<?xml version="1.0" encoding="UTF-8" ?>
<oai_dc:dc schemaLocation="http://www.openarchives.org/OAI/2.0/oai_dc/ http://www.openarchives.org/OAI/2.0/oai_dc.xsd">
<dc:title>2D linear CA with mixing boundary conditions and reversibility</dc:title>
<dc:creator>Jumaniyozov, Doston</dc:creator>
<dc:creator>Casas Mirás, José Manuel</dc:creator>
<dc:creator>Ladra González, Manuel</dc:creator>
<dc:creator>Omirov, Bakhrom</dc:creator>
<dc:creator>Redjepov, Shovkat</dc:creator>
<dc:subject>1201.11 Teoría de Matrices</dc:subject>
<dc:description>In this paper, we consider two-dimensional cellular automata (CA) with the von Neumann neighborhood. We study the characterization of 2D linear cellular automata defined by the von Neumann neighborhood with new type of boundary conditions over the field Zp. Furthermore, we investigate the rule matrices of 2D von Neumann CA by applying the group of permutations S4. Moreover, the algorithm for computing the rank of rule matrices is given. Finally, necessary and sufficient conditions for the existence of Garden of Eden configurations for considered two-dimensional cellular automata are obtained.</dc:description>
<dc:description>Agencia Estatal de Investigación | Ref. PID2020-115155GB-I00</dc:description>
<dc:description>Ministry of Innovative Development of Uzbekistan | Ref. FZ-20200930492</dc:description>
<dc:date>2023-12-05T11:18:37Z</dc:date>
<dc:date>2023-06-30</dc:date>
<dc:date>2023-11-14T12:15:34Z</dc:date>
<dc:type>article</dc:type>
<dc:identifier>International Journal of Bifurcation and Chaos, 33(08): 2350094-1-2350094-19 (2023)</dc:identifier>
<dc:identifier>02181274</dc:identifier>
<dc:identifier>17936551</dc:identifier>
<dc:identifier>http://hdl.handle.net/11093/5470</dc:identifier>
<dc:identifier>10.1142/S0218127423500943</dc:identifier>
<dc:identifier>https://www.worldscientific.com/doi/10.1142/S0218127423500943</dc:identifier>
<dc:language>eng</dc:language>
<dc:relation>info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2020-115155GB-I00/ES/HOMOLOGIA, HOMOTOPIA E INVARIANTES CATEGORICOS EN GRUPOS Y ALGEBRAS NO ASOCIATIVAS</dc:relation>
<dc:rights>openAccess</dc:rights>
<dc:publisher>International Journal of Bifurcation and Chaos</dc:publisher>
<dc:publisher>Matemática aplicada I</dc:publisher>
<dc:publisher>Matemáticas</dc:publisher>
</oai_dc:dc>
<?xml version="1.0" encoding="UTF-8" ?>
<d:DIDL schemaLocation="urn:mpeg:mpeg21:2002:02-DIDL-NS http://standards.iso.org/ittf/PubliclyAvailableStandards/MPEG-21_schema_files/did/didl.xsd">
<d:Item id="hdl_11093_5470">
<d:Descriptor>
<d:Statement mimeType="application/xml; charset=utf-8">
<dii:Identifier schemaLocation="urn:mpeg:mpeg21:2002:01-DII-NS http://standards.iso.org/ittf/PubliclyAvailableStandards/MPEG-21_schema_files/dii/dii.xsd">urn:hdl:11093/5470</dii:Identifier>
</d:Statement>
</d:Descriptor>
<d:Descriptor>
<d:Statement mimeType="application/xml; charset=utf-8">
<oai_dc:dc schemaLocation="http://www.openarchives.org/OAI/2.0/oai_dc/ http://www.openarchives.org/OAI/2.0/oai_dc.xsd">
<dc:title>2D linear CA with mixing boundary conditions and reversibility</dc:title>
<dc:creator>Jumaniyozov, Doston</dc:creator>
<dc:creator>Casas Mirás, José Manuel</dc:creator>
<dc:creator>Ladra González, Manuel</dc:creator>
<dc:creator>Omirov, Bakhrom</dc:creator>
<dc:creator>Redjepov, Shovkat</dc:creator>
<dc:description>In this paper, we consider two-dimensional cellular automata (CA) with the von Neumann neighborhood. We study the characterization of 2D linear cellular automata defined by the von Neumann neighborhood with new type of boundary conditions over the field Zp. Furthermore, we investigate the rule matrices of 2D von Neumann CA by applying the group of permutations S4. Moreover, the algorithm for computing the rank of rule matrices is given. Finally, necessary and sufficient conditions for the existence of Garden of Eden configurations for considered two-dimensional cellular automata are obtained.</dc:description>
<dc:date>2023-12-05T11:18:37Z</dc:date>
<dc:date>2023-06-30</dc:date>
<dc:date>2023-11-14T12:15:34Z</dc:date>
<dc:type>article</dc:type>
<dc:identifier>International Journal of Bifurcation and Chaos, 33(08): 2350094-1-2350094-19 (2023)</dc:identifier>
<dc:identifier>02181274</dc:identifier>
<dc:identifier>17936551</dc:identifier>
<dc:identifier>http://hdl.handle.net/11093/5470</dc:identifier>
<dc:identifier>10.1142/S0218127423500943</dc:identifier>
<dc:identifier>https://www.worldscientific.com/doi/10.1142/S0218127423500943</dc:identifier>
<dc:language>eng</dc:language>
<dc:relation>info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2020-115155GB-I00/ES/HOMOLOGIA, HOMOTOPIA E INVARIANTES CATEGORICOS EN GRUPOS Y ALGEBRAS NO ASOCIATIVAS</dc:relation>
<dc:rights>openAccess</dc:rights>
<dc:publisher>International Journal of Bifurcation and Chaos</dc:publisher>
<dc:publisher>Matemática aplicada I</dc:publisher>
<dc:publisher>Matemáticas</dc:publisher>
</oai_dc:dc>
</d:Statement>
</d:Descriptor>
<d:Component id="11093_5470_4">
</d:Component>
</d:Item>
</d:DIDL>
<?xml version="1.0" encoding="UTF-8" ?>
<dim:dim schemaLocation="http://www.dspace.org/xmlns/dspace/dim http://www.dspace.org/schema/dim.xsd">
<dim:field authority="ef21a47c-c7a5-45ce-b68c-e2c7c55b5a33" confidence="600" element="contributor" mdschema="dc" qualifier="author">Jumaniyozov, Doston</dim:field>
<dim:field authority="105" confidence="600" element="contributor" mdschema="dc" qualifier="author">Casas Mirás, José Manuel</dim:field>
<dim:field authority="b430e452-78cc-416c-9e6b-dbd9c5f0e98d" confidence="600" element="contributor" mdschema="dc" qualifier="author">Ladra González, Manuel</dim:field>
<dim:field authority="fb71be48-53f4-452b-8c20-13a30e97f7a9" confidence="500" element="contributor" mdschema="dc" qualifier="author">Omirov, Bakhrom</dim:field>
<dim:field authority="892f8479-93d1-4157-8cc3-0a6777949ecc" confidence="500" element="contributor" mdschema="dc" qualifier="author">Redjepov, Shovkat</dim:field>
<dim:field element="date" mdschema="dc" qualifier="accessioned">2023-12-05T11:18:37Z</dim:field>
<dim:field element="date" mdschema="dc" qualifier="issued">2023-06-30</dim:field>
<dim:field element="date" mdschema="dc" qualifier="updated">2023-11-14T12:15:34Z</dim:field>
<dim:field element="identifier" lang="spa" mdschema="dc" qualifier="citation">International Journal of Bifurcation and Chaos, 33(08): 2350094-1-2350094-19 (2023)</dim:field>
<dim:field element="identifier" mdschema="dc" qualifier="issn">02181274</dim:field>
<dim:field element="identifier" mdschema="dc" qualifier="issn">17936551</dim:field>
<dim:field element="identifier" mdschema="dc" qualifier="uri">http://hdl.handle.net/11093/5470</dim:field>
<dim:field element="identifier" mdschema="dc" qualifier="doi">10.1142/S0218127423500943</dim:field>
<dim:field element="identifier" lang="spa" mdschema="dc" qualifier="editor">https://www.worldscientific.com/doi/10.1142/S0218127423500943</dim:field>
<dim:field element="description" lang="en" mdschema="dc" qualifier="abstract">In this paper, we consider two-dimensional cellular automata (CA) with the von Neumann neighborhood. We study the characterization of 2D linear cellular automata defined by the von Neumann neighborhood with new type of boundary conditions over the field Zp. Furthermore, we investigate the rule matrices of 2D von Neumann CA by applying the group of permutations S4. Moreover, the algorithm for computing the rank of rule matrices is given. Finally, necessary and sufficient conditions for the existence of Garden of Eden configurations for considered two-dimensional cellular automata are obtained.</dim:field>
<dim:field element="description" lang="spa" mdschema="dc" qualifier="sponsorship">Agencia Estatal de Investigación | Ref. PID2020-115155GB-I00</dim:field>
<dim:field element="description" lang="spa" mdschema="dc" qualifier="sponsorship">Ministry of Innovative Development of Uzbekistan | Ref. FZ-20200930492</dim:field>
<dim:field element="language" lang="spa" mdschema="dc" qualifier="iso">eng</dim:field>
<dim:field element="publisher" lang="spa" mdschema="dc">International Journal of Bifurcation and Chaos</dim:field>
<dim:field element="publisher" lang="spa" mdschema="dc" qualifier="departamento">Matemática aplicada I</dim:field>
<dim:field element="publisher" lang="spa" mdschema="dc" qualifier="grupoinvestigacion">Matemáticas</dim:field>
<dim:field element="relation" mdschema="dc">info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2020-115155GB-I00/ES/HOMOLOGIA, HOMOTOPIA E INVARIANTES CATEGORICOS EN GRUPOS Y ALGEBRAS NO ASOCIATIVAS</dim:field>
<dim:field element="title" lang="en" mdschema="dc">2D linear CA with mixing boundary conditions and reversibility</dim:field>
<dim:field element="type" lang="spa" mdschema="dc">article</dim:field>
<dim:field element="rights" lang="spa" mdschema="dc" qualifier="accessRights">openAccess</dim:field>
<dim:field element="subject" lang="spa" mdschema="dc" qualifier="unesco">1201.11 Teoría de Matrices</dim:field>
<dim:field element="computerCitation" lang="spa" mdschema="dc">pub_title=International Journal of Bifurcation and Chaos|volume=33|journal_number=08|start_pag=2350094-1|end_pag=2350094-19</dim:field>
</dim:dim>
<?xml version="1.0" encoding="UTF-8" ?>
<thesis schemaLocation="http://www.ndltd.org/standards/metadata/etdms/1.0/ http://www.ndltd.org/standards/metadata/etdms/1.0/etdms.xsd">
<title>2D linear CA with mixing boundary conditions and reversibility</title>
<creator>Jumaniyozov, Doston</creator>
<creator>Casas Mirás, José Manuel</creator>
<creator>Ladra González, Manuel</creator>
<creator>Omirov, Bakhrom</creator>
<creator>Redjepov, Shovkat</creator>
<description>In this paper, we consider two-dimensional cellular automata (CA) with the von Neumann neighborhood. We study the characterization of 2D linear cellular automata defined by the von Neumann neighborhood with new type of boundary conditions over the field Zp. Furthermore, we investigate the rule matrices of 2D von Neumann CA by applying the group of permutations S4. Moreover, the algorithm for computing the rank of rule matrices is given. Finally, necessary and sufficient conditions for the existence of Garden of Eden configurations for considered two-dimensional cellular automata are obtained.</description>
<date>2023-12-05</date>
<date>2023-06-30</date>
<date>2023-11-14</date>
<type>article</type>
<identifier>International Journal of Bifurcation and Chaos, 33(08): 2350094-1-2350094-19 (2023)</identifier>
<identifier>02181274</identifier>
<identifier>17936551</identifier>
<identifier>http://hdl.handle.net/11093/5470</identifier>
<identifier>10.1142/S0218127423500943</identifier>
<identifier>https://www.worldscientific.com/doi/10.1142/S0218127423500943</identifier>
<language>eng</language>
<relation>info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2020-115155GB-I00/ES/HOMOLOGIA, HOMOTOPIA E INVARIANTES CATEGORICOS EN GRUPOS Y ALGEBRAS NO ASOCIATIVAS</relation>
<rights>openAccess</rights>
<publisher>International Journal of Bifurcation and Chaos</publisher>
<publisher>Matemática aplicada I</publisher>
<publisher>Matemáticas</publisher>
</thesis>
<?xml version="1.0" encoding="UTF-8" ?>
<record schemaLocation="http://www.loc.gov/MARC21/slim http://www.loc.gov/standards/marcxml/schema/MARC21slim.xsd">
<leader>00925njm 22002777a 4500</leader>
<datafield ind1=" " ind2=" " tag="042">
<subfield code="a">dc</subfield>
</datafield>
<datafield ind1=" " ind2=" " tag="720">
<subfield code="a">Jumaniyozov, Doston</subfield>
<subfield code="e">author</subfield>
</datafield>
<datafield ind1=" " ind2=" " tag="720">
<subfield code="a">Casas Mirás, José Manuel</subfield>
<subfield code="e">author</subfield>
</datafield>
<datafield ind1=" " ind2=" " tag="720">
<subfield code="a">Ladra González, Manuel</subfield>
<subfield code="e">author</subfield>
</datafield>
<datafield ind1=" " ind2=" " tag="720">
<subfield code="a">Omirov, Bakhrom</subfield>
<subfield code="e">author</subfield>
</datafield>
<datafield ind1=" " ind2=" " tag="720">
<subfield code="a">Redjepov, Shovkat</subfield>
<subfield code="e">author</subfield>
</datafield>
<datafield ind1=" " ind2=" " tag="260">
<subfield code="c">2023-06-30</subfield>
</datafield>
<datafield ind1=" " ind2=" " tag="520">
<subfield code="a">In this paper, we consider two-dimensional cellular automata (CA) with the von Neumann neighborhood. We study the characterization of 2D linear cellular automata defined by the von Neumann neighborhood with new type of boundary conditions over the field Zp. Furthermore, we investigate the rule matrices of 2D von Neumann CA by applying the group of permutations S4. Moreover, the algorithm for computing the rank of rule matrices is given. Finally, necessary and sufficient conditions for the existence of Garden of Eden configurations for considered two-dimensional cellular automata are obtained.</subfield>
</datafield>
<datafield ind1="8" ind2=" " tag="024">
<subfield code="a">International Journal of Bifurcation and Chaos, 33(08): 2350094-1-2350094-19 (2023)</subfield>
</datafield>
<datafield ind1="8" ind2=" " tag="024">
<subfield code="a">02181274</subfield>
</datafield>
<datafield ind1="8" ind2=" " tag="024">
<subfield code="a">17936551</subfield>
</datafield>
<datafield ind1="8" ind2=" " tag="024">
<subfield code="a">http://hdl.handle.net/11093/5470</subfield>
</datafield>
<datafield ind1="8" ind2=" " tag="024">
<subfield code="a">10.1142/S0218127423500943</subfield>
</datafield>
<datafield ind1="8" ind2=" " tag="024">
<subfield code="a">https://www.worldscientific.com/doi/10.1142/S0218127423500943</subfield>
</datafield>
<datafield ind1="0" ind2="0" tag="245">
<subfield code="a">2D linear CA with mixing boundary conditions and reversibility</subfield>
</datafield>
</record>
<?xml version="1.0" encoding="UTF-8" ?>
<mets ID=" DSpace_ITEM_11093-5470" OBJID=" hdl:11093/5470" PROFILE="DSpace METS SIP Profile 1.0" TYPE="DSpace ITEM" schemaLocation="http://www.loc.gov/METS/ http://www.loc.gov/standards/mets/mets.xsd">
<metsHdr CREATEDATE="2024-09-29T08:43:22Z">
<agent ROLE="CUSTODIAN" TYPE="ORGANIZATION">
<name>Investigo</name>
</agent>
</metsHdr>
<dmdSec ID="DMD_11093_5470">
<mdWrap MDTYPE="MODS">
<xmlData schemaLocation="http://www.loc.gov/mods/v3 http://www.loc.gov/standards/mods/v3/mods-3-1.xsd">
<mods:mods schemaLocation="http://www.loc.gov/mods/v3 http://www.loc.gov/standards/mods/v3/mods-3-1.xsd">
<mods:name>
<mods:role>
<mods:roleTerm type="text">author</mods:roleTerm>
</mods:role>
<mods:namePart>Jumaniyozov, Doston</mods:namePart>
</mods:name>
<mods:name>
<mods:role>
<mods:roleTerm type="text">author</mods:roleTerm>
</mods:role>
<mods:namePart>Casas Mirás, José Manuel</mods:namePart>
</mods:name>
<mods:name>
<mods:role>
<mods:roleTerm type="text">author</mods:roleTerm>
</mods:role>
<mods:namePart>Ladra González, Manuel</mods:namePart>
</mods:name>
<mods:name>
<mods:role>
<mods:roleTerm type="text">author</mods:roleTerm>
</mods:role>
<mods:namePart>Omirov, Bakhrom</mods:namePart>
</mods:name>
<mods:name>
<mods:role>
<mods:roleTerm type="text">author</mods:roleTerm>
</mods:role>
<mods:namePart>Redjepov, Shovkat</mods:namePart>
</mods:name>
<mods:extension>
<mods:dateAccessioned encoding="iso8601">2023-12-05T11:18:37Z</mods:dateAccessioned>
</mods:extension>
<mods:originInfo>
<mods:dateIssued encoding="iso8601">2023-06-30</mods:dateIssued>
</mods:originInfo>
<mods:identifier type="citation">International Journal of Bifurcation and Chaos, 33(08): 2350094-1-2350094-19 (2023)</mods:identifier>
<mods:identifier type="issn">0218127417936551</mods:identifier>
<mods:identifier type="uri">http://hdl.handle.net/11093/5470</mods:identifier>
<mods:identifier type="doi">10.1142/S0218127423500943</mods:identifier>
<mods:identifier type="editor">https://www.worldscientific.com/doi/10.1142/S0218127423500943</mods:identifier>
<mods:abstract>In this paper, we consider two-dimensional cellular automata (CA) with the von Neumann neighborhood. We study the characterization of 2D linear cellular automata defined by the von Neumann neighborhood with new type of boundary conditions over the field Zp. Furthermore, we investigate the rule matrices of 2D von Neumann CA by applying the group of permutations S4. Moreover, the algorithm for computing the rank of rule matrices is given. Finally, necessary and sufficient conditions for the existence of Garden of Eden configurations for considered two-dimensional cellular automata are obtained.</mods:abstract>
<mods:language>
<mods:languageTerm authority="rfc3066">eng</mods:languageTerm>
</mods:language>
<mods:titleInfo>
<mods:title>2D linear CA with mixing boundary conditions and reversibility</mods:title>
</mods:titleInfo>
<mods:genre>article</mods:genre>
</mods:mods>
</xmlData>
</mdWrap>
</dmdSec>
<amdSec ID="TMD_11093_5470">
<rightsMD ID="RIG_11093_5470">
<mdWrap MDTYPE="OTHER" MIMETYPE="text/plain" OTHERMDTYPE="DSpaceDepositLicense">
<binData>TElDRU5DSUEgSU5WRVNUSUdPCgpDb24gb2JqZXRvIGRlIHF1ZSBJbnZlc3RpZ28gcHVlZGEgYXJjaGl2YXIgeSBkaWZ1bmRpciBsb3MgZG9jdW1lbnRvcyBxdWUgc2UgZGVwb3NpdGFuIGVuIMOpbCwgc2UgbmVjZXNpdGEgbGEgYXV0b3JpemFjacOzbiBkZSBsYS9zIGF1dG9yYS9zIG8gYXV0b3IvZXMgZGUgbG9zIGRvY3VtZW50b3MgbWVkaWFudGUgbGEgcHJlc2VudGUgbGljZW5jaWEgZGUgZGlzdHJpYnVjacOzbiBubyBleGNsdXNpdmEgKOKAnExpY2VuY2lhIEludmVzdGlnb+KAnSkuIAoKQWwgb3RvcmdhciBlc3RhIGxpY2VuY2lhLCBsYS9zIGF1dG9yYS9zIG8gYXV0b3IvZXMgZGUgbG9zIGRvY3VtZW50b3MgbWFudGllbmVuIGVuIHN1IHBvZGVyIGxhIHRvdGFsaWRhZCBkZSBsb3MgZGVyZWNob3MgZGUgYXV0b3IsIHB1ZGllbmRvLCBwb3IgdGFudG8sIGhhY2VyIHVzbyBkZWwgdHJhYmFqbyBkZXBvc2l0YWRvIGVuIGxhIGZvcm1hIGVuIHF1ZSBlc3RpbWVuIG9wb3J0dW5vIChkZXBvc2l0YXJsbyBlbiBvdHJvcyByZXBvc2l0b3Jpb3MsIHB1YmxpY2FybG8gZW4gbWVkaW9zIGNvbWVyY2lhbGVzLCBkaWZ1bmRpw6luZG9sbyBlbiBzdSBww6FnaW5hIHdlYiwgZXRjLikuIAoKUG9yIGZhdm9yLCBsZWEgYXRlbnRhbWVudGUgbG9zIHTDqXJtaW5vcyBxdWUgYSBjb250aW51YWNpw7NuIHNlIHNlw7FhbGFuLCBlbiBsb3MgY3VhbGVzIHVzdGVkIHBlcm1pdGUgbyBhdXRvcml6YSBlbCBkZXDDs3NpdG8geSBkaWZ1c2nDs24gZGUgc3UgZG9jdW1lbnRvIGVuIEludmVzdGlnbzoKCkVuIHN1IGNvbmRpY2nDs24gZGUgYXV0b3IvYSBvIHByb3BpZXRhcmlvL2EgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCB1c3RlZDoKCjEuLSBPdG9yZ2EgYSBsYSBVbml2ZXJzaWRhZGUgZGUgVmlnbyBlbCBkZXJlY2hvIG5vIGV4Y2x1c2l2byBhIGFyY2hpdmFyLCByZXByb2R1Y2lyLCBjb252ZXJ0aXIgZW4gbGEgZm9ybWEgcXVlIG3DoXMgYWJham8gc2UgZGVzY3JpYmUsIGNvbXVuaWNhciBvIGRpc3RyaWJ1aXIgdW5pdmVyc2FsbWVudGUgZWwgZG9jdW1lbnRvIGVuIGZvcm1hdG8gZWxlY3Ryw7NuaWNvOwoKMi4tIEF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWRlIGRlIFZpZ28gYSBjb25zZXJ2YXIgbcOhcyBkZSB1bmEgY29waWEgZGUgc3UgZG9jdW1lbnRvIHkgYSBxdWUsIHNpbiBhbHRlcmFyIHN1IGNvbnRlbmlkbywgbG8gcHVlZGEgY29udmVydGlyIGEgY3VhbHF1aWVyIG90cm8gZm9ybWF0byBkZSBmaWNoZXJvLCBtZWRpbyBvIHNvcG9ydGUsIGNvbiBwcm9ww7NzaXRvcyBkZSBzZWd1cmlkYWQsIHByZXNlcnZhY2nDs24geSBhY2Nlc287IAoKMy4tIE1hbmlmaWVzdGEgcXVlIGVsIGRvY3VtZW50byBkZXBvc2l0YWRvIGVzIHVuIHRyYWJham8gb3JpZ2luYWwgc3V5byB5IHF1ZSBlc3TDoSBsZWdpdGltYWRvIHBhcmEgb3RvcmdhciBsb3MgZGVyZWNob3MgY29udGVuaWRvcyBlbiBsYSBwcmVzZW50ZSBsaWNlbmNpYSBkZSBkaXN0cmlidWNpw7NuLiBEZSBsYSBtaXNtYSBmb3JtYSBkZWNsYXJhIHF1ZSwgZW4gbGEgbWVkaWRhIGRlIGxvIHF1ZSBsZSByZXN1bHRhIHBvc2libGUgY29ub2Nlciwgc3UgZG9jdW1lbnRvIG5vIGluZnJpbmdlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciwgZGUgbmluZ3VuYSBvdHJhIHBlcnNvbmEgbyBlbnRpZGFkOwoKNC4tIEFmaXJtYSBxdWUsIGVuIGVsIGNhc28gZGUgcXVlIHNlIHRyYXRlIGRlIHVuYSBvYnJhIGNvbiBtw6FzIGRlIHVuYSBhdXRvcsOtYSwgbGEgZGVwb3NpdGEgZW4gbm9tYnJlIHkgY29uIGVsIGNvbnNlbnRpbWllbnRvIGRlbCByZXN0byBkZSBjb2F1dG9yZXMgZSBjb2F1dG9yYXM7IAoKNS4tIERlY2xhcmEgcXVlLCBlbiBlbCBjYXNvIGRlIHF1ZSBlbCBkb2N1bWVudG8gY29udGVuZ2EgbWF0ZXJpYWwgZGVsIHF1ZSBubyBwb3NlZSBsb3MgZGVyZWNob3MgZGUgYXV0b3IsIGhhIG9idGVuaWRvIGVsIHBlcm1pc28gZGUgbGEgcGVyc29uYSBwcm9waWV0YXJpYSBkZSB0YWxlcyBkZXJlY2hvcyBwYXJhIG90b3JnYXIgYSBsYSBVbml2ZXJzaWRhZGUgZGUgVmlnbyBsb3MgZGVyZWNob3MgcmVxdWVyaWRvcyBwb3IgZXN0YSBsaWNlbmNpYSwgYXPDrSBjb21vIHF1ZSBlc2UgbWF0ZXJpYWwgY3V5b3MgZGVyZWNob3MgY29ycmVzcG9uZGVuIGEgdGVyY2VyYXMgcGVyc29uYXMgZXN0w6EgY2xhcmFtZW50ZSBpZGVudGlmaWNhZG8geSByZWNvbm9jaWRvIGVuIGVsIHRleHRvIG8gY29udGVuaWRvIGRlbCBkb2N1bWVudG8gZGVwb3NpdGFkbzsgCgo2Li0gUmVjb25vY2UgcXVlIHNpIGVsIGRvY3VtZW50byBzZSBiYXNhIGVuIHRyYWJham9zIHBhdHJvY2luYWRvcyBvIGZpbmFuY2lhZG9zIHBvciB1bmEgb3JnYW5pemFjacOzbiBvIGluc3RpdHVjacOzbiBkaWZlcmVudGUgZGUgbGEgVW5pdmVyc2lkYWRlIGRlIFZpZ28sIGhhIGN1bXBsaWRvIGNvbiBjdWFscXVpZXIgZGVyZWNobyB1IG9ibGlnYWNpw7NuIGVzdGFibGVjaWRhIHBvciBlbCBjb3JyZXNwb25kaWVudGUgY29udHJhdG8gbyBhY3VlcmRvIGNvbiBkaWNoYSBvcmdhbml6YWNpw7NuLgoKCkVuIHZpcnR1ZCBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSwgbGEgVW5pdmVyc2lkYWRlIGRlIFZpZ28gc2UgY29tcHJvbWV0ZSBhIGlkZW50aWZpY2FyIGNsYXJhbWVudGUgZWwgbm9tYnJlIGRlIGxhL3MgYXV0b3JhL3MgbyBhdXRvci9lcyBjb21vIHByb3BpZXRhcmlhcy9vcyBkZSBsb3MgZGVyZWNob3MgZGVsIGRvY3VtZW50byBkZXBvc2l0YWRvLCBzaW4gcmVhbGl6YXIgYWx0ZXJhY2nDs24gYWxndW5hIGRlbCBtaXNtbyBleGNlcHRvIGxhcyBwZXJtaXRpZGFzIHBvciBlc3RhIGxpY2VuY2lhLgoKCkxJQ0VOWkEgSU5WRVNUSUdPCgpDbyBvYnhlY3RvIGRlIHF1ZSBJbnZlc3RpZ28gcG9pZGEgYXJxdWl2YXIgZSBkaWZ1bmRpciBvcyBkb2N1bWVudG9zIHF1ZSBzZSBkZXBvc2l0YW4gbmVsLCBuZWNlc8OtdGFzZSBhIGF1dG9yaXphY2nDs24gZGFzIGF1dG9yYXMgb3UgYXV0b3JlcyBkb3MgZG9jdW1lbnRvcyBtZWRpYW50ZSBhIHByZXNlbnRlIGxpY2VuemEgZGUgZGlzdHJpYnVjacOzbiBub24gZXhjbHVzaXZhICjCq0xpY2VuemEgSW52ZXN0aWdvwrspLgoKQW8gb3V0b3JnYXIgZXN0YSBsaWNlbnphLCBhcyBhdXRvcmFzIG91IGF1dG9yZXMgZG9zIGRvY3VtZW50b3MgbWFudGXDsWVuIG5vIHNldSBwb2RlciBhIHRvdGFsaWRhZGUgZG9zIGRlcmVpdG9zIGRlIGF1dG9yIGUgcG9kZW4sIHBvbG8gdGFudG8sIGZhY2VyIHVzbyBkbyB0cmFiYWxsbyBkZXBvc2l0YWRvIG5hIGZvcm1hIGVuIHF1ZSBlc3RpbWUgb3BvcnR1bm8gKGRlcG9zaXRhbG8gbm91dHJvcyByZXBvc2l0b3Jpb3MsIHB1YmxpY2FsbyBlbiBtZWRpb3MgY29tZXJjaWFpcywgZGlmdW5kaWxvIGEgdHJhdsOpcyBkYSBzw7phIHDDoXhpbmEgd2ViLCBldGMuKS4KClBvciBmYXZvciwgbGVhIGF0ZW50YW1lbnRlIG9zIHRlcm1vcyBxdWUgYSBjb250aW51YWNpw7NuIHNlIHNpbmFsYW4sIG5vcyBjYWxlcyB2b3N0ZWRlIHBlcm1pdGUgb3UgYXV0b3JpemEgbyBkZXDDs3NpdG8gZSBkaWZ1c2nDs24gZG8gc2V1IGRvY3VtZW50byBlbiBJbnZlc3RpZ286CgpOYSBzw7phIGNvbmRpY2nDs24gZGUgYXV0b3IvYXV0b3JhIG91IHByb3BpZXRhcmlhL3Byb3BpZXRhcmlvIGRvcyBkZXJlaXRvcyBkZSBhdXRvciwgdm9zdGVkZToKCjEuLSBPdXTDs3JnYWxsZSDDoSBVbml2ZXJzaWRhZGUgZGUgVmlnbyBvIGRlcmVpdG8gbm9uIGV4Y2x1c2l2byBhIGFycXVpdmFyLCByZXByb2R1Y2lyLCBjb252ZXJ0ZXIgbmEgZm9ybWEgcXVlIG3DoWlzIGFiYWl4byBzZSBkZXNjcmliZSwgY29tdW5pY2FyIG91IGRpc3RyaWJ1w61yIHVuaXZlcnNhbG1lbnRlIG8gZG9jdW1lbnRvIGVuIGZvcm1hdG8gZWxlY3Ryw7NuaWNvLgoKMi4tIEF1dG9yw616YWxsZSDDoSBVbml2ZXJzaWRhZGUgZGUgVmlnbyBhIGNvbnNlcnZhciBtw6FpcyBkdW5oYSBjb3BpYSBkbyBzZXUgZG9jdW1lbnRvIGUgYSBxdWUsIHNlbiBhbHRlcmFyIG8gc2V1IGNvbnRpZG8sIG8gcG9pZGEgY29udmVydGVyIGEgY2FscXVlcmEgb3V0cm8gZm9ybWF0byBkZSBmaWNoZWlybywgbWVkaW8gb3Ugc29wb3J0ZSwgY29uIHByb3DDs3NpdG9zIGRlIHNlZ3VyaWRhZGUsIHByZXNlcnZhY2nDs24gZSBhY2Nlc28uCgozLi0gTWFuaWZlc3RhIHF1ZSBvIGRvY3VtZW50byBkZXBvc2l0YWRvIMOpIHVuIHRyYWJhbGxvIG9yaXhpbmFsIHByb3BpbyBlIHF1ZSBlc3TDoSBsZXhpdGltYWRvIHBhcmEgb3V0b3JnYXIgb3MgZGVyZWl0b3MgY29udGlkb3MgbmEgcHJlc2VudGUgbGljZW56YSBkZSBkaXN0cmlidWNpw7NuLiBEYSBtZXNtYSBmb3JtYSBkZWNsYXJhIHF1ZSwgbmEgbWVkaWRhIGRvIHF1ZSBsbGUgcmVzdWx0YSBwb3NpYmxlIGNvw7FlY2VyLCBvIHNldSBkb2N1bWVudG8gbm9uIGluZnJpbnhlIG9zIGRlcmVpdG9zIGRlIGF1dG9yLCBkZSBuaW5ndW5oYSBvdXRyYSBwZXJzb2Egb3UgZW50aWRhZGUuCgo0Li0gQWZpcm1hIHF1ZSwgbm8gY2FzbyBkZSBxdWUgc2UgdHJhdGUgZHVuaGEgb2JyYSBjb24gbcOhaXMgZHVuaGEgYXV0b3LDrWEsIGRlcG9zw610YWEgZW4gbm9tZSBlIGNvIGNvbnNlbnRpbWVudG8gZG8gcmVzdG8gZGUgY29hdXRvcmVzIGUgY29hdXRvcmFzLgoKNS4tIERlY2xhcmEgcXVlLCBubyBjYXNvIGRlIHF1ZSBvIGRvY3VtZW50byBjb250ZcOxYSBtYXRlcmlhbCBkbyBxdWUgbm9uIHBvc8O6ZSBvcyBkZXJlaXRvcyBkZSBhdXRvciwgb2J0aXZvIG8gcGVybWlzbyBkYSBwZXJzb2EgcHJvcGlldGFyaWEgZGUgdGFsZXMgZGVyZWl0b3MgcGFyYSBvdXRvcmdhcmxsZSDDoSBVbml2ZXJzaWRhZGUgZGUgVmlnbyBvcyBkZXJlaXRvcyByZXF1aXJpZG9zIHBvciBlc3RhIGxpY2VuemEsIGFzw60gY29tbyBxdWUgZXNlIG1hdGVyaWFsIGN1eG9zIGRlcmVpdG9zIGNvcnJlc3BvbmRlbiBhIHRlcmNlaXJhcyBwZXJzb2FzIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIGUgcmVjb8OxZWNpZG8gbm8gdGV4dG8gb3UgY29udGlkbyBkbyBkb2N1bWVudG8gZGVwb3NpdGFkby4KCjYuLSBSZWNvw7FlY2UgcXVlIHNlIG8gZG9jdW1lbnRvIHNlIGJhc2VhIGVuIHRyYWJhbGxvcyBwYXRyb2NpbmFkb3Mgb3UgZmluYW5jaWFkb3MgcG9yIHVuaGEgb3JnYW5pemFjacOzbiBvdSBpbnN0aXR1Y2nDs24gZGlmZXJlbnRlIGRhIFVuaXZlcnNpZGFkZSBkZSBWaWdvLCBjdW1wcml1IGNvbiBjYWxxdWVyYSBkZXJlaXRvIG91IG9icmlnYSBlc3RhYmxlY2lkYSBwb2xvIGNvcnJlc3BvbmRlbnRlIGNvbnRyYXRvIG91IGFjb3JkbyBjb2EgZGV2YW5kaXRhIG9yZ2FuaXphY2nDs24uIAoKCkVuIHZpcnR1ZGUgZGEgcHJlc2VudGUgbGljZW56YSwgYSBVbml2ZXJzaWRhZGUgZGUgVmlnbyBjb21wcm9tw6l0ZXNlIGEgaWRlbnRpZmljYXIgY2xhcmFtZW50ZSBvIG5vbWUgZGFzIGF1dG9yYXMgZSBhdXRvcmVzLCBhc8OtIGNvbW8gZGFzIHByb3BpZXRhcmlhcyBvdSBwcm9waWV0YXJpb3MgZG9zIGRlcmVpdG9zIGRvIGRvY3VtZW50byBkZXBvc2l0YWRvLCBzZW4gcmVhbGl6YXJsbGUgbmluZ3VuaGEgbW9kaWZpY2FjacOzbiBhZ8OhcyBhcyBwZXJtaXRpZGFzIHBvciBlc3RhIGxpY2VuemEuCg==</binData>
</mdWrap>
</rightsMD>
</amdSec>
<amdSec ID="FO_11093_5470_4">
<techMD ID="TECH_O_11093_5470_4">
<mdWrap MDTYPE="PREMIS">
<xmlData schemaLocation="http://www.loc.gov/standards/premis http://www.loc.gov/standards/premis/PREMIS-v1-0.xsd">
<premis:premis>
<premis:object>
<premis:objectIdentifier>
<premis:objectIdentifierType>URL</premis:objectIdentifierType>
<premis:objectIdentifierValue>https://www.investigo.biblioteca.uvigo.es/xmlui/bitstream/11093/5470/4/2023_casas_2dlinear_ca.pdf</premis:objectIdentifierValue>
</premis:objectIdentifier>
<premis:objectCategory>File</premis:objectCategory>
<premis:objectCharacteristics>
<premis:fixity>
<premis:messageDigestAlgorithm>MD5</premis:messageDigestAlgorithm>
<premis:messageDigest>34d90e7eedee0adfd95e32fdd171cbe3</premis:messageDigest>
</premis:fixity>
<premis:size>418372</premis:size>
<premis:format>
<premis:formatDesignation>
<premis:formatName>application/pdf</premis:formatName>
</premis:formatDesignation>
</premis:format>
</premis:objectCharacteristics>
<premis:originalName>2023_casas_2dlinear_ca.pdf</premis:originalName>
</premis:object>
</premis:premis>
</xmlData>
</mdWrap>
</techMD>
</amdSec>
<amdSec ID="FT_11093_5470_5">
<techMD ID="TECH_T_11093_5470_5">
<mdWrap MDTYPE="PREMIS">
<xmlData schemaLocation="http://www.loc.gov/standards/premis http://www.loc.gov/standards/premis/PREMIS-v1-0.xsd">
<premis:premis>
<premis:object>
<premis:objectIdentifier>
<premis:objectIdentifierType>URL</premis:objectIdentifierType>
<premis:objectIdentifierValue>https://www.investigo.biblioteca.uvigo.es/xmlui/bitstream/11093/5470/5/2023_casas_2dlinear_ca.pdf.txt</premis:objectIdentifierValue>
</premis:objectIdentifier>
<premis:objectCategory>File</premis:objectCategory>
<premis:objectCharacteristics>
<premis:fixity>
<premis:messageDigestAlgorithm>MD5</premis:messageDigestAlgorithm>
<premis:messageDigest>7f925a63cf12e9bd8f4b888cb6b0f9b6</premis:messageDigest>
</premis:fixity>
<premis:size>54574</premis:size>
<premis:format>
<premis:formatDesignation>
<premis:formatName>text/plain</premis:formatName>
</premis:formatDesignation>
</premis:format>
</premis:objectCharacteristics>
<premis:originalName>2023_casas_2dlinear_ca.pdf.txt</premis:originalName>
</premis:object>
</premis:premis>
</xmlData>
</mdWrap>
</techMD>
</amdSec>
<fileSec>
<fileGrp USE="ORIGINAL">
<file ADMID="FO_11093_5470_4" CHECKSUM="34d90e7eedee0adfd95e32fdd171cbe3" CHECKSUMTYPE="MD5" GROUPID="GROUP_BITSTREAM_11093_5470_4" ID="BITSTREAM_ORIGINAL_11093_5470_4" MIMETYPE="application/pdf" SEQ="4" SIZE="418372">
</file>
</fileGrp>
<fileGrp USE="TEXT">
<file ADMID="FT_11093_5470_5" CHECKSUM="7f925a63cf12e9bd8f4b888cb6b0f9b6" CHECKSUMTYPE="MD5" GROUPID="GROUP_BITSTREAM_11093_5470_5" ID="BITSTREAM_TEXT_11093_5470_5" MIMETYPE="text/plain" SEQ="5" SIZE="54574">
</file>
</fileGrp>
</fileSec>
<structMap LABEL="DSpace Object" TYPE="LOGICAL">
<div ADMID="DMD_11093_5470" TYPE="DSpace Object Contents">
<div TYPE="DSpace BITSTREAM">
</div>
</div>
</structMap>
</mets>
<?xml version="1.0" encoding="UTF-8" ?>
<mods:mods schemaLocation="http://www.loc.gov/mods/v3 http://www.loc.gov/standards/mods/v3/mods-3-1.xsd">
<mods:name>
<mods:namePart>Jumaniyozov, Doston</mods:namePart>
</mods:name>
<mods:name>
<mods:namePart>Casas Mirás, José Manuel</mods:namePart>
</mods:name>
<mods:name>
<mods:namePart>Ladra González, Manuel</mods:namePart>
</mods:name>
<mods:name>
<mods:namePart>Omirov, Bakhrom</mods:namePart>
</mods:name>
<mods:name>
<mods:namePart>Redjepov, Shovkat</mods:namePart>
</mods:name>
<mods:extension>
<mods:dateAvailable encoding="iso8601">2023-12-05T11:18:37Z</mods:dateAvailable>
</mods:extension>
<mods:originInfo>
<mods:dateIssued encoding="iso8601">2023-06-30</mods:dateIssued>
</mods:originInfo>
<mods:identifier type="citation">International Journal of Bifurcation and Chaos, 33(08): 2350094-1-2350094-19 (2023)</mods:identifier>
<mods:identifier type="issn">02181274</mods:identifier>
<mods:identifier type="issn">17936551</mods:identifier>
<mods:identifier type="uri">http://hdl.handle.net/11093/5470</mods:identifier>
<mods:identifier type="doi">10.1142/S0218127423500943</mods:identifier>
<mods:identifier type="editor">https://www.worldscientific.com/doi/10.1142/S0218127423500943</mods:identifier>
<mods:abstract>In this paper, we consider two-dimensional cellular automata (CA) with the von Neumann neighborhood. We study the characterization of 2D linear cellular automata defined by the von Neumann neighborhood with new type of boundary conditions over the field Zp. Furthermore, we investigate the rule matrices of 2D von Neumann CA by applying the group of permutations S4. Moreover, the algorithm for computing the rank of rule matrices is given. Finally, necessary and sufficient conditions for the existence of Garden of Eden configurations for considered two-dimensional cellular automata are obtained.</mods:abstract>
<mods:language>
<mods:languageTerm>eng</mods:languageTerm>
</mods:language>
<mods:accessCondition type="useAndReproduction">openAccess</mods:accessCondition>
<mods:titleInfo>
<mods:title>2D linear CA with mixing boundary conditions and reversibility</mods:title>
</mods:titleInfo>
<mods:genre>article</mods:genre>
</mods:mods>
<?xml version="1.0" encoding="UTF-8" ?>
<atom:entry schemaLocation="http://www.w3.org/2005/Atom http://www.kbcafe.com/rss/atom.xsd.xml">
<atom:id>http://hdl.handle.net/11093/5470/ore.xml</atom:id>
<atom:updated>2023-12-05T11:18:37Z</atom:updated>
<atom:source>
<atom:generator>Investigo</atom:generator>
</atom:source>
<atom:title>2D linear CA with mixing boundary conditions and reversibility</atom:title>
<atom:author>
<atom:name>Jumaniyozov, Doston</atom:name>
</atom:author>
<atom:author>
<atom:name>Casas Mirás, José Manuel</atom:name>
</atom:author>
<atom:author>
<atom:name>Ladra González, Manuel</atom:name>
</atom:author>
<atom:author>
<atom:name>Omirov, Bakhrom</atom:name>
</atom:author>
<atom:author>
<atom:name>Redjepov, Shovkat</atom:name>
</atom:author>
<oreatom:triples>
<rdf:Description about="http://hdl.handle.net/11093/5470/ore.xml#atom">
<dcterms:modified>2023-12-05T11:18:37Z</dcterms:modified>
</rdf:Description>
<rdf:Description about="https://www.investigo.biblioteca.uvigo.es/xmlui/bitstream/11093/5470/5/2023_casas_2dlinear_ca.pdf.txt">
<dcterms:description>TEXT</dcterms:description>
</rdf:Description>
<rdf:Description about="https://www.investigo.biblioteca.uvigo.es/xmlui/bitstream/11093/5470/4/2023_casas_2dlinear_ca.pdf">
<dcterms:description>ORIGINAL</dcterms:description>
</rdf:Description>
<rdf:Description about="https://www.investigo.biblioteca.uvigo.es/xmlui/bitstream/11093/5470/2/license.txt">
<dcterms:description>LICENSE</dcterms:description>
</rdf:Description>
<rdf:Description about="https://www.investigo.biblioteca.uvigo.es/xmlui/bitstream/11093/5470/3/sword.zip">
<dcterms:description>SWORD</dcterms:description>
</rdf:Description>
</oreatom:triples>
</atom:entry>
<?xml version="1.0" encoding="UTF-8" ?>
<qdc:qualifieddc schemaLocation="http://purl.org/dc/elements/1.1/ http://dublincore.org/schemas/xmls/qdc/2006/01/06/dc.xsd http://purl.org/dc/terms/ http://dublincore.org/schemas/xmls/qdc/2006/01/06/dcterms.xsd http://dspace.org/qualifieddc/ http://www.ukoln.ac.uk/metadata/dcmi/xmlschema/qualifieddc.xsd">
<dc:title>2D linear CA with mixing boundary conditions and reversibility</dc:title>
<dc:creator>Jumaniyozov, Doston</dc:creator>
<dc:creator>Casas Mirás, José Manuel</dc:creator>
<dc:creator>Ladra González, Manuel</dc:creator>
<dc:creator>Omirov, Bakhrom</dc:creator>
<dc:creator>Redjepov, Shovkat</dc:creator>
<dcterms:abstract>In this paper, we consider two-dimensional cellular automata (CA) with the von Neumann neighborhood. We study the characterization of 2D linear cellular automata defined by the von Neumann neighborhood with new type of boundary conditions over the field Zp. Furthermore, we investigate the rule matrices of 2D von Neumann CA by applying the group of permutations S4. Moreover, the algorithm for computing the rank of rule matrices is given. Finally, necessary and sufficient conditions for the existence of Garden of Eden configurations for considered two-dimensional cellular automata are obtained.</dcterms:abstract>
<dcterms:issued>2023-06-30</dcterms:issued>
<dc:type>article</dc:type>
<dc:identifier>International Journal of Bifurcation and Chaos, 33(08): 2350094-1-2350094-19 (2023)</dc:identifier>
<dc:identifier>02181274</dc:identifier>
<dc:identifier>17936551</dc:identifier>
<dc:identifier>http://hdl.handle.net/11093/5470</dc:identifier>
<dc:identifier>10.1142/S0218127423500943</dc:identifier>
<dc:identifier>https://www.worldscientific.com/doi/10.1142/S0218127423500943</dc:identifier>
<dc:language>eng</dc:language>
<dc:relation>info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2020-115155GB-I00/ES/HOMOLOGIA, HOMOTOPIA E INVARIANTES CATEGORICOS EN GRUPOS Y ALGEBRAS NO ASOCIATIVAS</dc:relation>
<dc:rights>openAccess</dc:rights>
<dc:publisher>International Journal of Bifurcation and Chaos</dc:publisher>
<dc:publisher>Matemática aplicada I</dc:publisher>
<dc:publisher>Matemáticas</dc:publisher>
</qdc:qualifieddc>
<?xml version="1.0" encoding="UTF-8" ?>
<rdf:RDF schemaLocation="http://www.openarchives.org/OAI/2.0/rdf/ http://www.openarchives.org/OAI/2.0/rdf.xsd">
<ow:Publication about="oai:www.investigo.biblioteca.uvigo.es:11093/5470">
<dc:title>2D linear CA with mixing boundary conditions and reversibility</dc:title>
<dc:creator>Jumaniyozov, Doston</dc:creator>
<dc:creator>Casas Mirás, José Manuel</dc:creator>
<dc:creator>Ladra González, Manuel</dc:creator>
<dc:creator>Omirov, Bakhrom</dc:creator>
<dc:creator>Redjepov, Shovkat</dc:creator>
<dc:description>In this paper, we consider two-dimensional cellular automata (CA) with the von Neumann neighborhood. We study the characterization of 2D linear cellular automata defined by the von Neumann neighborhood with new type of boundary conditions over the field Zp. Furthermore, we investigate the rule matrices of 2D von Neumann CA by applying the group of permutations S4. Moreover, the algorithm for computing the rank of rule matrices is given. Finally, necessary and sufficient conditions for the existence of Garden of Eden configurations for considered two-dimensional cellular automata are obtained.</dc:description>
<dc:date>2023-12-05T11:18:37Z</dc:date>
<dc:date>2023-06-30</dc:date>
<dc:date>2023-11-14T12:15:34Z</dc:date>
<dc:type>article</dc:type>
<dc:identifier>International Journal of Bifurcation and Chaos, 33(08): 2350094-1-2350094-19 (2023)</dc:identifier>
<dc:identifier>02181274</dc:identifier>
<dc:identifier>17936551</dc:identifier>
<dc:identifier>http://hdl.handle.net/11093/5470</dc:identifier>
<dc:identifier>10.1142/S0218127423500943</dc:identifier>
<dc:identifier>https://www.worldscientific.com/doi/10.1142/S0218127423500943</dc:identifier>
<dc:language>eng</dc:language>
<dc:relation>info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2020-115155GB-I00/ES/HOMOLOGIA, HOMOTOPIA E INVARIANTES CATEGORICOS EN GRUPOS Y ALGEBRAS NO ASOCIATIVAS</dc:relation>
<dc:rights>openAccess</dc:rights>
<dc:publisher>International Journal of Bifurcation and Chaos</dc:publisher>
<dc:publisher>Matemática aplicada I</dc:publisher>
<dc:publisher>Matemáticas</dc:publisher>
</ow:Publication>
</rdf:RDF>
<?xml version="1.0" encoding="UTF-8" ?>
<oai_dc:dc schemaLocation="http://www.openarchives.org/OAI/2.0/oai_dc/ http://www.openarchives.org/OAI/2.0/oai_dc.xsd">
<dcterms:dateAccepted>2023-12-05T11:18:37Z</dcterms:dateAccepted>
<dcterms:issued>2023-06-30</dcterms:issued>
<dcterms:identifier_bibliographicCitation lang="spa">International Journal of Bifurcation and Chaos, 33(08): 2350094-1-2350094-19 (2023)</dcterms:identifier_bibliographicCitation>
<dcterms:identifier_issn>02181274</dcterms:identifier_issn>
<dcterms:identifier_issn>17936551</dcterms:identifier_issn>
<dcterms:identifier_doi>10.1142/S0218127423500943</dcterms:identifier_doi>
<dcterms:identifier type="dcterms:URI">http://hdl.handle.net/11093/5470</dcterms:identifier>
<dcterms:identifier_editor lang="spa">https://www.worldscientific.com/doi/10.1142/S0218127423500943</dcterms:identifier_editor>
<dcterms:abstract lang="en">In this paper, we consider two-dimensional cellular automata (CA) with the von Neumann neighborhood. We study the characterization of 2D linear cellular automata defined by the von Neumann neighborhood with new type of boundary conditions over the field Zp. Furthermore, we investigate the rule matrices of 2D von Neumann CA by applying the group of permutations S4. Moreover, the algorithm for computing the rank of rule matrices is given. Finally, necessary and sufficient conditions for the existence of Garden of Eden configurations for considered two-dimensional cellular automata are obtained.</dcterms:abstract>
<dcterms:description_sponsorship lang="spa">Agencia Estatal de Investigación | Ref. PID2020-115155GB-I00</dcterms:description_sponsorship>
<dcterms:description_sponsorship lang="spa">Ministry of Innovative Development of Uzbekistan | Ref. FZ-20200930492</dcterms:description_sponsorship>
<dcterms:language type="dcterms:ISO639-2" lang="spa">eng</dcterms:language>
<dcterms:publisher lang="spa">International Journal of Bifurcation and Chaos</dcterms:publisher>
<dcterms:relation>info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2020-115155GB-I00/ES/HOMOLOGIA, HOMOTOPIA E INVARIANTES CATEGORICOS EN GRUPOS Y ALGEBRAS NO ASOCIATIVAS</dcterms:relation>
<dcterms:accessRights lang="spa">openAccess</dcterms:accessRights>
<dcterms:title lang="en">2D linear CA with mixing boundary conditions and reversibility</dcterms:title>
<dcterms:type lang="spa">article</dcterms:type>
<dcterms:computerCitation lang="spa">pub_title=International Journal of Bifurcation and Chaos|volume=33|journal_number=08|start_pag=2350094-1|end_pag=2350094-19</dcterms:computerCitation>
<dcterms:publisher_department lang="spa">Matemática aplicada I</dcterms:publisher_department>
<dcterms:publisher_group lang="spa">Matemáticas</dcterms:publisher_group>
<dcterms:subject lang="spa">1201.11 Teoría de Matrices</dcterms:subject>
<dcterms:authorList>Jumaniyozov, Doston#105#Ladra González, Manuel#Omirov, Bakhrom#Redjepov, Shovkat</dcterms:authorList>
</oai_dc:dc>
Se ha omitido la presentación del registro por ser demasiado largo. Si lo desea, puede descargárselo en el enlace anterior.