dc:rights>

    42. <dc:rights>open access</dc:rights>

    43. <dc:format>application/pdf</dc:format>

    44. <dc:publisher>Wiley</dc:publisher>

    </oai_dc:dc>

oai_openaire

Download XML

    <?xml version="1.0" encoding="UTF-8" ?>

  1. <oaire:resource schemaLocation="http://namespace.openaire.eu/schema/oaire/ https://www.openaire.eu/schema/repo-lit/4.0/openaire.xsd">

    1. <datacite:titles>

      1. <datacite:title>β-Ketoenamine-linked covalent organic frameworks synthesized via gel-to-gel monomer exchange reaction: From aerogel monoliths to electrodes for supercapacitors</datacite:title>

      </datacite:titles>

    2. <datacite:creators>

      1. <datacite:creator>

        1. <datacite:creatorName>Martín Illán, Jesús Ángel</datacite:creatorName>

        2. <datacite:affiliation>Universidad Autónoma de Madrid</datacite:affiliation>

        </datacite:creator>

      2. <datacite:creator>

        1. <datacite:creatorName>Sierra Trujillo, Laura</datacite:creatorName>

        2. <datacite:affiliation>Universidad Autónoma de Madrid</datacite:affiliation>

        </datacite:creator>

      3. <datacite:creator>

        1. <datacite:creatorName>Guillem Navajas, Ana</datacite:creatorName>

        </datacite:creator>

      4. <datacite:creator>

        1. <datacite:creatorName>Suárez, José Antonio</datacite:creatorName>

        </datacite:creator>

      5. <datacite:creator>

        1. <datacite:creatorName>Royuela Collado, Sergio</datacite:creatorName>

        2. <datacite:nameIdentifier nameIdentifierScheme="ORCID" schemeURI="https://orcid.org">0000-0003-3113-1831</datacite:nameIdentifier>

        3. <datacite:affiliation>Universidad Autónoma de Madrid</datacite:affiliation>

        </datacite:creator>

      6. <datacite:creator>

        1. <datacite:creatorName>Rodríguez San Miguel, David</datacite:creatorName>

        2. <datacite:nameIdentifier nameIdentifierScheme="ORCID" schemeURI="https://orcid.org">0000-0002-1476-2175</datacite:nameIdentifier>

        3. <datacite:affiliation>Universidad Autónoma de Madrid</datacite:affiliation>

        </datacite:creator>

      7. <datacite:creator>

        1. <datacite:creatorName>Maspoch, Daniel</datacite:creatorName>

        </datacite:creator>

      8. <datacite:creator>

        1. <datacite:creatorName>Ocón Esteban, Pilar</datacite:creatorName>

        2. <datacite:nameIdentifier nameIdentifierScheme="ORCID" schemeURI="https://orcid.org">0000-0003-4595-7298</datacite:nameIdentifier>

        3. <datacite:affiliation>Universidad Autónoma de Madrid</datacite:affiliation>

        </datacite:creator>

      9. <datacite:creator>

        1. <datacite:creatorName>Zamora Abanades, Félix Juan</datacite:creatorName>

        2. <datacite:nameIdentifier nameIdentifierScheme="ORCID" schemeURI="https://orcid.org">0000-0001-7529-5120</datacite:nameIdentifier>

        3. <datacite:affiliation>Universidad Autónoma de Madrid</datacite:affiliation>

        </datacite:creator>

      </datacite:creators>

    3. <datacite:contributors>

      1. <datacite:contributor contributorType="Other">

        1. <datacite:contributorName>UAM. Departamento de Química Física Aplicada</datacite:contributorName>

        </datacite:contributor>

      2. <datacite:contributor contributorType="Other">

        1. <datacite:contributorName>UAM. Departamento de Química Inorgánica</datacite:contributorName>

        </datacite:contributor>

      </datacite:contributors>

    4. <datacite:subjects>

      1. <datacite:subject>Aerogels</datacite:subject>

      2. <datacite:subject>Covalent Organic Frameworks</datacite:subject>

      3. <datacite:subject>Functional COF Composites</datacite:subject>

      4. <datacite:subject>Porous Materials</datacite:subject>

      5. <datacite:subject>Ultralight Monolithic Aerogels</datacite:subject>

      6. <datacite:subject>Química</datacite:subject>

      </datacite:subjects>

    5. <dc:description>Covalent organic frameworks (COFs) possess intrinsic nanoscale pores,limiting mass transport and impacting their utility in many applications, suchas catalysis, supercapacitors, and gas storage, demanding efficient diffusionthroughout the material. Hierarchical porous structures, integrating largermacropores with inherent micro-/meso-pores, facilitate rapid mass transport.Recently, the fabrication of aerogel monoliths is reported exclusively fromimine-linked COFs, offering flexibility in aerogel composition. However,challenges in synthesizing robust ��-ketoenamine-based COFs withcomparable surface areas prompted innovative synthetic approaches.Leveraging the dynamic nature of COF bonds, in this work efficient monomerexchange from imine to partially ��-ketoenamine-linked COFs within the gelphase is demonstrated. These aerogels can be transformed into electrodesusing the compression technique. The new flexible electrodes-based��-ketoenamine-linked COF composites with C super P exhibit superiordurability and redox activity. Through supercapacitor assembly, the��-ketoenamine-linked COF electrodes outperform their imine-basedcounterparts, showcasing enhanced capacitance (88 mF cm−2 ) and stability athigh current densities (2.0 mA cm−2 ). These findings underscore the promiseof ��-ketoenamine-linked COFs for pseudocapacitor energy storageapplications</dc:description>

    6. <dc:description>This work was supported by the Spanish Ministry of Science and Innovation, through the “María de Maeztu” Programme for Units of Excellence in R&D (CEX2018-000805-M and CEX2023-001316-M), PDC2022133498-I00, TED2021-129886B-C42, PID2019-106268GB-C32, PID2022138908NB-C31, MAT2016-77608-C3-1-P, PCI2018-093081, PID2019108028GB-C21, and RTI2018-095622-B-I00), and the Catalan AGAUR (project 2017 SGR 238). The authors acknowledge the support from the “(MAD2D-CM)-UAM” project funded by Comunidad de Madrid, the Recovery, Transformation, and Resilience Plan, and NextGenerationEU from the European Union. This work was also funded by the CERCA Program/Generalitat de Catalunya. ICN2 was supported by the Severo Ochoa program from the Spanish MINECO (Grant No. SEV-2017-0706)</dc:description>

    7. <datacite:dates>

      1. <datacite:date dateType="Issued">2024-05-16</datacite:date>

      </datacite:dates>

    8. <oaire:resourceType resourceTypeGeneral="literature" uri="http://purl.org/coar/resource_type/c_6501">journal article</oaire:resourceType>

    9. <oaire:version uri="http://purl.org/coar/version/c_be7fb7dd8ff6fe43">NA</oaire:version>

    10. <datacite:identifier identifierType="HANDLE">http://hdl.handle.net/10486/712856</datacite:identifier>

    11. <datacite:alternateIdentifiers>

      1. <datacite:alternateIdentifier alternateIdentifierType="DOI">10.1002/adfm.202403567</datacite:alternateIdentifier>

      </datacite:alternateIdentifiers>

    12. <datacite:relatedIdentifiers>

      1. <datacite:relatedIdentifier relatedIdentifierType="ISSN" relationType="IsPartOf">1616-301X (print)</datacite:relatedIdentifier>

      2. <datacite:relatedIdentifier relatedIdentifierType="ISSN" relationType="IsPartOf">1616-3028 (online)</datacite:relatedIdentifier>

      </datacite:relatedIdentifiers>

    13. <dc:language>eng</dc:language>

    14. <datacite:rights rightsURI="http://purl.org/coar/access_right/c_abf2">open access</datacite:rights>

    15. <oaire:licenseCondition uri="http://creativecommons.org/licenses/by-nc/4.0/">Attribution-NonCommercial 4.0 International</oaire:licenseCondition>

    16. <dc:format>application/pdf</dc:format>

    17. <datacite:sizes>

      1. <datacite:size>8 pag.</datacite:size>

      </datacite:sizes>

    18. <dc:publisher>Wiley</dc:publisher>

    19. <oaire:file objectType="fulltext">https://repositorio.uam.es/bitstream/10486/712856/1/ketoenamiine_martin_AFM_2024.pdf</oaire:file>

    </oaire:resource>

xoai

Download XML

Se ha omitido la presentación del registro por ser demasiado largo. Si lo desea, puede descargárselo en el enlace anterior.

Hispana

Access portal to digital heritage and the national content aggregator to Europeana

Contact

Access our form and we will answer you as soon as possible

Contact

X

Tweets by Hispana_roai

Facebook

HISPANA
© Ministry of Culture
  • Legal notice