<?xml version="1.0" encoding="UTF-8" ?>
<oai_dc:dc schemaLocation="http://www.openarchives.org/OAI/2.0/oai_dc/ http://www.openarchives.org/OAI/2.0/oai_dc.xsd">
<dc:title>$\omega_1$-strongly compact cardinals and normality</dc:title>
<dc:creator>Bagaria, Joan</dc:creator>
<dc:creator>da Silva, Samuel G.</dc:creator>
<dc:subject>Espais topològics</dc:subject>
<dc:subject>Topologia</dc:subject>
<dc:subject>Teoria de conjunts</dc:subject>
<dc:subject>Nombres cardinals</dc:subject>
<dc:subject>Topological spaces</dc:subject>
<dc:subject>Topology</dc:subject>
<dc:subject>Set theory</dc:subject>
<dc:subject>Cardinal numbers</dc:subject>
<dc:description>We present more applications of the recently introduced -strongly compact cardinals in the context of either consistency or reflection results in General Topology, focusing on issues related to normality. In particular, we show that such large cardinal notion provides a new upper bound for the consistency strength of the statement “All normal Moore spaces are metrizable” (NMSC). The proof uses random forcing, as in the original consistency proof of NMSC due to Nykos-Kunen-Solovay (see Fleissner [10]). We establish a compactness theorem for normality (i.e., reflection of non-normality) in the realm of first countable spaces, using the least -strongly compact cardinal, as well as two more similar compactness results on related topological properties. We finish the paper by combining the techniques of reflection and forcing to show that our new upper bound for the consistency strength of NMSC can be also obtained via Cohen forcing, using some arguments from Dow-Tall-Weiss.</dc:description>
<dc:date>2024-07-08T11:23:53Z</dc:date>
<dc:date>2024-07-08T11:23:53Z</dc:date>
<dc:date>2023-01-01</dc:date>
<dc:date>2024-07-08T11:23:59Z</dc:date>
<dc:type>info:eu-repo/semantics/article</dc:type>
<dc:type>info:eu-repo/semantics/publishedVersion</dc:type>
<dc:identifier>0166-8641</dc:identifier>
<dc:identifier>http://hdl.handle.net/2445/214429</dc:identifier>
<dc:identifier>744329</dc:identifier>
<dc:language>eng</dc:language>
<dc:relation>Reproducció del document publicat a: https://doi.org/10.1016/j.topol.2022.108276</dc:relation>
<dc:relation>Topology and its Applications, 2023, vol. 323</dc:relation>
<dc:relation>https://doi.org/10.1016/j.topol.2022.108276</dc:relation>
<dc:rights>cc-by-nc-nd (c) Joan Bagaria et al., 2023</dc:rights>
<dc:rights>http://creativecommons.org/licenses/by-nc-nd/3.0/es/</dc:rights>
<dc:rights>info:eu-repo/semantics/openAccess</dc:rights>
<dc:format>23 p.</dc:format>
<dc:format>application/pdf</dc:format>
<dc:publisher>Elsevier B.V.</dc:publisher>
<dc:source>Articles publicats en revistes (Matemàtiques i Informàtica)</dc:source>
</oai_dc:dc>
<?xml version="1.0" encoding="UTF-8" ?>
<record schemaLocation="http://www.loc.gov/MARC21/slim http://www.loc.gov/standards/marcxml/schema/MARC21slim.xsd">
<leader>00925njm 22002777a 4500</leader>
<datafield ind1=" " ind2=" " tag="042">
<subfield code="a">dc</subfield>
</datafield>
<datafield ind1=" " ind2=" " tag="720">
<subfield code="a">Bagaria, Joan</subfield>
<subfield code="e">author</subfield>
</datafield>
<datafield ind1=" " ind2=" " tag="720">
<subfield code="a">da Silva, Samuel G.</subfield>
<subfield code="e">author</subfield>
</datafield>
<datafield ind1=" " ind2=" " tag="260">
<subfield code="c">2023-01-01</subfield>
</datafield>
<datafield ind1=" " ind2=" " tag="520">
<subfield code="a">We present more applications of the recently introduced -strongly compact cardinals in the context of either consistency or reflection results in General Topology, focusing on issues related to normality. In particular, we show that such large cardinal notion provides a new upper bound for the consistency strength of the statement “All normal Moore spaces are metrizable” (NMSC). The proof uses random forcing, as in the original consistency proof of NMSC due to Nykos-Kunen-Solovay (see Fleissner [10]). We establish a compactness theorem for normality (i.e., reflection of non-normality) in the realm of first countable spaces, using the least -strongly compact cardinal, as well as two more similar compactness results on related topological properties. We finish the paper by combining the techniques of reflection and forcing to show that our new upper bound for the consistency strength of NMSC can be also obtained via Cohen forcing, using some arguments from Dow-Tall-Weiss.</subfield>
</datafield>
<datafield ind1="8" ind2=" " tag="024">
<subfield code="a">0166-8641</subfield>
</datafield>
<datafield ind1="8" ind2=" " tag="024">
<subfield code="a">http://hdl.handle.net/2445/214429</subfield>
</datafield>
<datafield ind1="8" ind2=" " tag="024">
<subfield code="a">744329</subfield>
</datafield>
<datafield ind1="0" ind2="0" tag="245">
<subfield code="a">$\omega_1$-strongly compact cardinals and normality</subfield>
</datafield>
</record>
<?xml version="1.0" encoding="UTF-8" ?>
<mets ID=" DSpace_ITEM_2445-214429" OBJID=" hdl:2445/214429" PROFILE="DSpace METS SIP Profile 1.0" TYPE="DSpace ITEM" schemaLocation="http://www.loc.gov/METS/ http://www.loc.gov/standards/mets/mets.xsd">
<metsHdr CREATEDATE="2024-08-04T20:43:05Z">
<agent ROLE="CUSTODIAN" TYPE="ORGANIZATION">
<name>Dipòsit Digital de la Universitat de Barcelona</name>
</agent>
</metsHdr>
<dmdSec ID="DMD_2445_214429">
<mdWrap MDTYPE="MODS">
<xmlData schemaLocation="http://www.loc.gov/mods/v3 http://www.loc.gov/standards/mods/v3/mods-3-1.xsd">
<mods:mods schemaLocation="http://www.loc.gov/mods/v3 http://www.loc.gov/standards/mods/v3/mods-3-1.xsd">
<mods:name>
<mods:role>
<mods:roleTerm type="text">author</mods:roleTerm>
</mods:role>
<mods:namePart>Bagaria, Joan</mods:namePart>
</mods:name>
<mods:name>
<mods:role>
<mods:roleTerm type="text">author</mods:roleTerm>
</mods:role>
<mods:namePart>da Silva, Samuel G.</mods:namePart>
</mods:name>
<mods:extension>
<mods:dateAccessioned encoding="iso8601">2024-07-08T11:23:53Z</mods:dateAccessioned>
</mods:extension>
<mods:extension>
<mods:dateAvailable encoding="iso8601">2024-07-08T11:23:53Z</mods:dateAvailable>
</mods:extension>
<mods:originInfo>
<mods:dateIssued encoding="iso8601">2023-01-01</mods:dateIssued>
</mods:originInfo>
<mods:identifier type="issn">0166-8641</mods:identifier>
<mods:identifier type="uri">http://hdl.handle.net/2445/214429</mods:identifier>
<mods:identifier type="idgrec">744329</mods:identifier>
<mods:abstract>We present more applications of the recently introduced -strongly compact cardinals in the context of either consistency or reflection results in General Topology, focusing on issues related to normality. In particular, we show that such large cardinal notion provides a new upper bound for the consistency strength of the statement “All normal Moore spaces are metrizable” (NMSC). The proof uses random forcing, as in the original consistency proof of NMSC due to Nykos-Kunen-Solovay (see Fleissner [10]). We establish a compactness theorem for normality (i.e., reflection of non-normality) in the realm of first countable spaces, using the least -strongly compact cardinal, as well as two more similar compactness results on related topological properties. We finish the paper by combining the techniques of reflection and forcing to show that our new upper bound for the consistency strength of NMSC can be also obtained via Cohen forcing, using some arguments from Dow-Tall-Weiss.</mods:abstract>
<mods:language>
<mods:languageTerm authority="rfc3066">eng</mods:languageTerm>
</mods:language>
<mods:accessCondition type="useAndReproduction">cc-by-nc-nd (c) Joan Bagaria et al., 2023</mods:accessCondition>
<mods:titleInfo>
<mods:title>$\omega_1$-strongly compact cardinals and normality</mods:title>
</mods:titleInfo>
<mods:genre>info:eu-repo/semantics/article</mods:genre>
</mods:mods>
</xmlData>
</mdWrap>
</dmdSec>
<amdSec ID="TMD_2445_214429">
<rightsMD ID="RIG_2445_214429">
<mdWrap MDTYPE="OTHER" MIMETYPE="text/plain" OTHERMDTYPE="DSpaceDepositLicense">
<binData>Tk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=</binData>
</mdWrap>
</rightsMD>
</amdSec>
<amdSec ID="FO_2445_214429_1">
<techMD ID="TECH_O_2445_214429_1">
<mdWrap MDTYPE="PREMIS">
<xmlData schemaLocation="http://www.loc.gov/standards/premis http://www.loc.gov/standards/premis/PREMIS-v1-0.xsd">
<premis:premis>
<premis:object>
<premis:objectIdentifier>
<premis:objectIdentifierType>URL</premis:objectIdentifierType>
<premis:objectIdentifierValue>http://diposit.ub.edu/dspace/bitstream/2445/214429/1/847279.pdf</premis:objectIdentifierValue>
</premis:objectIdentifier>
<premis:objectCategory>File</premis:objectCategory>
<premis:objectCharacteristics>
<premis:fixity>
<premis:messageDigestAlgorithm>MD5</premis:messageDigestAlgorithm>
<premis:messageDigest>ddef53180c7c8511625c4e72c144b4e8</premis:messageDigest>
</premis:fixity>
<premis:size>553248</premis:size>
<premis:format>
<premis:formatDesignation>
<premis:formatName>application/pdf</premis:formatName>
</premis:formatDesignation>
</premis:format>
</premis:objectCharacteristics>
<premis:originalName>847279.pdf</premis:originalName>
</premis:object>
</premis:premis>
</xmlData>
</mdWrap>
</techMD>
</amdSec>
<amdSec ID="FT_2445_214429_7">
<techMD ID="TECH_T_2445_214429_7">
<mdWrap MDTYPE="PREMIS">
<xmlData schemaLocation="http://www.loc.gov/standards/premis http://www.loc.gov/standards/premis/PREMIS-v1-0.xsd">
<premis:premis>
<premis:object>
<premis:objectIdentifier>
<premis:objectIdentifierType>URL</premis:objectIdentifierType>
<premis:objectIdentifierValue>http://diposit.ub.edu/dspace/bitstream/2445/214429/7/847279.pdf.txt</premis:objectIdentifierValue>
</premis:objectIdentifier>
<premis:objectCategory>File</premis:objectCategory>
<premis:objectCharacteristics>
<premis:fixity>
<premis:messageDigestAlgorithm>MD5</premis:messageDigestAlgorithm>
<premis:messageDigest>4b558ce8504a73cda2607bc5d71a890f</premis:messageDigest>
</premis:fixity>
<premis:size>75600</premis:size>
<premis:format>
<premis:formatDesignation>
<premis:formatName>text/plain</premis:formatName>
</premis:formatDesignation>
</premis:format>
</premis:objectCharacteristics>
<premis:originalName>847279.pdf.txt</premis:originalName>
</premis:object>
</premis:premis>
</xmlData>
</mdWrap>
</techMD>
</amdSec>
<fileSec>
<fileGrp USE="ORIGINAL">
<file ADMID="FO_2445_214429_1" CHECKSUM="ddef53180c7c8511625c4e72c144b4e8" CHECKSUMTYPE="MD5" GROUPID="GROUP_BITSTREAM_2445_214429_1" ID="BITSTREAM_ORIGINAL_2445_214429_1" MIMETYPE="application/pdf" SEQ="1" SIZE="553248">
</file>
</fileGrp>
<fileGrp USE="TEXT">
<file ADMID="FT_2445_214429_7" CHECKSUM="4b558ce8504a73cda2607bc5d71a890f" CHECKSUMTYPE="MD5" GROUPID="GROUP_BITSTREAM_2445_214429_7" ID="BITSTREAM_TEXT_2445_214429_7" MIMETYPE="text/plain" SEQ="7" SIZE="75600">
</file>
</fileGrp>
</fileSec>
<structMap LABEL="DSpace Object" TYPE="LOGICAL">
<div ADMID="DMD_2445_214429" TYPE="DSpace Object Contents">
<div TYPE="DSpace BITSTREAM">
</div>
</div>
</structMap>
</mets>
<?xml version="1.0" encoding="UTF-8" ?>
<mods:mods schemaLocation="http://www.loc.gov/mods/v3 http://www.loc.gov/standards/mods/v3/mods-3-1.xsd">
<mods:name>
<mods:namePart>Bagaria, Joan</mods:namePart>
</mods:name>
<mods:name>
<mods:namePart>da Silva, Samuel G.</mods:namePart>
</mods:name>
<mods:extension>
<mods:dateAvailable encoding="iso8601">2024-07-08T11:23:53Z</mods:dateAvailable>
</mods:extension>
<mods:extension>
<mods:dateAccessioned encoding="iso8601">2024-07-08T11:23:53Z</mods:dateAccessioned>
</mods:extension>
<mods:originInfo>
<mods:dateIssued encoding="iso8601">2023-01-01</mods:dateIssued>
</mods:originInfo>
<mods:identifier type="issn">0166-8641</mods:identifier>
<mods:identifier type="uri">http://hdl.handle.net/2445/214429</mods:identifier>
<mods:identifier type="idgrec">744329</mods:identifier>
<mods:abstract>We present more applications of the recently introduced -strongly compact cardinals in the context of either consistency or reflection results in General Topology, focusing on issues related to normality. In particular, we show that such large cardinal notion provides a new upper bound for the consistency strength of the statement “All normal Moore spaces are metrizable” (NMSC). The proof uses random forcing, as in the original consistency proof of NMSC due to Nykos-Kunen-Solovay (see Fleissner [10]). We establish a compactness theorem for normality (i.e., reflection of non-normality) in the realm of first countable spaces, using the least -strongly compact cardinal, as well as two more similar compactness results on related topological properties. We finish the paper by combining the techniques of reflection and forcing to show that our new upper bound for the consistency strength of NMSC can be also obtained via Cohen forcing, using some arguments from Dow-Tall-Weiss.</mods:abstract>
<mods:language>
<mods:languageTerm>eng</mods:languageTerm>
</mods:language>
<mods:accessCondition type="useAndReproduction">http://creativecommons.org/licenses/by-nc-nd/3.0/es/</mods:accessCondition>
<mods:accessCondition type="useAndReproduction">info:eu-repo/semantics/openAccess</mods:accessCondition>
<mods:accessCondition type="useAndReproduction">cc-by-nc-nd (c) Joan Bagaria et al., 2023</mods:accessCondition>
<mods:titleInfo>
<mods:title>$\omega_1$-strongly compact cardinals and normality</mods:title>
</mods:titleInfo>
<mods:genre>info:eu-repo/semantics/article</mods:genre>
<mods:genre>info:eu-repo/semantics/publishedVersion</mods:genre>
</mods:mods>
<?xml version="1.0" encoding="UTF-8" ?>
<atom:entry schemaLocation="http://www.w3.org/2005/Atom http://www.kbcafe.com/rss/atom.xsd.xml">
<atom:id>http://hdl.handle.net/2445/214429/ore.xml</atom:id>
<atom:published>2024-07-08T11:23:53Z</atom:published>
<atom:updated>2024-07-08T11:23:53Z</atom:updated>
<atom:source>
<atom:generator>Dipòsit Digital de la Universitat de Barcelona</atom:generator>
</atom:source>
<atom:title>$\omega_1$-strongly compact cardinals and normality</atom:title>
<atom:author>
<atom:name>Bagaria, Joan</atom:name>
</atom:author>
<atom:author>
<atom:name>da Silva, Samuel G.</atom:name>
</atom:author>
<oreatom:triples>
<rdf:Description about="http://hdl.handle.net/2445/214429/ore.xml#atom">
<dcterms:modified>2024-07-08T11:23:53Z</dcterms:modified>
</rdf:Description>
<rdf:Description about="http://diposit.ub.edu/dspace/bitstream/2445/214429/7/847279.pdf.txt">
<dcterms:description>TEXT</dcterms:description>
</rdf:Description>
<rdf:Description about="http://diposit.ub.edu/dspace/bitstream/2445/214429/1/847279.pdf">
<dcterms:description>ORIGINAL</dcterms:description>
</rdf:Description>
<rdf:Description about="http://diposit.ub.edu/dspace/bitstream/2445/214429/5/license.txt">
<dcterms:description>LICENSE</dcterms:description>
</rdf:Description>
<rdf:Description about="http://diposit.ub.edu/dspace/bitstream/2445/214429/6/license_rdf">
<dcterms:description>CC-LICENSE</dcterms:description>
</rdf:Description>
</oreatom:triples>
</atom:entry>
<?xml version="1.0" encoding="UTF-8" ?>
<qdc:qualifieddc schemaLocation="http://purl.org/dc/elements/1.1/ http://dublincore.org/schemas/xmls/qdc/2006/01/06/dc.xsd http://purl.org/dc/terms/ http://dublincore.org/schemas/xmls/qdc/2006/01/06/dcterms.xsd http://dspace.org/qualifieddc/ http://www.ukoln.ac.uk/metadata/dcmi/xmlschema/qualifieddc.xsd">
<dc:title>$\omega_1$-strongly compact cardinals and normality</dc:title>
<dc:creator>Bagaria, Joan</dc:creator>
<dc:creator>da Silva, Samuel G.</dc:creator>
<dc:subject.classification>Espais topològics</dc:subject.classification>
<dc:subject.classification>Topologia</dc:subject.classification>
<dc:subject.classification>Teoria de conjunts</dc:subject.classification>
<dc:subject.classification>Nombres cardinals</dc:subject.classification>
<dc:subject.other>Topological spaces</dc:subject.other>
<dc:subject.other>Topology</dc:subject.other>
<dc:subject.other>Set theory</dc:subject.other>
<dc:subject.other>Cardinal numbers</dc:subject.other>
<dcterms:abstract>We present more applications of the recently introduced -strongly compact cardinals in the context of either consistency or reflection results in General Topology, focusing on issues related to normality. In particular, we show that such large cardinal notion provides a new upper bound for the consistency strength of the statement “All normal Moore spaces are metrizable” (NMSC). The proof uses random forcing, as in the original consistency proof of NMSC due to Nykos-Kunen-Solovay (see Fleissner [10]). We establish a compactness theorem for normality (i.e., reflection of non-normality) in the realm of first countable spaces, using the least -strongly compact cardinal, as well as two more similar compactness results on related topological properties. We finish the paper by combining the techniques of reflection and forcing to show that our new upper bound for the consistency strength of NMSC can be also obtained via Cohen forcing, using some arguments from Dow-Tall-Weiss.</dcterms:abstract>
<dcterms:dateAccepted>2024-07-08T11:23:53Z</dcterms:dateAccepted>
<dcterms:available>2024-07-08T11:23:53Z</dcterms:available>
<dcterms:created>2024-07-08T11:23:53Z</dcterms:created>
<dcterms:issued>2023-01-01</dcterms:issued>
<dc:type>info:eu-repo/semantics/article</dc:type>
<dc:type>info:eu-repo/semantics/publishedVersion</dc:type>
<dc:identifier>0166-8641</dc:identifier>
<dc:identifier>http://hdl.handle.net/2445/214429</dc:identifier>
<dc:identifier>744329</dc:identifier>
<dc:identifier.issn>0166-8641</dc:identifier.issn>
<dc:language>eng</dc:language>
<dc:relation>Reproducció del document publicat a: https://doi.org/10.1016/j.topol.2022.108276</dc:relation>
<dc:relation>Topology and its Applications, 2023, vol. 323</dc:relation>
<dc:relation>https://doi.org/10.1016/j.topol.2022.108276</dc:relation>
<dc:rights>http://creativecommons.org/licenses/by-nc-nd/3.0/es/</dc:rights>
<dc:rights>info:eu-repo/semantics/openAccess</dc:rights>
<dc:rights>cc-by-nc-nd (c) Joan Bagaria et al., 2023</dc:rights>
<dc:publisher>Elsevier B.V.</dc:publisher>
<dc:source>Articles publicats en revistes (Matemàtiques i Informàtica)</dc:source>
</qdc:qualifieddc>
<?xml version="1.0" encoding="UTF-8" ?>
<rdf:RDF schemaLocation="http://www.openarchives.org/OAI/2.0/rdf/ http://www.openarchives.org/OAI/2.0/rdf.xsd">
<ow:Publication about="oai:diposit.ub.edu:2445/214429">
<dc:title>$\omega_1$-strongly compact cardinals and normality</dc:title>
<dc:creator>Bagaria, Joan</dc:creator>
<dc:creator>da Silva, Samuel G.</dc:creator>
<dc:description>We present more applications of the recently introduced -strongly compact cardinals in the context of either consistency or reflection results in General Topology, focusing on issues related to normality. In particular, we show that such large cardinal notion provides a new upper bound for the consistency strength of the statement “All normal Moore spaces are metrizable” (NMSC). The proof uses random forcing, as in the original consistency proof of NMSC due to Nykos-Kunen-Solovay (see Fleissner [10]). We establish a compactness theorem for normality (i.e., reflection of non-normality) in the realm of first countable spaces, using the least -strongly compact cardinal, as well as two more similar compactness results on related topological properties. We finish the paper by combining the techniques of reflection and forcing to show that our new upper bound for the consistency strength of NMSC can be also obtained via Cohen forcing, using some arguments from Dow-Tall-Weiss.</dc:description>
<dc:date>2024-07-08T11:23:53Z</dc:date>
<dc:date>2024-07-08T11:23:53Z</dc:date>
<dc:date>2023-01-01</dc:date>
<dc:date>2024-07-08T11:23:59Z</dc:date>
<dc:type>info:eu-repo/semantics/article</dc:type>
<dc:type>info:eu-repo/semantics/publishedVersion</dc:type>
<dc:identifier>0166-8641</dc:identifier>
<dc:identifier>http://hdl.handle.net/2445/214429</dc:identifier>
<dc:identifier>744329</dc:identifier>
<dc:language>eng</dc:language>
<dc:relation>Reproducció del document publicat a: https://doi.org/10.1016/j.topol.2022.108276</dc:relation>
<dc:relation>Topology and its Applications, 2023, vol. 323</dc:relation>
<dc:relation>https://doi.org/10.1016/j.topol.2022.108276</dc:relation>
<dc:rights>http://creativecommons.org/licenses/by-nc-nd/3.0/es/</dc:rights>
<dc:rights>info:eu-repo/semantics/openAccess</dc:rights>
<dc:rights>cc-by-nc-nd (c) Joan Bagaria et al., 2023</dc:rights>
<dc:publisher>Elsevier B.V.</dc:publisher>
<dc:source>Articles publicats en revistes (Matemàtiques i Informàtica)</dc:source>
</ow:Publication>
</rdf:RDF>