Logotipo de HISPANA
Logotipo del Ministerio de Cultura
  • WHAT IS HISPANA?
  • Search
  • DIRECTORY OF COLLECTIONS
  • Contact
  • en
    • Español
    • Euskara
    • English
    • Galego
    • Català
    • Valencià
Está en:  › Record data
Linked Open Data
A dynamic black hole corona in an active galaxy through X-ray reverberation mapping
Identificadores del recurso
Nature Astronomy 4: 597- 602 (2020)
http://hdl.handle.net/20.500.12666/152
10.1038/s41550-019-1002-x
2397-3366
Origin
(DIGITAL.INTA)

File

Title:
A dynamic black hole corona in an active galaxy through X-ray reverberation mapping
Tema:
Black Hole
Active Galaxy
X ray
Reverberation mapping
Galactic Nuclei
Scattering
Description:
Alston, W.N., Fabian, A.C., Kara, E. et al. A dynamic black hole corona in an active galaxy through X-ray reverberation mapping. Nat Astron 4, 597–602 (2020). https://doi.org/10.1038/s41550-019-1002-x
X-ray reverberation echoes are assumed to be produced in the strongly distorted spacetime around accreting supermassive black holes. This signal allows us to spatially map the geometry of the inner accretion flow1,2—a region that cannot yet be spatially resolved by any telescope—and provides a direct measure of the black hole mass and spin. The reverberation timescale is set by the light travel path between the direct emission from a hot X-ray corona and the reprocessed emission from the inner edge of the accretion disk3,4,5,6. However, there is an inherent degeneracy in the reverberation signal between black hole mass, inner disk radius and height of the illuminating corona above the disk. Here we use a long X-ray observation of the highly variable active galaxy IRAS 13224−3809 to track the reverberation signal as the system evolves on timescales of a day7,8. With the inclusion of all the relativistic effects, modelling reveals that the height of the X-ray corona increases with increasing luminosity, providing a dynamic view of the inner accretion region. This simultaneous modelling allows us to break the inherent degeneracies and obtain an independent timing-based estimate for the mass and spin of the black hole. The uncertainty on black hole mass is comparable to the leading optical reverberation method9, making X-ray reverberation a powerful technique, particularly for sources with low optical variability10.
W.N.A. and A.C.F. acknowledge support from the European Research Council through Advanced Grant 340442, on Feedback. M.L.P. and C.P. acknowledge support from ESA Research Fellowships. M.D. and M.D.C.-G. acknowledge support provided by the GA CR grant 18-00533S. M.D.C.-G. acknowledges funding from ESA through a partnership with IAA-CSIC (Spain). D.J.W. and M.J.M. appreciate support from an Ernest Rutherford STFC fellowship. D.J.K.B. acknowledges a Science and Technology Facilities Council studentship. C.S.R. thanks the UK Science and Technology Facilities Council for support under Consolidated Grant ST/R000867/1. This research has been partially funded by the Spanish State Research Agency (AEI) project no. ESP2017-87676-C5-1-R and no. MDM-2017-0737 Unidad de Excelencia "Maria de Maeztu"-Centro de Astrobiologia (CSIC-INTA). G.M. acknowledges funding by the Spanish State Research. Agency (AEI) project no. ESP2017-86582-C4-1-R. B.D.M. acknowledges support from the European Union's Horizon 2020 research and innovation programme under the Marie Skodowska-Curie grant agreement no. 798726. This paper is based on observations obtained with XMM-Newton, an ESA science mission with instruments and contributions directly funded by ESA member states and the United States (NASA).
Peer review
Idioma:
English
Relation:
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/ESP2017-87676-C5-1-R
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/ESP2017-86582-C4-1-R/ES/CONTRIBUCION ESPAÑOLA A LAS MISIONES ESPACIALES CRIOGENICAS SPICA Y ATHENA, POST-OPERACIONES DE HERSCHEL Y EXPLOTACION CIENTIFICA MULTIFRECUENCIA/
info:eu-repo/grantAgreement/EC/FP7/340442
info:eu-repo/grantAgreement/EC/H2020/798726
Autor/Productor:
Alston, W. N.
Fabian, A. C.
Kara, E.
Parker, M. L.
Dovciak, M.
Pinto, C.
Jiang, J.
Middleton, M. J.
Miniutti, G.
Walton, D. J.
Wilkins, D. R.
Buisson, D. J.
Caballero García, M. D.
Cackett, E. M.
De Marco, B.
Gallo, L. C.
Lohfink, A. M.
Reynolds, C. S.
Uttley, P.
Young, A. J.
Zogbhi, A.
Publisher:
Springer Nature Research Journals
Otros colaboradores/productores:
Unidad de Excelencia Científica María de Maeztu Centro de Astrobiología del Instituto Nacional de Técnica Aeroespacial y CSIC, MDM-2017-0737
0000-0003-2658-6559
European Research Council (ERC)
Science and Technology Facilities Council (STFC)
European Space Agency (ESA)
European Commission (EC)
Agencia Estatal de Investigación (AEI)
Rights:
Copyright © 2020, The Author(s), under exclusive licence to Springer Nature Limited
info:eu-repo/semantics/restrictedAccess
Date:
2021-04-08T07:28:16Z
2020-01-20
Tipo de recurso:
info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
Format:
application/pdf

oai_dc

Download XML

    <?xml version="1.0" encoding="UTF-8" ?>

  1. <oai_dc:dc schemaLocation="http://www.openarchives.org/OAI/2.0/oai_dc/ http://www.openarchives.org/OAI/2.0/oai_dc.xsd">

    1. <dc:title>A dynamic black hole corona in an active galaxy through X-ray reverberation mapping</dc:title>

    2. <dc:creator>Alston, W. N.</dc:creator>

    3. <dc:creator>Fabian, A. C.</dc:creator>

    4. <dc:creator>Kara, E.</dc:creator>

    5. <dc:creator>Parker, M. L.</dc:creator>

    6. <dc:creator>Dovciak, M.</dc:creator>

    7. <dc:creator>Pinto, C.</dc:creator>

    8. <dc:creator>Jiang, J.</dc:creator>

    9. <dc:creator>Middleton, M. J.</dc:creator>

    10. <dc:creator>Miniutti, G.</dc:creator>

    11. <dc:creator>Walton, D. J.</dc:creator>

    12. <dc:creator>Wilkins, D. R.</dc:creator>

    13. <dc:creator>Buisson, D. J.</dc:creator>

    14. <dc:creator>Caballero García, M. D.</dc:creator>

    15. <dc:creator>Cackett, E. M.</dc:creator>

    16. <dc:creator>De Marco, B.</dc:creator>

    17. <dc:creator>Gallo, L. C.</dc:creator>

    18. <dc:creator>Lohfink, A. M.</dc:creator>

    19. <dc:creator>Reynolds, C. S.</dc:creator>

    20. <dc:creator>Uttley, P.</dc:creator>

    21. <dc:creator>Young, A. J.</dc:creator>

    22. <dc:creator>Zogbhi, A.</dc:creator>

    23. <dc:contributor>Unidad de Excelencia Científica María de Maeztu Centro de Astrobiología del Instituto Nacional de Técnica Aeroespacial y CSIC, MDM-2017-0737</dc:contributor>

    24. <dc:contributor>0000-0003-2658-6559</dc:contributor>

    25. <dc:contributor>European Research Council (ERC)</dc:contributor>

    26. <dc:contributor>Science and Technology Facilities Council (STFC)</dc:contributor>

    27. <dc:contributor>European Space Agency (ESA)</dc:contributor>

    28. <dc:contributor>European Commission (EC)</dc:contributor>

    29. <dc:contributor>Agencia Estatal de Investigación (AEI)</dc:contributor>

    30. <dc:subject>Black Hole</dc:subject>

    31. <dc:subject>Active Galaxy</dc:subject>

    32. <dc:subject>X ray</dc:subject>

    33. <dc:subject>Reverberation mapping</dc:subject>

    34. <dc:subject>Galactic Nuclei</dc:subject>

    35. <dc:subject>Scattering</dc:subject>

    36. <dc:description>Alston, W.N., Fabian, A.C., Kara, E. et al. A dynamic black hole corona in an active galaxy through X-ray reverberation mapping. Nat Astron 4, 597–602 (2020). https://doi.org/10.1038/s41550-019-1002-x</dc:description>

    37. <dc:description>X-ray reverberation echoes are assumed to be produced in the strongly distorted spacetime around accreting supermassive black holes. This signal allows us to spatially map the geometry of the inner accretion flow1,2—a region that cannot yet be spatially resolved by any telescope—and provides a direct measure of the black hole mass and spin. The reverberation timescale is set by the light travel path between the direct emission from a hot X-ray corona and the reprocessed emission from the inner edge of the accretion disk3,4,5,6. However, there is an inherent degeneracy in the reverberation signal between black hole mass, inner disk radius and height of the illuminating corona above the disk. Here we use a long X-ray observation of the highly variable active galaxy IRAS 13224−3809 to track the reverberation signal as the system evolves on timescales of a day7,8. With the inclusion of all the relativistic effects, modelling reveals that the height of the X-ray corona increases with increasing luminosity, providing a dynamic view of the inner accretion region. This simultaneous modelling allows us to break the inherent degeneracies and obtain an independent timing-based estimate for the mass and spin of the black hole. The uncertainty on black hole mass is comparable to the leading optical reverberation method9, making X-ray reverberation a powerful technique, particularly for sources with low optical variability10.</dc:description>

    38. <dc:description>W.N.A. and A.C.F. acknowledge support from the European Research Council through Advanced Grant 340442, on Feedback. M.L.P. and C.P. acknowledge support from ESA Research Fellowships. M.D. and M.D.C.-G. acknowledge support provided by the GA CR grant 18-00533S. M.D.C.-G. acknowledges funding from ESA through a partnership with IAA-CSIC (Spain). D.J.W. and M.J.M. appreciate support from an Ernest Rutherford STFC fellowship. D.J.K.B. acknowledges a Science and Technology Facilities Council studentship. C.S.R. thanks the UK Science and Technology Facilities Council for support under Consolidated Grant ST/R000867/1. This research has been partially funded by the Spanish State Research Agency (AEI) project no. ESP2017-87676-C5-1-R and no. MDM-2017-0737 Unidad de Excelencia "Maria de Maeztu"-Centro de Astrobiologia (CSIC-INTA). G.M. acknowledges funding by the Spanish State Research. Agency (AEI) project no. ESP2017-86582-C4-1-R. B.D.M. acknowledges support from the European Union's Horizon 2020 research and innovation programme under the Marie Skodowska-Curie grant agreement no. 798726. This paper is based on observations obtained with XMM-Newton, an ESA science mission with instruments and contributions directly funded by ESA member states and the United States (NASA).</dc:description>

    39. <dc:description>Peer review</dc:description>

    40. <dc:date>2021-04-08T07:28:16Z</dc:date>

    41. <dc:date>2021-04-08T07:28:16Z</dc:date>

    42. <dc:date>2020-01-20</dc:date>

    43. <dc:type>info:eu-repo/semantics/article</dc:type>

    44. <dc:type>info:eu-repo/semantics/publishedVersion</dc:type>

    45. <dc:type>http://purl.org/coar/resource_type/c_6501</dc:type>

    46. <dc:identifier>Nature Astronomy 4: 597- 602 (2020)</dc:identifier>

    47. <dc:identifier>http://hdl.handle.net/20.500.12666/152</dc:identifier>

    48. <dc:identifier>10.1038/s41550-019-1002-x</dc:identifier>

    49. <dc:identifier>2397-3366</dc:identifier>

    50. <dc:language>eng</dc:language>

    51. <dc:relation>info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/ESP2017-87676-C5-1-R</dc:relation>

    52. <dc:relation>info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/ESP2017-86582-C4-1-R/ES/CONTRIBUCION ESPAÑOLA A LAS MISIONES ESPACIALES CRIOGENICAS SPICA Y ATHENA, POST-OPERACIONES DE HERSCHEL Y EXPLOTACION CIENTIFICA MULTIFRECUENCIA/</dc:relation>

    53. <dc:relation>info:eu-repo/grantAgreement/EC/FP7/340442</dc:relation>

    54. <dc:relation>info:eu-repo/grantAgreement/EC/H2020/798726</dc:relation>

    55. <dc:rights>Copyright © 2020, The Author(s), under exclusive licence to Springer Nature Limited</dc:rights>

    56. <dc:rights>info:eu-repo/semantics/restrictedAccess</dc:rights>

    57. <dc:format>application/pdf</dc:format>

    58. <dc:publisher>Springer Nature Research Journals</dc:publisher>

    </oai_dc:dc>

didl

Download XML

    <?xml version="1.0" encoding="UTF-8" ?>

  1. <d:DIDL schemaLocation="urn:mpeg:mpeg21:2002:02-DIDL-NS http://standards.iso.org/ittf/PubliclyAvailableStandards/MPEG-21_schema_files/did/didl.xsd">

    1. <d:DIDLInfo>

      1. <dcterms:created schemaLocation="http://purl.org/dc/terms/ http://dublincore.org/schemas/xmls/qdc/dcterms.xsd">2021-04-08T07:28:16Z</dcterms:created>

      </d:DIDLInfo>

    2. <d:Item id="hdl_20.500.12666_152">

      1. <d:Descriptor>

        1. <d:Statement mimeType="application/xml; charset=utf-8">

          1. <dii:Identifier schemaLocation="urn:mpeg:mpeg21:2002:01-DII-NS http://standards.iso.org/ittf/PubliclyAvailableStandards/MPEG-21_schema_files/dii/dii.xsd">urn:hdl:20.500.12666/152</dii:Identifier>

          </d:Statement>

        </d:Descriptor>

      2. <d:Descriptor>

        1. <d:Statement mimeType="application/xml; charset=utf-8">

          1. <oai_dc:dc schemaLocation="http://www.openarchives.org/OAI/2.0/oai_dc/ http://www.openarchives.org/OAI/2.0/oai_dc.xsd">

            1. <dc:title>A dynamic black hole corona in an active galaxy through X-ray reverberation mapping</dc:title>

            2. <dc:creator>Alston, W. N.</dc:creator>

            3. <dc:creator>Fabian, A. C.</dc:creator>

            4. <dc:creator>Kara, E.</dc:creator>

            5. <dc:creator>Parker, M. L.</dc:creator>

            6. <dc:creator>Dovciak, M.</dc:creator>

            7. <dc:creator>Pinto, C.</dc:creator>

            8. <dc:creator>Jiang, J.</dc:creator>

            9. <dc:creator>Middleton, M. J.</dc:creator>

            10. <dc:creator>Miniutti, G.</dc:creator>

            11. <dc:creator>Walton, D. J.</dc:creator>

            12. <dc:creator>Wilkins, D. R.</dc:creator>

            13. <dc:creator>Buisson, D. J.</dc:creator>

            14. <dc:creator>Caballero García, M. D.</dc:creator>

            15. <dc:creator>Cackett, E. M.</dc:creator>

            16. <dc:creator>De Marco, B.</dc:creator>

            17. <dc:creator>Gallo, L. C.</dc:creator>

            18. <dc:creator>Lohfink, A. M.</dc:creator>

            19. <dc:creator>Reynolds, C. S.</dc:creator>

            20. <dc:creator>Uttley, P.</dc:creator>

            21. <dc:creator>Young, A. J.</dc:creator>

            22. <dc:creator>Zogbhi, A.</dc:creator>

            23. <dc:contributor>Unidad de Excelencia Científica María de Maeztu Centro de Astrobiología del Instituto Nacional de Técnica Aeroespacial y CSIC, MDM-2017-0737</dc:contributor>

            24. <dc:contributor>0000-0003-2658-6559</dc:contributor>

            25. <dc:contributor>European Research Council (ERC)</dc:contributor>

            26. <dc:contributor>Science and Technology Facilities Council (STFC)</dc:contributor>

            27. <dc:contributor>European Space Agency (ESA)</dc:contributor>

            28. <dc:contributor>European Commission (EC)</dc:contributor>

            29. <dc:contributor>Agencia Estatal de Investigación (AEI)</dc:contributor>

            30. <dc:subject>Black Hole</dc:subject>

            31. <dc:subject>Active Galaxy</dc:subject>

            32. <dc:subject>X ray</dc:subject>

            33. <dc:subject>Reverberation mapping</dc:subject>

            34. <dc:subject>Galactic Nuclei</dc:subject>

            35. <dc:subject>Scattering</dc:subject>

            36. <dc:description>Alston, W.N., Fabian, A.C., Kara, E. et al. A dynamic black hole corona in an active galaxy through X-ray reverberation mapping. Nat Astron 4, 597–602 (2020). https://doi.org/10.1038/s41550-019-1002-x</dc:description>

            37. <dc:description>X-ray reverberation echoes are assumed to be produced in the strongly distorted spacetime around accreting supermassive black holes. This signal allows us to spatially map the geometry of the inner accretion flow1,2—a region that cannot yet be spatially resolved by any telescope—and provides a direct measure of the black hole mass and spin. The reverberation timescale is set by the light travel path between the direct emission from a hot X-ray corona and the reprocessed emission from the inner edge of the accretion disk3,4,5,6. However, there is an inherent degeneracy in the reverberation signal between black hole mass, inner disk radius and height of the illuminating corona above the disk. Here we use a long X-ray observation of the highly variable active galaxy IRAS 13224−3809 to track the reverberation signal as the system evolves on timescales of a day7,8. With the inclusion of all the relativistic effects, modelling reveals that the height of the X-ray corona increases with increasing luminosity, providing a dynamic view of the inner accretion region. This simultaneous modelling allows us to break the inherent degeneracies and obtain an independent timing-based estimate for the mass and spin of the black hole. The uncertainty on black hole mass is comparable to the leading optical reverberation method9, making X-ray reverberation a powerful technique, particularly for sources with low optical variability10.</dc:description>

            38. <dc:date>2021-04-08T07:28:16Z</dc:date>

            39. <dc:date>2021-04-08T07:28:16Z</dc:date>

            40. <dc:date>2020-01-20</dc:date>

            41. <dc:type>info:eu-repo/semantics/article</dc:type>

            42. <dc:identifier>Nature Astronomy 4: 597- 602 (2020)</dc:identifier>

            43. <dc:identifier>http://hdl.handle.net/20.500.12666/152</dc:identifier>

            44. <dc:identifier>10.1038/s41550-019-1002-x</dc:identifier>

            45. <dc:identifier>2397-3366</dc:identifier>

            46. <dc:language>eng</dc:language>

            47. <dc:relation>info:eu-repo/grantAgreement/EC/FP7/340442</dc:relation>

            48. <dc:relation>info:eu-repo/grantAgreement/EC/H2020/798726</dc:relation>

            49. <dc:relation>info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/ESP2017-87676-C5-1-R</dc:relation>

            50. <dc:relation>info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/ESP2017-86582-C4-1-R/ES/CONTRIBUCION ESPAÑOLA A LAS MISIONES ESPACIALES CRIOGENICAS SPICA Y ATHENA, POST-OPERACIONES DE HERSCHEL Y EXPLOTACION CIENTIFICA MULTIFRECUENCIA/</dc:relation>

            51. <dc:rights>Copyright © 2020, The Author(s), under exclusive licence to Springer Nature Limited</dc:rights>

            52. <dc:rights>info:eu-repo/semantics/restrictedAccess</dc:rights>

            53. <dc:publisher>Springer Nature Research Journals</dc:publisher>

            </oai_dc:dc>

          </d:Statement>

        </d:Descriptor>

      3. <d:Component id="20.500.12666_152_2">

        1. <d:Resource mimeType="application/pdf" ref="https://digital.inta.es:8443/jspui/bitstream/20.500.12666/152/2/acceso-restringido.pdf" />

        </d:Component>

      </d:Item>

    </d:DIDL>

dim

Download XML

    <?xml version="1.0" encoding="UTF-8" ?>

  1. <dim:dim schemaLocation="http://www.dspace.org/xmlns/dspace/dim http://www.dspace.org/schema/dim.xsd">

    1. <dim:field element="rights" mdschema="dc" qualifier="license">Copyright © 2020, The Author(s), under exclusive licence to Springer Nature Limited</dim:field>

    2. <dim:field element="rights" mdschema="dc" qualifier="accessRights">info:eu-repo/semantics/restrictedAccess</dim:field>

    3. <dim:field authority="218dca54-90c7-4bbf-a627-5e6848cfb050" confidence="600" element="contributor" mdschema="dc" qualifier="author">Alston, W. N.</dim:field>

    4. <dim:field authority="39c41c50-1df1-48f4-af48-0b1b50e4a78c" confidence="600" element="contributor" mdschema="dc" qualifier="author">Fabian, A. C.</dim:field>

    5. <dim:field authority="3c9a8f92-6b3f-4132-a3ac-24ebcfeeb365" confidence="600" element="contributor" mdschema="dc" qualifier="author">Kara, E.</dim:field>

    6. <dim:field authority="44ab65d9-c4de-4b42-bd42-40212048b3ce" confidence="600" element="contributor" mdschema="dc" qualifier="author">Parker, M. L.</dim:field>

    7. <dim:field authority="56c510f5-c47a-4890-9519-c305a5f07344" confidence="-1" element="contributor" mdschema="dc" qualifier="author">Dovciak, M.</dim:field>

    8. <dim:field authority="df58d5ec-1d66-4e55-8459-6aa2410dc12a" confidence="-1" element="contributor" mdschema="dc" qualifier="author">Pinto, C.</dim:field>

    9. <dim:field authority="e0a94549-9787-4f0c-a48c-8fbd0cbffa5e" confidence="-1" element="contributor" mdschema="dc" qualifier="author">Jiang, J.</dim:field>

    10. <dim:field authority="27859459-c589-4ad9-b61f-8748f3321b4f" confidence="-1" element="contributor" mdschema="dc" qualifier="author">Middleton, M. J.</dim:field>

    11. <dim:field authority="32a221be-7034-479a-aaf1-4bcf9b397d34" confidence="-1" element="contributor" mdschema="dc" qualifier="author">Miniutti, G.</dim:field>

    12. <dim:field authority="595746b3-bcfd-40d0-b455-27f9e1d4368c" confidence="-1" element="contributor" mdschema="dc" qualifier="author">Walton, D. J.</dim:field>

    13. <dim:field authority="4c1fe3d1-3986-4058-8a5b-9cc93e24610e" confidence="-1" element="contributor" mdschema="dc" qualifier="author">Wilkins, D. R.</dim:field>

    14. <dim:field authority="b51a68bd-826b-47e4-b488-b5174430e0d4" confidence="-1" element="contributor" mdschema="dc" qualifier="author">Buisson, D. J.</dim:field>

    15. <dim:field authority="82ba54d9-2121-4961-ad61-ead4e78c03b4" confidence="600" element="contributor" mdschema="dc" qualifier="author">Caballero García, M. D.</dim:field>

    16. <dim:field authority="d33f8431-16bd-464f-b6b8-acdc4941b56b" confidence="-1" element="contributor" mdschema="dc" qualifier="author">Cackett, E. M.</dim:field>

    17. <dim:field authority="8f2d6b13-efc6-4350-8e4b-a2baab0ab923" confidence="600" element="contributor" mdschema="dc" qualifier="author">De Marco, B.</dim:field>

    18. <dim:field authority="dd656ec4-d9c2-4160-a492-2b18618fabf4" confidence="-1" element="contributor" mdschema="dc" qualifier="author">Gallo, L. C.</dim:field>

    19. <dim:field authority="e7d18d55-7b2e-4b22-b170-251f43232b59" confidence="-1" element="contributor" mdschema="dc" qualifier="author">Lohfink, A. M.</dim:field>

    20. <dim:field authority="592d5ddb-15ca-4ebd-923c-55e9c58e709f" confidence="-1" element="contributor" mdschema="dc" qualifier="author">Reynolds, C. S.</dim:field>

    21. <dim:field authority="a1fd58a1-c7dc-4731-857b-fde38aa0fb8d" confidence="-1" element="contributor" mdschema="dc" qualifier="author">Uttley, P.</dim:field>

    22. <dim:field authority="54584cfc-7c64-45ec-a687-b6c8444d1f71" confidence="-1" element="contributor" mdschema="dc" qualifier="author">Young, A. J.</dim:field>

    23. <dim:field authority="58c589b6-1a53-4483-9565-ed6dd0d3d220" confidence="-1" element="contributor" mdschema="dc" qualifier="author">Zogbhi, A.</dim:field>

    24. <dim:field element="contributor" mdschema="dc" qualifier="other">Unidad de Excelencia Científica María de Maeztu Centro de Astrobiología del Instituto Nacional de Técnica Aeroespacial y CSIC, MDM-2017-0737</dim:field>

    25. <dim:field element="contributor" mdschema="dc" qualifier="orcid">0000-0003-2658-6559</dim:field>

    26. <dim:field element="contributor" mdschema="dc" qualifier="funder">European Research Council (ERC)</dim:field>

    27. <dim:field element="contributor" mdschema="dc" qualifier="funder">Science and Technology Facilities Council (STFC)</dim:field>

    28. <dim:field element="contributor" mdschema="dc" qualifier="funder">European Space Agency (ESA)</dim:field>

    29. <dim:field element="contributor" mdschema="dc" qualifier="funder">European Commission (EC)</dim:field>

    30. <dim:field element="contributor" mdschema="dc" qualifier="funder">Agencia Estatal de Investigación (AEI)</dim:field>

    31. <dim:field element="date" mdschema="dc" qualifier="accessioned">2021-04-08T07:28:16Z</dim:field>

    32. <dim:field element="date" mdschema="dc" qualifier="available">2021-04-08T07:28:16Z</dim:field>

    33. <dim:field element="date" mdschema="dc" qualifier="issued">2020-01-20</dim:field>

    34. <dim:field element="identifier" lang="es" mdschema="dc" qualifier="citation">Nature Astronomy 4: 597- 602 (2020)</dim:field>

    35. <dim:field element="identifier" mdschema="dc" qualifier="uri">http://hdl.handle.net/20.500.12666/152</dim:field>

    36. <dim:field element="identifier" mdschema="dc" qualifier="doi">10.1038/s41550-019-1002-x</dim:field>

    37. <dim:field element="identifier" mdschema="dc" qualifier="e-issn">2397-3366</dim:field>

    38. <dim:field element="description" lang="es" mdschema="dc">Alston, W.N., Fabian, A.C., Kara, E. et al. A dynamic black hole corona in an active galaxy through X-ray reverberation mapping. Nat Astron 4, 597–602 (2020). https://doi.org/10.1038/s41550-019-1002-x</dim:field>

    39. <dim:field element="description" lang="es" mdschema="dc" qualifier="abstract">X-ray reverberation echoes are assumed to be produced in the strongly distorted spacetime around accreting supermassive black holes. This signal allows us to spatially map the geometry of the inner accretion flow1,2—a region that cannot yet be spatially resolved by any telescope—and provides a direct measure of the black hole mass and spin. The reverberation timescale is set by the light travel path between the direct emission from a hot X-ray corona and the reprocessed emission from the inner edge of the accretion disk3,4,5,6. However, there is an inherent degeneracy in the reverberation signal between black hole mass, inner disk radius and height of the illuminating corona above the disk. Here we use a long X-ray observation of the highly variable active galaxy IRAS 13224−3809 to track the reverberation signal as the system evolves on timescales of a day7,8. With the inclusion of all the relativistic effects, modelling reveals that the height of the X-ray corona increases with increasing luminosity, providing a dynamic view of the inner accretion region. This simultaneous modelling allows us to break the inherent degeneracies and obtain an independent timing-based estimate for the mass and spin of the black hole. The uncertainty on black hole mass is comparable to the leading optical reverberation method9, making X-ray reverberation a powerful technique, particularly for sources with low optical variability10.</dim:field>

    40. <dim:field element="description" lang="es" mdschema="dc" qualifier="sponsorship">W.N.A. and A.C.F. acknowledge support from the European Research Council through Advanced Grant 340442, on Feedback. M.L.P. and C.P. acknowledge support from ESA Research Fellowships. M.D. and M.D.C.-G. acknowledge support provided by the GA CR grant 18-00533S. M.D.C.-G. acknowledges funding from ESA through a partnership with IAA-CSIC (Spain). D.J.W. and M.J.M. appreciate support from an Ernest Rutherford STFC fellowship. D.J.K.B. acknowledges a Science and Technology Facilities Council studentship. C.S.R. thanks the UK Science and Technology Facilities Council for support under Consolidated Grant ST/R000867/1. This research has been partially funded by the Spanish State Research Agency (AEI) project no. ESP2017-87676-C5-1-R and no. MDM-2017-0737 Unidad de Excelencia "Maria de Maeztu"-Centro de Astrobiologia (CSIC-INTA). G.M. acknowledges funding by the Spanish State Research. Agency (AEI) project no. ESP2017-86582-C4-1-R. B.D.M. acknowledges support from the European Union's Horizon 2020 research and innovation programme under the Marie Skodowska-Curie grant agreement no. 798726. This paper is based on observations obtained with XMM-Newton, an ESA science mission with instruments and contributions directly funded by ESA member states and the United States (NASA).</dim:field>

    41. <dim:field element="description" lang="es" mdschema="dc" qualifier="peerreviewed">Peer review</dim:field>

    42. <dim:field element="language" lang="es" mdschema="dc" qualifier="iso">eng</dim:field>

    43. <dim:field element="publisher" lang="es" mdschema="dc">Springer Nature Research Journals</dim:field>

    44. <dim:field element="relation" mdschema="dc">info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/ESP2017-87676-C5-1-R</dim:field>

    45. <dim:field element="relation" mdschema="dc">info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/ESP2017-86582-C4-1-R/ES/CONTRIBUCION ESPAÑOLA A LAS MISIONES ESPACIALES CRIOGENICAS SPICA Y ATHENA, POST-OPERACIONES DE HERSCHEL Y EXPLOTACION CIENTIFICA MULTIFRECUENCIA/</dim:field>

    46. <dim:field element="relation" mdschema="dc" qualifier="projectID">info:eu-repo/grantAgreement/EC/FP7/340442</dim:field>

    47. <dim:field element="relation" mdschema="dc" qualifier="projectID">info:eu-repo/grantAgreement/EC/H2020/798726</dim:field>

    48. <dim:field element="subject" lang="es" mdschema="dc">Black Hole</dim:field>

    49. <dim:field element="subject" lang="es" mdschema="dc">Active Galaxy</dim:field>

    50. <dim:field element="subject" lang="es" mdschema="dc">X ray</dim:field>

    51. <dim:field element="subject" lang="es" mdschema="dc">Reverberation mapping</dim:field>

    52. <dim:field element="subject" lang="es" mdschema="dc">Galactic Nuclei</dim:field>

    53. <dim:field element="subject" lang="es" mdschema="dc">Scattering</dim:field>

    54. <dim:field element="title" lang="es" mdschema="dc">A dynamic black hole corona in an active galaxy through X-ray reverberation mapping</dim:field>

    55. <dim:field element="type" lang="es" mdschema="dc">info:eu-repo/semantics/article</dim:field>

    56. <dim:field element="type" mdschema="dc" qualifier="hasVersion">info:eu-repo/semantics/publishedVersion</dim:field>

    57. <dim:field element="type" mdschema="dc" qualifier="coar">http://purl.org/coar/resource_type/c_6501</dim:field>

    </dim:dim>

etdms

Download XML

    <?xml version="1.0" encoding="UTF-8" ?>

  1. <thesis schemaLocation="http://www.ndltd.org/standards/metadata/etdms/1.0/ http://www.ndltd.org/standards/metadata/etdms/1.0/etdms.xsd">

    1. <title>A dynamic black hole corona in an active galaxy through X-ray reverberation mapping</title>

    2. <creator>Alston, W. N.</creator>

    3. <creator>Fabian, A. C.</creator>

    4. <creator>Kara, E.</creator>

    5. <creator>Parker, M. L.</creator>

    6. <creator>Dovciak, M.</creator>

    7. <creator>Pinto, C.</creator>

    8. <creator>Jiang, J.</creator>

    9. <creator>Middleton, M. J.</creator>

    10. <creator>Miniutti, G.</creator>

    11. <creator>Walton, D. J.</creator>

    12. <creator>Wilkins, D. R.</creator>

    13. <creator>Buisson, D. J.</creator>

    14. <creator>Caballero García, M. D.</creator>

    15. <creator>Cackett, E. M.</creator>

    16. <creator>De Marco, B.</creator>

    17. <creator>Gallo, L. C.</creator>

    18. <creator>Lohfink, A. M.</creator>

    19. <creator>Reynolds, C. S.</creator>

    20. <creator>Uttley, P.</creator>

    21. <creator>Young, A. J.</creator>

    22. <creator>Zogbhi, A.</creator>

    23. <contributor>Unidad de Excelencia Científica María de Maeztu Centro de Astrobiología del Instituto Nacional de Técnica Aeroespacial y CSIC, MDM-2017-0737</contributor>

    24. <contributor>0000-0003-2658-6559</contributor>

    25. <contributor>European Research Council (ERC)</contributor>

    26. <contributor>Science and Technology Facilities Council (STFC)</contributor>

    27. <contributor>European Space Agency (ESA)</contributor>

    28. <contributor>European Commission (EC)</contributor>

    29. <contributor>Agencia Estatal de Investigación (AEI)</contributor>

    30. <subject>Black Hole</subject>

    31. <subject>Active Galaxy</subject>

    32. <subject>X ray</subject>

    33. <subject>Reverberation mapping</subject>

    34. <subject>Galactic Nuclei</subject>

    35. <subject>Scattering</subject>

    36. <description>Alston, W.N., Fabian, A.C., Kara, E. et al. A dynamic black hole corona in an active galaxy through X-ray reverberation mapping. Nat Astron 4, 597–602 (2020). https://doi.org/10.1038/s41550-019-1002-x</description>

    37. <description>X-ray reverberation echoes are assumed to be produced in the strongly distorted spacetime around accreting supermassive black holes. This signal allows us to spatially map the geometry of the inner accretion flow1,2—a region that cannot yet be spatially resolved by any telescope—and provides a direct measure of the black hole mass and spin. The reverberation timescale is set by the light travel path between the direct emission from a hot X-ray corona and the reprocessed emission from the inner edge of the accretion disk3,4,5,6. However, there is an inherent degeneracy in the reverberation signal between black hole mass, inner disk radius and height of the illuminating corona above the disk. Here we use a long X-ray observation of the highly variable active galaxy IRAS 13224−3809 to track the reverberation signal as the system evolves on timescales of a day7,8. With the inclusion of all the relativistic effects, modelling reveals that the height of the X-ray corona increases with increasing luminosity, providing a dynamic view of the inner accretion region. This simultaneous modelling allows us to break the inherent degeneracies and obtain an independent timing-based estimate for the mass and spin of the black hole. The uncertainty on black hole mass is comparable to the leading optical reverberation method9, making X-ray reverberation a powerful technique, particularly for sources with low optical variability10.</description>

    38. <date>2021-04-08</date>

    39. <date>2021-04-08</date>

    40. <date>2020-01-20</date>

    41. <type>info:eu-repo/semantics/article</type>

    42. <identifier>Nature Astronomy 4: 597- 602 (2020)</identifier>

    43. <identifier>http://hdl.handle.net/20.500.12666/152</identifier>

    44. <identifier>10.1038/s41550-019-1002-x</identifier>

    45. <identifier>2397-3366</identifier>

    46. <language>eng</language>

    47. <relation>info:eu-repo/grantAgreement/EC/FP7/340442</relation>

    48. <relation>info:eu-repo/grantAgreement/EC/H2020/798726</relation>

    49. <relation>info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/ESP2017-87676-C5-1-R</relation>

    50. <relation>info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/ESP2017-86582-C4-1-R/ES/CONTRIBUCION ESPAÑOLA A LAS MISIONES ESPACIALES CRIOGENICAS SPICA Y ATHENA, POST-OPERACIONES DE HERSCHEL Y EXPLOTACION CIENTIFICA MULTIFRECUENCIA/</relation>

    51. <rights>Copyright © 2020, The Author(s), under exclusive licence to Springer Nature Limited</rights>

    52. <rights>info:eu-repo/semantics/restrictedAccess</rights>

    53. <publisher>Springer Nature Research Journals</publisher>

    </thesis>

marc

Download XML

    <?xml version="1.0" encoding="UTF-8" ?>

  1. <record schemaLocation="http://www.loc.gov/MARC21/slim http://www.loc.gov/standards/marcxml/schema/MARC21slim.xsd">

    1. <leader>00925njm 22002777a 4500</leader>

    2. <datafield ind1=" " ind2=" " tag="042">

      1. <subfield code="a">dc</subfield>

      </datafield>

    3. <datafield ind1=" " ind2=" " tag="720">

      1. <subfield code="a">Alston, W. N.</subfield>

      2. <subfield code="e">author</subfield>

      </datafield>

    4. <datafield ind1=" " ind2=" " tag="720">

      1. <subfield code="a">Fabian, A. C.</subfield>

      2. <subfield code="e">author</subfield>

      </datafield>

    5. <datafield ind1=" " ind2=" " tag="720">

      1. <subfield code="a">Kara, E.</subfield>

      2. <subfield code="e">author</subfield>

      </datafield>

    6. <datafield ind1=" " ind2=" " tag="720">

      1. <subfield code="a">Parker, M. L.</subfield>

      2. <subfield code="e">author</subfield>

      </datafield>

    7. <datafield ind1=" " ind2=" " tag="720">

      1. <subfield code="a">Dovciak, M.</subfield>

      2. <subfield code="e">author</subfield>

      </datafield>

    8. <datafield ind1=" " ind2=" " tag="720">

      1. <subfield code="a">Pinto, C.</subfield>

      2. <subfield code="e">author</subfield>

      </datafield>

    9. <datafield ind1=" " ind2=" " tag="720">

      1. <subfield code="a">Jiang, J.</subfield>

      2. <subfield code="e">author</subfield>

      </datafield>

    10. <datafield ind1=" " ind2=" " tag="720">

      1. <subfield code="a">Middleton, M. J.</subfield>

      2. <subfield code="e">author</subfield>

      </datafield>

    11. <datafield ind1=" " ind2=" " tag="720">

      1. <subfield code="a">Miniutti, G.</subfield>

      2. <subfield code="e">author</subfield>

      </datafield>

    12. <datafield ind1=" " ind2=" " tag="720">

      1. <subfield code="a">Walton, D. J.</subfield>

      2. <subfield code="e">author</subfield>

      </datafield>

    13. <datafield ind1=" " ind2=" " tag="720">

      1. <subfield code="a">Wilkins, D. R.</subfield>

      2. <subfield code="e">author</subfield>

      </datafield>

    14. <datafield ind1=" " ind2=" " tag="720">

      1. <subfield code="a">Buisson, D. J.</subfield>

      2. <subfield code="e">author</subfield>

      </datafield>

    15. <datafield ind1=" " ind2=" " tag="720">

      1. <subfield code="a">Caballero García, M. D.</subfield>

      2. <subfield code="e">author</subfield>

      </datafield>

    16. <datafield ind1=" " ind2=" " tag="720">

      1. <subfield code="a">Cackett, E. M.</subfield>

      2. <subfield code="e">author</subfield>

      </datafield>

    17. <datafield ind1=" " ind2=" " tag="720">

      1. <subfield code="a">De Marco, B.</subfield>

      2. <subfield code="e">author</subfield>

      </datafield>

    18. <datafield ind1=" " ind2=" " tag="720">

      1. <subfield code="a">Gallo, L. C.</subfield>

      2. <subfield code="e">author</subfield>

      </datafield>

    19. <datafield ind1=" " ind2=" " tag="720">

      1. <subfield code="a">Lohfink, A. M.</subfield>

      2. <subfield code="e">author</subfield>

      </datafield>

    20. <datafield ind1=" " ind2=" " tag="720">

      1. <subfield code="a">Reynolds, C. S.</subfield>

      2. <subfield code="e">author</subfield>

      </datafield>

    21. <datafield ind1=" " ind2=" " tag="720">

      1. <subfield code="a">Uttley, P.</subfield>

      2. <subfield code="e">author</subfield>

      </datafield>

    22. <datafield ind1=" " ind2=" " tag="720">

      1. <subfield code="a">Young, A. J.</subfield>

      2. <subfield code="e">author</subfield>

      </datafield>

    23. <datafield ind1=" " ind2=" " tag="720">

      1. <subfield code="a">Zogbhi, A.</subfield>

      2. <subfield code="e">author</subfield>

      </datafield>

    24. <datafield ind1=" " ind2=" " tag="260">

      1. <subfield code="c">2020-01-20</subfield>

      </datafield>

    25. <datafield ind1=" " ind2=" " tag="520">

      1. <subfield code="a">X-ray reverberation echoes are assumed to be produced in the strongly distorted spacetime around accreting supermassive black holes. This signal allows us to spatially map the geometry of the inner accretion flow1,2—a region that cannot yet be spatially resolved by any telescope—and provides a direct measure of the black hole mass and spin. The reverberation timescale is set by the light travel path between the direct emission from a hot X-ray corona and the reprocessed emission from the inner edge of the accretion disk3,4,5,6. However, there is an inherent degeneracy in the reverberation signal between black hole mass, inner disk radius and height of the illuminating corona above the disk. Here we use a long X-ray observation of the highly variable active galaxy IRAS 13224−3809 to track the reverberation signal as the system evolves on timescales of a day7,8. With the inclusion of all the relativistic effects, modelling reveals that the height of the X-ray corona increases with increasing luminosity, providing a dynamic view of the inner accretion region. This simultaneous modelling allows us to break the inherent degeneracies and obtain an independent timing-based estimate for the mass and spin of the black hole. The uncertainty on black hole mass is comparable to the leading optical reverberation method9, making X-ray reverberation a powerful technique, particularly for sources with low optical variability10.</subfield>

      </datafield>

    26. <datafield ind1="8" ind2=" " tag="024">

      1. <subfield code="a">Nature Astronomy 4: 597- 602 (2020)</subfield>

      </datafield>

    27. <datafield ind1="8" ind2=" " tag="024">

      1. <subfield code="a">http://hdl.handle.net/20.500.12666/152</subfield>

      </datafield>

    28. <datafield ind1="8" ind2=" " tag="024">

      1. <subfield code="a">10.1038/s41550-019-1002-x</subfield>

      </datafield>

    29. <datafield ind1="8" ind2=" " tag="024">

      1. <subfield code="a">2397-3366</subfield>

      </datafield>

    30. <datafield ind1=" " ind2=" " tag="653">

      1. <subfield code="a">Black Hole</subfield>

      </datafield>

    31. <datafield ind1=" " ind2=" " tag="653">

      1. <subfield code="a">Active Galaxy</subfield>

      </datafield>

    32. <datafield ind1=" " ind2=" " tag="653">

      1. <subfield code="a">X ray</subfield>

      </datafield>

    33. <datafield ind1=" " ind2=" " tag="653">

      1. <subfield code="a">Reverberation mapping</subfield>

      </datafield>

    34. <datafield ind1=" " ind2=" " tag="653">

      1. <subfield code="a">Galactic Nuclei</subfield>

      </datafield>

    35. <datafield ind1=" " ind2=" " tag="653">

      1. <subfield code="a">Scattering</subfield>

      </datafield>

    36. <datafield ind1="0" ind2="0" tag="245">

      1. <subfield code="a">A dynamic black hole corona in an active galaxy through X-ray reverberation mapping</subfield>

      </datafield>

    </record>

mets

Download XML

    <?xml version="1.0" encoding="UTF-8" ?>

  1. <mets ID=" DSpace_ITEM_20.500.12666-152" OBJID=" hdl:20.500.12666/152" PROFILE="DSpace METS SIP Profile 1.0" TYPE="DSpace ITEM" schemaLocation="http://www.loc.gov/METS/ http://www.loc.gov/standards/mets/mets.xsd">

    1. <metsHdr CREATEDATE="2024-04-03T13:42:27Z">

      1. <agent ROLE="CUSTODIAN" TYPE="ORGANIZATION">

        1. <name>Digital INTA</name>

        </agent>

      </metsHdr>

    2. <dmdSec ID="DMD_20.500.12666_152">

      1. <mdWrap MDTYPE="MODS">

        1. <xmlData schemaLocation="http://www.loc.gov/mods/v3 http://www.loc.gov/standards/mods/v3/mods-3-1.xsd">

          1. <mods:mods schemaLocation="http://www.loc.gov/mods/v3 http://www.loc.gov/standards/mods/v3/mods-3-1.xsd">

            1. <mods:name>

              1. <mods:role>

                1. <mods:roleTerm type="text">author</mods:roleTerm>

                </mods:role>

              2. <mods:namePart>Alston, W. N.</mods:namePart>

              </mods:name>

            2. <mods:name>

              1. <mods:role>

                1. <mods:roleTerm type="text">author</mods:roleTerm>

                </mods:role>

              2. <mods:namePart>Fabian, A. C.</mods:namePart>

              </mods:name>

            3. <mods:name>

              1. <mods:role>

                1. <mods:roleTerm type="text">author</mods:roleTerm>

                </mods:role>

              2. <mods:namePart>Kara, E.</mods:namePart>

              </mods:name>

            4. <mods:name>

              1. <mods:role>

                1. <mods:roleTerm type="text">author</mods:roleTerm>

                </mods:role>

              2. <mods:namePart>Parker, M. L.</mods:namePart>

              </mods:name>

            5. <mods:name>

              1. <mods:role>

                1. <mods:roleTerm type="text">author</mods:roleTerm>

                </mods:role>

              2. <mods:namePart>Dovciak, M.</mods:namePart>

              </mods:name>

            6. <mods:name>

              1. <mods:role>

                1. <mods:roleTerm type="text">author</mods:roleTerm>

                </mods:role>

              2. <mods:namePart>Pinto, C.</mods:namePart>

              </mods:name>

            7. <mods:name>

              1. <mods:role>

                1. <mods:roleTerm type="text">author</mods:roleTerm>

                </mods:role>

              2. <mods:namePart>Jiang, J.</mods:namePart>

              </mods:name>

            8. <mods:name>

              1. <mods:role>

                1. <mods:roleTerm type="text">author</mods:roleTerm>

                </mods:role>

              2. <mods:namePart>Middleton, M. J.</mods:namePart>

              </mods:name>

            9. <mods:name>

              1. <mods:role>

                1. <mods:roleTerm type="text">author</mods:roleTerm>

                </mods:role>

              2. <mods:namePart>Miniutti, G.</mods:namePart>

              </mods:name>

            10. <mods:name>

              1. <mods:role>

                1. <mods:roleTerm type="text">author</mods:roleTerm>

                </mods:role>

              2. <mods:namePart>Walton, D. J.</mods:namePart>

              </mods:name>

            11. <mods:name>

              1. <mods:role>

                1. <mods:roleTerm type="text">author</mods:roleTerm>

                </mods:role>

              2. <mods:namePart>Wilkins, D. R.</mods:namePart>

              </mods:name>

            12. <mods:name>

              1. <mods:role>

                1. <mods:roleTerm type="text">author</mods:roleTerm>

                </mods:role>

              2. <mods:namePart>Buisson, D. J.</mods:namePart>

              </mods:name>

            13. <mods:name>

              1. <mods:role>

                1. <mods:roleTerm type="text">author</mods:roleTerm>

                </mods:role>

              2. <mods:namePart>Caballero García, M. D.</mods:namePart>

              </mods:name>

            14. <mods:name>

              1. <mods:role>

                1. <mods:roleTerm type="text">author</mods:roleTerm>

                </mods:role>

              2. <mods:namePart>Cackett, E. M.</mods:namePart>

              </mods:name>

            15. <mods:name>

              1. <mods:role>

                1. <mods:roleTerm type="text">author</mods:roleTerm>

                </mods:role>

              2. <mods:namePart>De Marco, B.</mods:namePart>

              </mods:name>

            16. <mods:name>

              1. <mods:role>

                1. <mods:roleTerm type="text">author</mods:roleTerm>

                </mods:role>

              2. <mods:namePart>Gallo, L. C.</mods:namePart>

              </mods:name>

            17. <mods:name>

              1. <mods:role>

                1. <mods:roleTerm type="text">author</mods:roleTerm>

                </mods:role>

              2. <mods:namePart>Lohfink, A. M.</mods:namePart>

              </mods:name>

            18. <mods:name>

              1. <mods:role>

                1. <mods:roleTerm type="text">author</mods:roleTerm>

                </mods:role>

              2. <mods:namePart>Reynolds, C. S.</mods:namePart>

              </mods:name>

            19. <mods:name>

              1. <mods:role>

                1. <mods:roleTerm type="text">author</mods:roleTerm>

                </mods:role>

              2. <mods:namePart>Uttley, P.</mods:namePart>

              </mods:name>

            20. <mods:name>

              1. <mods:role>

                1. <mods:roleTerm type="text">author</mods:roleTerm>

                </mods:role>

              2. <mods:namePart>Young, A. J.</mods:namePart>

              </mods:name>

            21. <mods:name>

              1. <mods:role>

                1. <mods:roleTerm type="text">author</mods:roleTerm>

                </mods:role>

              2. <mods:namePart>Zogbhi, A.</mods:namePart>

              </mods:name>

            22. <mods:name>

              1. <mods:role>

                1. <mods:roleTerm type="text">other</mods:roleTerm>

                </mods:role>

              2. <mods:namePart>Unidad de Excelencia Científica María de Maeztu Centro de Astrobiología del Instituto Nacional de Técnica Aeroespacial y CSIC, MDM-2017-0737</mods:namePart>

              </mods:name>

            23. <mods:name>

              1. <mods:role>

                1. <mods:roleTerm type="text">orcid</mods:roleTerm>

                </mods:role>

              2. <mods:namePart>0000-0003-2658-6559</mods:namePart>

              </mods:name>

            24. <mods:name>

              1. <mods:role>

                1. <mods:roleTerm type="text">funder</mods:roleTerm>

                </mods:role>

              2. <mods:namePart>European Research Council (ERC)</mods:namePart>

              </mods:name>

            25. <mods:name>

              1. <mods:role>

                1. <mods:roleTerm type="text">funder</mods:roleTerm>

                </mods:role>

              2. <mods:namePart>Science and Technology Facilities Council (STFC)</mods:namePart>

              </mods:name>

            26. <mods:name>

              1. <mods:role>

                1. <mods:roleTerm type="text">funder</mods:roleTerm>

                </mods:role>

              2. <mods:namePart>European Space Agency (ESA)</mods:namePart>

              </mods:name>

            27. <mods:name>

              1. <mods:role>

                1. <mods:roleTerm type="text">funder</mods:roleTerm>

                </mods:role>

              2. <mods:namePart>European Commission (EC)</mods:namePart>

              </mods:name>

            28. <mods:name>

              1. <mods:role>

                1. <mods:roleTerm type="text">funder</mods:roleTerm>

                </mods:role>

              2. <mods:namePart>Agencia Estatal de Investigación (AEI)</mods:namePart>

              </mods:name>

            29. <mods:extension>

              1. <mods:dateAccessioned encoding="iso8601">2021-04-08T07:28:16Z</mods:dateAccessioned>

              </mods:extension>

            30. <mods:extension>

              1. <mods:dateAvailable encoding="iso8601">2021-04-08T07:28:16Z</mods:dateAvailable>

              </mods:extension>

            31. <mods:originInfo>

              1. <mods:dateIssued encoding="iso8601">2020-01-20</mods:dateIssued>

              </mods:originInfo>

            32. <mods:identifier type="citation">Nature Astronomy 4: 597- 602 (2020)</mods:identifier>

            33. <mods:identifier type="uri">http://hdl.handle.net/20.500.12666/152</mods:identifier>

            34. <mods:identifier type="doi">10.1038/s41550-019-1002-x</mods:identifier>

            35. <mods:identifier type="e-issn">2397-3366</mods:identifier>

            36. <mods:abstract>X-ray reverberation echoes are assumed to be produced in the strongly distorted spacetime around accreting supermassive black holes. This signal allows us to spatially map the geometry of the inner accretion flow1,2—a region that cannot yet be spatially resolved by any telescope—and provides a direct measure of the black hole mass and spin. The reverberation timescale is set by the light travel path between the direct emission from a hot X-ray corona and the reprocessed emission from the inner edge of the accretion disk3,4,5,6. However, there is an inherent degeneracy in the reverberation signal between black hole mass, inner disk radius and height of the illuminating corona above the disk. Here we use a long X-ray observation of the highly variable active galaxy IRAS 13224−3809 to track the reverberation signal as the system evolves on timescales of a day7,8. With the inclusion of all the relativistic effects, modelling reveals that the height of the X-ray corona increases with increasing luminosity, providing a dynamic view of the inner accretion region. This simultaneous modelling allows us to break the inherent degeneracies and obtain an independent timing-based estimate for the mass and spin of the black hole. The uncertainty on black hole mass is comparable to the leading optical reverberation method9, making X-ray reverberation a powerful technique, particularly for sources with low optical variability10.</mods:abstract>

            37. <mods:language>

              1. <mods:languageTerm authority="rfc3066">eng</mods:languageTerm>

              </mods:language>

            38. <mods:accessCondition type="useAndReproduction" />
            39. <mods:subject>

              1. <mods:topic>Black Hole</mods:topic>

              </mods:subject>

            40. <mods:subject>

              1. <mods:topic>Active Galaxy</mods:topic>

              </mods:subject>

            41. <mods:subject>

              1. <mods:topic>X ray</mods:topic>

              </mods:subject>

            42. <mods:subject>

              1. <mods:topic>Reverberation mapping</mods:topic>

              </mods:subject>

            43. <mods:subject>

              1. <mods:topic>Galactic Nuclei</mods:topic>

              </mods:subject>

            44. <mods:subject>

              1. <mods:topic>Scattering</mods:topic>

              </mods:subject>

            45. <mods:titleInfo>

              1. <mods:title>A dynamic black hole corona in an active galaxy through X-ray reverberation mapping</mods:title>

              </mods:titleInfo>

            46. <mods:genre>info:eu-repo/semantics/article</mods:genre>

            </mods:mods>

          </xmlData>

        </mdWrap>

      </dmdSec>

    3. <amdSec ID="TMD_20.500.12666_152">

      1. <rightsMD ID="RIG_20.500.12666_152">

        1. <mdWrap MDTYPE="OTHER" MIMETYPE="text/plain" OTHERMDTYPE="DSpaceDepositLicense">

          1. <binData>Cgo8aDEgc3R5bGU9ImZvbnQtZmFtaWx5OnZlcmRhbmE7Ij5MSUNFTkNJQSBJTlRBIERFIERJU1RSSUJVQ0kmT2FjdXRlO04gTk8gRVhDTFVTSVZBPC9oMT4KCgpQYXJhIHF1ZSBlbCByZXBvc2l0b3JpbyA8Yj5EaWdpdGFsLjxlbT5JTlRBPC9lbT48L2I+IHB1ZWRhIGFsbWFjZW5hciB5IGRpc3RyaWJ1aXIgZWwgb2JqZXRvIGRpZ2l0YWwgZGVwb3NpdGFkbywgZXMgbmVjZXNhcmlvIHF1ZSBsYSBwZXJzb25hIHF1ZSBoYWdhIGVsIGRlcCZvYWN1dGU7c2l0byBsZWEgeSBhY2VwdGUgbGFzIGNvbmRpY2lvbmVzIGVzdGFiZWNpZGFzIGVuIGVzdGEgbGljZW5jaWE6CgoxLiBFbC9sb3MgYXV0b3IvZXMgbyBwb3NlZWRvci9lcyBkZWwgY29weXJpZ2h0IGRlbCB0cmFiYWpvIGRlcG9zaXRhZG8gbyBlbiBzdSBjYXNvIGxhIHBlcnNvbmEgZGVsZWdhZGEgcGFyYSBoYWNlcmxvLCBnYXJhbnRpemEgYWwgSU5UQSBlbCBkZXJlY2hvIG5vIGV4Y2x1c2l2byBwYXJhIGRpc3RyaWJ1aXIsIGFsbWFjZW5hciB5IHByZXNlcnZhciBlbiBmb3JtYXRvIGVsZWN0ciZvYWN1dGU7bmljbyBlbCBvYmpldG8gZGlnaXRhbCBkZXBvc2l0YWRvLgoKMi4gRWwgZGVwb3NpdGFudGUsIGVuIGNhc28gZGUgdW5hIG9icmEgY29uIG0mYWFjdXRlO3MgZGUgdW4gYXV0b3IsIGdhcmFudGl6YSBxdWUgbG8gaGFjZSByZXNwb25zYWJsZW1lbnRlIGVuIG5vbWJyZSB5IGNvbiBjb25zZW50aW1pZW50byBkZSBsb3MgZGVtJmFhY3V0ZTtzIGNvYXV0b3Jlcy4KCjMuIERlY2xhcmEgcXVlIHNlIHRyYXRhIGRlIHVuIHRyYWJham8gb3JpZ2luYWwgeSBubyBlc3QmYWFjdXRlOyBzdWpldG8gYSByZXN0cmljY2lvbmVzIGRlICBjb3B5cmlnaHQgY29uIHRlcmNlcm9zIHBhcmEgcG9kZXIgb3RvcmdhciBhbCBJTlRBIGxvcyBkZXJlY2hvcyByZXF1ZXJpZG9zIGVuIGVzdGEgbGljZW5jaWEuCgo0LiBTaSBlbCB0cmFiYWpvIGRlcG9zaXRhZG8gY29udGllbmUgbWF0ZXJpYWwgZGVsIHF1ZSBlbCBhdXRvciBubyBwb3NlZSBlbCBjb3B5cmlnaHQsIGVsIGF1dG9yIGRlY2xhcmEgcXVlIGhhIG9idGVuaWRvIGVsIHBlcm1pc28gbmVjZXNhcmlvIGRlbCBwcm9waWV0YXJpbyBkZWwgY29weXJpZ2h0IHBhcmEgZ2FyYW50aXphciBhbCBJTlRBIGxvcyBkZXJlY2hvcyBkZXNjcml0b3MgZW4gZXN0YSBsaWNlbmNpYSwgeSBxdWUgZWwgcG9zZWVkb3IgZGVsIGNvcHlyaWdodCBlc3QmYWFjdXRlOyBjbGFyYW1lbnRlIGlkZW50aWZpY2FkbyB5IHJlY29ub2NpZG8gZW4gZWwgdGV4dG8gbyBjb250ZW5pZG8gZGVsIGFyY2hpdm8gZGVwb3NpdGFkby4KCjUuIEVsIGF1dG9yIGFjZXB0YSBxdWUgZWwgSU5UQSBwdWVkZSwgc2luIHJlYWxpemFyIGNhbWJpb3MgZW4gZWwgY29udGVuaWRvLCBjb252ZXJ0aXIgZWwgdHJhYmFqbyBhIGN1YWxxdWllciBtZWRpbyBvIGZvcm1hdG8gY29uIG9iamV0aXZvcyBkZSBwcmVzZXJ2YWNpJm9hY3V0ZTtuLgoKNi4gQXNpbWlzbW8gZWwgYXV0b3IgYWNlcHRhIHF1ZSBlbCBJTlRBIHB1ZWRlIGNvbnNlcnZhcyBtJmFhY3V0ZTtzIGRlIHVuYSBjb3BpYSBkZSBlc3RlIHRyYWJham8gcGFyYSBnYXJhbnRpemFyIGxhIHNlZ3VyaWRhZCB5IGxhIHByZXNlcnZhY2kmb2FjdXRlO24gZGUgbG9zIGFyY2hpdm9zLgoKNy4gRWwgSU5UQSBwcmVzZXJ2YXImYWFjdXRlOyB5IGRpZnVuZGlyJmFhY3V0ZTsgZXN0ZSB0cmFiYWpvLiBFbiBlbCBjYXNvIGRlIHF1ZSBubyBwdWVkYSBjb250aW51YXIgbWFudGVuaWVuZG8gZWwgYXJjaGl2byBjb21vIHBhcnRlIGRlbCByZXBvc2l0b3JpbyBpbnN0aXR1Y2lhbCBzZSByZXNlcnZhIGVsIGRlcmVjaG8gZGUgZGV2b2x2ZXIgZWwgY29udGVuaWRvIGFsIGRlcG9zaXRhbnRlLiBTaSBlc3RvIG5vIGVzIHBvc2libGUgKHBvcnF1ZSBsYSBjb211bmlkYWQsIGNvbGVjY2kmb2FjdXRlO24sIGV0Yy4geWEgbm8gZXhpc3RhIG8gZWwgYXV0b3Igbm8gZXN0JmFhY3V0ZTsgbG9jYWxpemFibGUpLCBlbCBtYXRlcmlhbCBwb2RyJmlhY3V0ZTthIHNlciBhcmNoaXZhZG8gY29tbyBwYXJ0ZSBkZWwgYXJjaGl2byBkaWdpdGFsIGRlIGxhIGluc3RpdHVjaSZvYWN1dGU7bi4KCjguIFNpIGxhIGNvbnRyaWJ1Y2kmb2FjdXRlO24gc2UgYmFzYSBlbiB0cmFiYWpvcyBmaW5hbmNpYWRvcyBvIHBhdHJvY2luYWRvcyBwb3Igb3JnYW5pemFjaW9uZXMgZGlzdGludGFzIGFsIElOVEEsIGRlY2xhcmEgaGFiZXIgY3VtcGxpZG8gY29uIGN1YWxxdWllciBkZXJlY2hvIHkgb2JsaWdhY2kmb2FjdXRlO24gZXhwcmVzYWRvcyBlbiBlbCBjb250cmF0byBvIGFjdWVyZG8gZGUgZGljaGFzIG9yZ2FuaXphY2lvbmVzLgoKOS4gRWwgbm9tYnJlIGRlbCBkZXBvc2l0YW50ZSBxdWVkYXImYWFjdXRlOyBjbGFyYW1lbnRlIGlkZW50aWZpY2FkbyBwb3IgZWwgSU5UQSBjb21vIGVsIGRlbCBhdXRvciBvIHByb3BpZXRhcmlvIGRlIGxhIGNvbnRyaWJ1Y2kmb2FjdXRlO24sIHkgZWwgSU5UQSBubyByZWFsaXphciZhYWN1dGU7IG5pbmd1bmEgYWx0ZXJhY2kmb2FjdXRlO24gZGUgc3UgY29udHJpYnVjaSZvYWN1dGU7biwgZXhjZXB0byBsYXMgcmVmZXJpZGFzIGFsIGZvcm1hdG8sIHBlcm1pdGlkYXMgcG9yIGVzdGEgbGljZW5jaWEuCgoKCklOVEEgTElDRU5TRSBPRiBOT04tRVhDTFVTSVZFIERJU1RSSUJVVElPTi4KCkluIG9yZGVyIGZvciB0aGUgRGlnaXRhbC5JTlRBIHJlcG9zaXRvcnkgdG8gc3RvcmUgYW5kIGRpc3RyaWJ1dGUgdGhlIGRlcG9zaXRlZCBkaWdpdGFsIG9iamVjdCwgaXQgaXMgbmVjZXNzYXJ5IGZvciB0aGUgcGVyc29uIG1ha2luZyB0aGUgZGVwb3NpdCB0byByZWFkIGFuZCBhY2NlcHQgdGhlIGNvbmRpdGlvbnMgZXN0YWJsaXNoZWQgaW4gdGhpcyBsaWNlbnNlOgoKMS4gVGhlIGF1dGhvciAocykgb3IgaG9sZGVyIC8gcyBvZiB0aGUgY29weXJpZ2h0IG9mIHRoZSBkZXBvc2l0ZWQgd29yayBvciwgd2hlcmUgYXBwcm9wcmlhdGUsIHRoZSBwZXJzb24gZGVsZWdhdGVkIHRvIGRvIHNvLCBndWFyYW50ZWVzIElOVEEgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gZGlzdHJpYnV0ZSwgc3RvcmUgYW5kIHByZXNlcnZlIHRoZSBkZXBvc2l0ZWQgZGlnaXRhbCBvYmplY3QgaW4gZWxlY3Ryb25pYyBmb3JtYXQuCgoyLiBUaGUgZGVwb3NpdG9yLCBpbiB0aGUgY2FzZSBvZiBhIHdvcmsgd2l0aCBtb3JlIHRoYW4gb25lIGF1dGhvciwgZ3VhcmFudGVlcyB0aGF0IGhlIGRvZXMgc28gcmVzcG9uc2libHkgb24gYmVoYWxmIGFuZCB3aXRoIHRoZSBjb25zZW50IG9mIHRoZSBvdGhlciBjby1hdXRob3JzLgoKMy4gRGVjbGFyZXMgdGhhdCBpdCBpcyBhbiBvcmlnaW5hbCB3b3JrIGFuZCBpcyBub3Qgc3ViamVjdCB0byBjb3B5cmlnaHQgcmVzdHJpY3Rpb25zIHdpdGggdGhpcmQgcGFydGllcyBpbiBvcmRlciB0byBncmFudCBJTlRBIHRoZSByaWdodHMgcmVxdWlyZWQgaW4gdGhpcyBsaWNlbnNlLgoKNC4gSWYgdGhlIGRlcG9zaXRlZCB3b3JrIGNvbnRhaW5zIG1hdGVyaWFsIHRoYXQgdGhlIGF1dGhvciBkb2VzIG5vdCBvd24gdGhlIGNvcHlyaWdodCwgdGhlIGF1dGhvciBkZWNsYXJlcyB0aGF0IGhlIGhhcyBvYnRhaW5lZCB0aGUgbmVjZXNzYXJ5IHBlcm1pc3Npb24gZnJvbSB0aGUgY29weXJpZ2h0IG93bmVyIHRvIGd1YXJhbnRlZSBJTlRBIHRoZSByaWdodHMgZGVzY3JpYmVkIGluIHRoaXMgbGljZW5zZSwgYW5kIHRoYXQgdGhlIGNvcHlyaWdodCBob2xkZXIgaXMgY2xlYXJseSBpZGVudGlmaWVkIGFuZCByZWNvZ25pemVkIGluIHRoZSB0ZXh0IG9yIGNvbnRlbnQgb2YgdGhlIGRlcG9zaXRlZCBmaWxlLgoKNS4gVGhlIGF1dGhvciBhY2NlcHRzIHRoYXQgSU5UQSBjYW4sIHdpdGhvdXQgbWFraW5nIGNoYW5nZXMgdG8gdGhlIGNvbnRlbnQsIGNvbnZlcnQgdGhlIHdvcmsgdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgd2l0aCBwcmVzZXJ2YXRpb24gb2JqZWN0aXZlcy4KCjYuIFRoZSBhdXRob3IgYWxzbyBhY2NlcHRzIHRoYXQgSU5UQSBtYXkga2VlcCBtb3JlIHRoYW4gb25lIGNvcHkgb2YgdGhpcyB3b3JrIHRvIGVuc3VyZSB0aGUgc2VjdXJpdHkgYW5kIHByZXNlcnZhdGlvbiBvZiB0aGUgYXJjaGl2ZXMuCgo3LiBJTlRBIHdpbGwgcHJlc2VydmUgYW5kIGRpc3NlbWluYXRlIHRoaXMgd29yay4gSW4gdGhlIGV2ZW50IHRoYXQgeW91IGNhbm5vdCBjb250aW51ZSB0byBtYWludGFpbiB0aGUgZmlsZSBhcyBwYXJ0IG9mIHRoZSBpbnN0aXR1dGlvbmFsIHJlcG9zaXRvcnksIHlvdSByZXNlcnZlIHRoZSByaWdodCB0byByZXR1cm4gdGhlIGNvbnRlbnQgdG8gdGhlIGRlcG9zaXRvci4gSWYgdGhpcyBpcyBub3QgcG9zc2libGUgKGJlY2F1c2UgdGhlIGNvbW11bml0eSwgY29sbGVjdGlvbiwgZXRjLiBubyBsb25nZXIgZXhpc3RzIG9yIHRoZSBhdXRob3IgaXMgbm90IHJlYWNoYWJsZSksIHRoZSBtYXRlcmlhbCBjb3VsZCBiZSBhcmNoaXZlZCBhcyBwYXJ0IG9mIHRoZSBpbnN0aXR1dGlvbidzIGRpZ2l0YWwgYXJjaGl2ZS4KCjguIElmIHRoZSBjb250cmlidXRpb24gaXMgYmFzZWQgb24gd29ya3MgZmluYW5jZWQgb3Igc3BvbnNvcmVkIGJ5IG9yZ2FuaXphdGlvbnMgb3RoZXIgdGhhbiBJTlRBLCBpdCBkZWNsYXJlcyB0aGF0IGl0IGhhcyBjb21wbGllZCB3aXRoIGFueSByaWdodCBhbmQgb2JsaWdhdGlvbiBleHByZXNzZWQgaW4gdGhlIGNvbnRyYWN0IG9yIGFncmVlbWVudCBvZiBzYWlkIG9yZ2FuaXphdGlvbnMuCgo5LiBUaGUgbmFtZSBvZiB0aGUgZGVwb3NpdG9yIHdpbGwgYmUgY2xlYXJseSBpZGVudGlmaWVkIGJ5IHRoZSBJTlRBIGFzIHRoYXQgb2YgdGhlIGF1dGhvciBvciBvd25lciBvZiB0aGUgY29udHJpYnV0aW9uLCBhbmQgSU5UQSB3aWxsIG5vdCBtYWtlIGFueSBhbHRlcmF0aW9uIG9mIGl0cyBjb250cmlidXRpb24sIGV4Y2VwdCB0aG9zZSByZWZlcnJpbmcgdG8gdGhlIGZvcm1hdCwgYWxsb3dlZCBieSB0aGlzIGxpY2Vuc2UuCg==</binData>

          </mdWrap>

        </rightsMD>

      </amdSec>

    4. <amdSec ID="FO_20.500.12666_152_2">

      1. <techMD ID="TECH_O_20.500.12666_152_2">

        1. <mdWrap MDTYPE="PREMIS">

          1. <xmlData schemaLocation="http://www.loc.gov/standards/premis http://www.loc.gov/standards/premis/PREMIS-v1-0.xsd">

            1. <premis:premis>

              1. <premis:object>

                1. <premis:objectIdentifier>

                  1. <premis:objectIdentifierType>URL</premis:objectIdentifierType>

                  2. <premis:objectIdentifierValue>https://digital.inta.es:8443/jspui/bitstream/20.500.12666/152/2/acceso-restringido.pdf</premis:objectIdentifierValue>

                  </premis:objectIdentifier>

                2. <premis:objectCategory>File</premis:objectCategory>

                3. <premis:objectCharacteristics>

                  1. <premis:fixity>

                    1. <premis:messageDigestAlgorithm>MD5</premis:messageDigestAlgorithm>

                    2. <premis:messageDigest>9462c6b032eb8c5b2f5c478db4133ad7</premis:messageDigest>

                    </premis:fixity>

                  2. <premis:size>227055</premis:size>

                  3. <premis:format>

                    1. <premis:formatDesignation>

                      1. <premis:formatName>application/pdf</premis:formatName>

                      </premis:formatDesignation>

                    </premis:format>

                  </premis:objectCharacteristics>

                4. <premis:originalName>acceso-restringido.pdf</premis:originalName>

                </premis:object>

              </premis:premis>

            </xmlData>

          </mdWrap>

        </techMD>

      </amdSec>

    5. <amdSec ID="FT_20.500.12666_152_3">

      1. <techMD ID="TECH_T_20.500.12666_152_3">

        1. <mdWrap MDTYPE="PREMIS">

          1. <xmlData schemaLocation="http://www.loc.gov/standards/premis http://www.loc.gov/standards/premis/PREMIS-v1-0.xsd">

            1. <premis:premis>

              1. <premis:object>

                1. <premis:objectIdentifier>

                  1. <premis:objectIdentifierType>URL</premis:objectIdentifierType>

                  2. <premis:objectIdentifierValue>https://digital.inta.es:8443/jspui/bitstream/20.500.12666/152/3/acceso-restringido.pdf.txt</premis:objectIdentifierValue>

                  </premis:objectIdentifier>

                2. <premis:objectCategory>File</premis:objectCategory>

                3. <premis:objectCharacteristics>

                  1. <premis:fixity>

                    1. <premis:messageDigestAlgorithm>MD5</premis:messageDigestAlgorithm>

                    2. <premis:messageDigest>055df3e7a09a5f48c651e5844a855e75</premis:messageDigest>

                    </premis:fixity>

                  2. <premis:size>421</premis:size>

                  3. <premis:format>

                    1. <premis:formatDesignation>

                      1. <premis:formatName>text/plain</premis:formatName>

                      </premis:formatDesignation>

                    </premis:format>

                  </premis:objectCharacteristics>

                4. <premis:originalName>acceso-restringido.pdf.txt</premis:originalName>

                </premis:object>

              </premis:premis>

            </xmlData>

          </mdWrap>

        </techMD>

      </amdSec>

    6. <fileSec>

      1. <fileGrp USE="ORIGINAL">

        1. <file ADMID="FO_20.500.12666_152_2" CHECKSUM="9462c6b032eb8c5b2f5c478db4133ad7" CHECKSUMTYPE="MD5" GROUPID="GROUP_BITSTREAM_20.500.12666_152_2" ID="BITSTREAM_ORIGINAL_20.500.12666_152_2" MIMETYPE="application/pdf" SEQ="2" SIZE="227055">

          1. <FLocat LOCTYPE="URL" href="https://digital.inta.es:8443/jspui/bitstream/20.500.12666/152/2/acceso-restringido.pdf" type="simple" />

          </file>

        </fileGrp>

      2. <fileGrp USE="TEXT">

        1. <file ADMID="FT_20.500.12666_152_3" CHECKSUM="055df3e7a09a5f48c651e5844a855e75" CHECKSUMTYPE="MD5" GROUPID="GROUP_BITSTREAM_20.500.12666_152_3" ID="BITSTREAM_TEXT_20.500.12666_152_3" MIMETYPE="text/plain" SEQ="3" SIZE="421">

          1. <FLocat LOCTYPE="URL" href="https://digital.inta.es:8443/jspui/bitstream/20.500.12666/152/3/acceso-restringido.pdf.txt" type="simple" />

          </file>

        </fileGrp>

      </fileSec>

    7. <structMap LABEL="DSpace Object" TYPE="LOGICAL">

      1. <div ADMID="DMD_20.500.12666_152" TYPE="DSpace Object Contents">

        1. <div TYPE="DSpace BITSTREAM">

          1. <fptr FILEID="BITSTREAM_ORIGINAL_20.500.12666_152_2" />

          </div>

        </div>

      </structMap>

    </mets>

mods

Download XML

    <?xml version="1.0" encoding="UTF-8" ?>

  1. <mods:mods schemaLocation="http://www.loc.gov/mods/v3 http://www.loc.gov/standards/mods/v3/mods-3-1.xsd">

    1. <mods:name>

      1. <mods:namePart>Alston, W. N.</mods:namePart>

      </mods:name>

    2. <mods:name>

      1. <mods:namePart>Fabian, A. C.</mods:namePart>

      </mods:name>

    3. <mods:name>

      1. <mods:namePart>Kara, E.</mods:namePart>

      </mods:name>

    4. <mods:name>

      1. <mods:namePart>Parker, M. L.</mods:namePart>

      </mods:name>

    5. <mods:name>

      1. <mods:namePart>Dovciak, M.</mods:namePart>

      </mods:name>

    6. <mods:name>

      1. <mods:namePart>Pinto, C.</mods:namePart>

      </mods:name>

    7. <mods:name>

      1. <mods:namePart>Jiang, J.</mods:namePart>

      </mods:name>

    8. <mods:name>

      1. <mods:namePart>Middleton, M. J.</mods:namePart>

      </mods:name>

    9. <mods:name>

      1. <mods:namePart>Miniutti, G.</mods:namePart>

      </mods:name>

    10. <mods:name>

      1. <mods:namePart>Walton, D. J.</mods:namePart>

      </mods:name>

    11. <mods:name>

      1. <mods:namePart>Wilkins, D. R.</mods:namePart>

      </mods:name>

    12. <mods:name>

      1. <mods:namePart>Buisson, D. J.</mods:namePart>

      </mods:name>

    13. <mods:name>

      1. <mods:namePart>Caballero García, M. D.</mods:namePart>

      </mods:name>

    14. <mods:name>

      1. <mods:namePart>Cackett, E. M.</mods:namePart>

      </mods:name>

    15. <mods:name>

      1. <mods:namePart>De Marco, B.</mods:namePart>

      </mods:name>

    16. <mods:name>

      1. <mods:namePart>Gallo, L. C.</mods:namePart>

      </mods:name>

    17. <mods:name>

      1. <mods:namePart>Lohfink, A. M.</mods:namePart>

      </mods:name>

    18. <mods:name>

      1. <mods:namePart>Reynolds, C. S.</mods:namePart>

      </mods:name>

    19. <mods:name>

      1. <mods:namePart>Uttley, P.</mods:namePart>

      </mods:name>

    20. <mods:name>

      1. <mods:namePart>Young, A. J.</mods:namePart>

      </mods:name>

    21. <mods:name>

      1. <mods:namePart>Zogbhi, A.</mods:namePart>

      </mods:name>

    22. <mods:extension>

      1. <mods:dateAvailable encoding="iso8601">2021-04-08T07:28:16Z</mods:dateAvailable>

      </mods:extension>

    23. <mods:extension>

      1. <mods:dateAccessioned encoding="iso8601">2021-04-08T07:28:16Z</mods:dateAccessioned>

      </mods:extension>

    24. <mods:originInfo>

      1. <mods:dateIssued encoding="iso8601">2020-01-20</mods:dateIssued>

      </mods:originInfo>

    25. <mods:identifier type="citation">Nature Astronomy 4: 597- 602 (2020)</mods:identifier>

    26. <mods:identifier type="uri">http://hdl.handle.net/20.500.12666/152</mods:identifier>

    27. <mods:identifier type="doi">10.1038/s41550-019-1002-x</mods:identifier>

    28. <mods:identifier type="e-issn">2397-3366</mods:identifier>

    29. <mods:abstract>X-ray reverberation echoes are assumed to be produced in the strongly distorted spacetime around accreting supermassive black holes. This signal allows us to spatially map the geometry of the inner accretion flow1,2—a region that cannot yet be spatially resolved by any telescope—and provides a direct measure of the black hole mass and spin. The reverberation timescale is set by the light travel path between the direct emission from a hot X-ray corona and the reprocessed emission from the inner edge of the accretion disk3,4,5,6. However, there is an inherent degeneracy in the reverberation signal between black hole mass, inner disk radius and height of the illuminating corona above the disk. Here we use a long X-ray observation of the highly variable active galaxy IRAS 13224−3809 to track the reverberation signal as the system evolves on timescales of a day7,8. With the inclusion of all the relativistic effects, modelling reveals that the height of the X-ray corona increases with increasing luminosity, providing a dynamic view of the inner accretion region. This simultaneous modelling allows us to break the inherent degeneracies and obtain an independent timing-based estimate for the mass and spin of the black hole. The uncertainty on black hole mass is comparable to the leading optical reverberation method9, making X-ray reverberation a powerful technique, particularly for sources with low optical variability10.</mods:abstract>

    30. <mods:language>

      1. <mods:languageTerm>eng</mods:languageTerm>

      </mods:language>

    31. <mods:accessCondition type="useAndReproduction">Copyright © 2020, The Author(s), under exclusive licence to Springer Nature Limited</mods:accessCondition>

    32. <mods:accessCondition type="useAndReproduction">info:eu-repo/semantics/restrictedAccess</mods:accessCondition>

    33. <mods:subject>

      1. <mods:topic>Black Hole</mods:topic>

      </mods:subject>

    34. <mods:subject>

      1. <mods:topic>Active Galaxy</mods:topic>

      </mods:subject>

    35. <mods:subject>

      1. <mods:topic>X ray</mods:topic>

      </mods:subject>

    36. <mods:subject>

      1. <mods:topic>Reverberation mapping</mods:topic>

      </mods:subject>

    37. <mods:subject>

      1. <mods:topic>Galactic Nuclei</mods:topic>

      </mods:subject>

    38. <mods:subject>

      1. <mods:topic>Scattering</mods:topic>

      </mods:subject>

    39. <mods:titleInfo>

      1. <mods:title>A dynamic black hole corona in an active galaxy through X-ray reverberation mapping</mods:title>

      </mods:titleInfo>

    40. <mods:genre>info:eu-repo/semantics/article</mods:genre>

    </mods:mods>

ore

Download XML

    <?xml version="1.0" encoding="UTF-8" ?>

  1. <atom:entry schemaLocation="http://www.w3.org/2005/Atom http://www.kbcafe.com/rss/atom.xsd.xml">

    1. <atom:id>http://hdl.handle.net/20.500.12666/152/ore.xml</atom:id>

    2. <atom:link href="http://hdl.handle.net/20.500.12666/152" rel="alternate" />
    3. <atom:link href="http://hdl.handle.net/20.500.12666/152/ore.xml" rel="http://www.openarchives.org/ore/terms/describes" />
    4. <atom:link href="http://hdl.handle.net/20.500.12666/152/ore.xml#atom" rel="self" type="application/atom+xml" />
    5. <atom:published>2021-04-08T07:28:16Z</atom:published>

    6. <atom:updated>2021-04-08T07:28:16Z</atom:updated>

    7. <atom:source>

      1. <atom:generator>Digital INTA</atom:generator>

      </atom:source>

    8. <atom:title>A dynamic black hole corona in an active galaxy through X-ray reverberation mapping</atom:title>

    9. <atom:author>

      1. <atom:name>Alston, W. N.</atom:name>

      </atom:author>

    10. <atom:author>

      1. <atom:name>Fabian, A. C.</atom:name>

      </atom:author>

    11. <atom:author>

      1. <atom:name>Kara, E.</atom:name>

      </atom:author>

    12. <atom:author>

      1. <atom:name>Parker, M. L.</atom:name>

      </atom:author>

    13. <atom:author>

      1. <atom:name>Dovciak, M.</atom:name>

      </atom:author>

    14. <atom:author>

      1. <atom:name>Pinto, C.</atom:name>

      </atom:author>

    15. <atom:author>

      1. <atom:name>Jiang, J.</atom:name>

      </atom:author>

    16. <atom:author>

      1. <atom:name>Middleton, M. J.</atom:name>

      </atom:author>

    17. <atom:author>

      1. <atom:name>Miniutti, G.</atom:name>

      </atom:author>

    18. <atom:author>

      1. <atom:name>Walton, D. J.</atom:name>

      </atom:author>

    19. <atom:author>

      1. <atom:name>Wilkins, D. R.</atom:name>

      </atom:author>

    20. <atom:author>

      1. <atom:name>Buisson, D. J.</atom:name>

      </atom:author>

    21. <atom:author>

      1. <atom:name>Caballero García, M. D.</atom:name>

      </atom:author>

    22. <atom:author>

      1. <atom:name>Cackett, E. M.</atom:name>

      </atom:author>

    23. <atom:author>

      1. <atom:name>De Marco, B.</atom:name>

      </atom:author>

    24. <atom:author>

      1. <atom:name>Gallo, L. C.</atom:name>

      </atom:author>

    25. <atom:author>

      1. <atom:name>Lohfink, A. M.</atom:name>

      </atom:author>

    26. <atom:author>

      1. <atom:name>Reynolds, C. S.</atom:name>

      </atom:author>

    27. <atom:author>

      1. <atom:name>Uttley, P.</atom:name>

      </atom:author>

    28. <atom:author>

      1. <atom:name>Young, A. J.</atom:name>

      </atom:author>

    29. <atom:author>

      1. <atom:name>Zogbhi, A.</atom:name>

      </atom:author>

    30. <atom:category label="Aggregation" scheme="http://www.openarchives.org/ore/terms/" term="http://www.openarchives.org/ore/terms/Aggregation" />
    31. <atom:category scheme="http://www.openarchives.org/ore/atom/modified" term="2021-04-08T07:28:16Z" />
    32. <atom:category label="DSpace Item" scheme="http://www.dspace.org/objectModel/" term="DSpaceItem" />
    33. <atom:link href="https://digital.inta.es:8443/jspui/bitstream/20.500.12666/152/2/acceso-restringido.pdf" length="227055" rel="http://www.openarchives.org/ore/terms/aggregates" title="acceso-restringido.pdf" type="application/pdf" />
    34. <oreatom:triples>

      1. <rdf:Description about="http://hdl.handle.net/20.500.12666/152/ore.xml#atom">

        1. <rdf:type resource="http://www.dspace.org/objectModel/DSpaceItem" />
        2. <dcterms:modified>2021-04-08T07:28:16Z</dcterms:modified>

        </rdf:Description>

      2. <rdf:Description about="https://digital.inta.es:8443/jspui/bitstream/20.500.12666/152/1/license.txt">

        1. <rdf:type resource="http://www.dspace.org/objectModel/DSpaceBitstream" />
        2. <dcterms:description>LICENSE</dcterms:description>

        </rdf:Description>

      3. <rdf:Description about="https://digital.inta.es:8443/jspui/bitstream/20.500.12666/152/2/acceso-restringido.pdf">

        1. <rdf:type resource="http://www.dspace.org/objectModel/DSpaceBitstream" />
        2. <dcterms:description>ORIGINAL</dcterms:description>

        </rdf:Description>

      4. <rdf:Description about="https://digital.inta.es:8443/jspui/bitstream/20.500.12666/152/3/acceso-restringido.pdf.txt">

        1. <rdf:type resource="http://www.dspace.org/objectModel/DSpaceBitstream" />
        2. <dcterms:description>TEXT</dcterms:description>

        </rdf:Description>

      5. <rdf:Description about="https://digital.inta.es:8443/jspui/bitstream/20.500.12666/152/4/acceso-restringido.pdf.jpg">

        1. <rdf:type resource="http://www.dspace.org/objectModel/DSpaceBitstream" />
        2. <dcterms:description>THUMBNAIL</dcterms:description>

        </rdf:Description>

      </oreatom:triples>

    </atom:entry>

qdc

Download XML

    <?xml version="1.0" encoding="UTF-8" ?>

  1. <qdc:qualifieddc schemaLocation="http://purl.org/dc/elements/1.1/ http://dublincore.org/schemas/xmls/qdc/2006/01/06/dc.xsd http://purl.org/dc/terms/ http://dublincore.org/schemas/xmls/qdc/2006/01/06/dcterms.xsd http://dspace.org/qualifieddc/ http://www.ukoln.ac.uk/metadata/dcmi/xmlschema/qualifieddc.xsd">

    1. <dc:title>A dynamic black hole corona in an active galaxy through X-ray reverberation mapping</dc:title>

    2. <dc:creator>Alston, W. N.</dc:creator>

    3. <dc:creator>Fabian, A. C.</dc:creator>

    4. <dc:creator>Kara, E.</dc:creator>

    5. <dc:creator>Parker, M. L.</dc:creator>

    6. <dc:creator>Dovciak, M.</dc:creator>

    7. <dc:creator>Pinto, C.</dc:creator>

    8. <dc:creator>Jiang, J.</dc:creator>

    9. <dc:creator>Middleton, M. J.</dc:creator>

    10. <dc:creator>Miniutti, G.</dc:creator>

    11. <dc:creator>Walton, D. J.</dc:creator>

    12. <dc:creator>Wilkins, D. R.</dc:creator>

    13. <dc:creator>Buisson, D. J.</dc:creator>

    14. <dc:creator>Caballero García, M. D.</dc:creator>

    15. <dc:creator>Cackett, E. M.</dc:creator>

    16. <dc:creator>De Marco, B.</dc:creator>

    17. <dc:creator>Gallo, L. C.</dc:creator>

    18. <dc:creator>Lohfink, A. M.</dc:creator>

    19. <dc:creator>Reynolds, C. S.</dc:creator>

    20. <dc:creator>Uttley, P.</dc:creator>

    21. <dc:creator>Young, A. J.</dc:creator>

    22. <dc:creator>Zogbhi, A.</dc:creator>

    23. <dc:contributor>Unidad de Excelencia Científica María de Maeztu Centro de Astrobiología del Instituto Nacional de Técnica Aeroespacial y CSIC, MDM-2017-0737</dc:contributor>

    24. <dc:contributor>0000-0003-2658-6559</dc:contributor>

    25. <dc:contributor>European Research Council (ERC)</dc:contributor>

    26. <dc:contributor>Science and Technology Facilities Council (STFC)</dc:contributor>

    27. <dc:contributor>European Space Agency (ESA)</dc:contributor>

    28. <dc:contributor>European Commission (EC)</dc:contributor>

    29. <dc:contributor>Agencia Estatal de Investigación (AEI)</dc:contributor>

    30. <dc:subject>Black Hole</dc:subject>

    31. <dc:subject>Active Galaxy</dc:subject>

    32. <dc:subject>X ray</dc:subject>

    33. <dc:subject>Reverberation mapping</dc:subject>

    34. <dc:subject>Galactic Nuclei</dc:subject>

    35. <dc:subject>Scattering</dc:subject>

    36. <dcterms:abstract>X-ray reverberation echoes are assumed to be produced in the strongly distorted spacetime around accreting supermassive black holes. This signal allows us to spatially map the geometry of the inner accretion flow1,2—a region that cannot yet be spatially resolved by any telescope—and provides a direct measure of the black hole mass and spin. The reverberation timescale is set by the light travel path between the direct emission from a hot X-ray corona and the reprocessed emission from the inner edge of the accretion disk3,4,5,6. However, there is an inherent degeneracy in the reverberation signal between black hole mass, inner disk radius and height of the illuminating corona above the disk. Here we use a long X-ray observation of the highly variable active galaxy IRAS 13224−3809 to track the reverberation signal as the system evolves on timescales of a day7,8. With the inclusion of all the relativistic effects, modelling reveals that the height of the X-ray corona increases with increasing luminosity, providing a dynamic view of the inner accretion region. This simultaneous modelling allows us to break the inherent degeneracies and obtain an independent timing-based estimate for the mass and spin of the black hole. The uncertainty on black hole mass is comparable to the leading optical reverberation method9, making X-ray reverberation a powerful technique, particularly for sources with low optical variability10.</dcterms:abstract>

    37. <dcterms:dateAccepted>2021-04-08T07:28:16Z</dcterms:dateAccepted>

    38. <dcterms:available>2021-04-08T07:28:16Z</dcterms:available>

    39. <dcterms:created>2021-04-08T07:28:16Z</dcterms:created>

    40. <dcterms:issued>2020-01-20</dcterms:issued>

    41. <dc:type>info:eu-repo/semantics/article</dc:type>

    42. <dc:identifier>Nature Astronomy 4: 597- 602 (2020)</dc:identifier>

    43. <dc:identifier>http://hdl.handle.net/20.500.12666/152</dc:identifier>

    44. <dc:identifier>10.1038/s41550-019-1002-x</dc:identifier>

    45. <dc:identifier>2397-3366</dc:identifier>

    46. <dc:language>eng</dc:language>

    47. <dc:relation>info:eu-repo/grantAgreement/EC/FP7/340442</dc:relation>

    48. <dc:relation>info:eu-repo/grantAgreement/EC/H2020/798726</dc:relation>

    49. <dc:relation>info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/ESP2017-87676-C5-1-R</dc:relation>

    50. <dc:relation>info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/ESP2017-86582-C4-1-R/ES/CONTRIBUCION ESPAÑOLA A LAS MISIONES ESPACIALES CRIOGENICAS SPICA Y ATHENA, POST-OPERACIONES DE HERSCHEL Y EXPLOTACION CIENTIFICA MULTIFRECUENCIA/</dc:relation>

    51. <dc:rights>Copyright © 2020, The Author(s), under exclusive licence to Springer Nature Limited</dc:rights>

    52. <dc:rights>info:eu-repo/semantics/restrictedAccess</dc:rights>

    53. <dc:publisher>Springer Nature Research Journals</dc:publisher>

    </qdc:qualifieddc>

rdf

Download XML

    <?xml version="1.0" encoding="UTF-8" ?>

  1. <rdf:RDF schemaLocation="http://www.openarchives.org/OAI/2.0/rdf/ http://www.openarchives.org/OAI/2.0/rdf.xsd">

    1. <ow:Publication about="oai:digital.inta.es:20.500.12666/152">

      1. <dc:title>A dynamic black hole corona in an active galaxy through X-ray reverberation mapping</dc:title>

      2. <dc:creator>Alston, W. N.</dc:creator>

      3. <dc:creator>Fabian, A. C.</dc:creator>

      4. <dc:creator>Kara, E.</dc:creator>

      5. <dc:creator>Parker, M. L.</dc:creator>

      6. <dc:creator>Dovciak, M.</dc:creator>

      7. <dc:creator>Pinto, C.</dc:creator>

      8. <dc:creator>Jiang, J.</dc:creator>

      9. <dc:creator>Middleton, M. J.</dc:creator>

      10. <dc:creator>Miniutti, G.</dc:creator>

      11. <dc:creator>Walton, D. J.</dc:creator>

      12. <dc:creator>Wilkins, D. R.</dc:creator>

      13. <dc:creator>Buisson, D. J.</dc:creator>

      14. <dc:creator>Caballero García, M. D.</dc:creator>

      15. <dc:creator>Cackett, E. M.</dc:creator>

      16. <dc:creator>De Marco, B.</dc:creator>

      17. <dc:creator>Gallo, L. C.</dc:creator>

      18. <dc:creator>Lohfink, A. M.</dc:creator>

      19. <dc:creator>Reynolds, C. S.</dc:creator>

      20. <dc:creator>Uttley, P.</dc:creator>

      21. <dc:creator>Young, A. J.</dc:creator>

      22. <dc:creator>Zogbhi, A.</dc:creator>

      23. <dc:contributor>Unidad de Excelencia Científica María de Maeztu Centro de Astrobiología del Instituto Nacional de Técnica Aeroespacial y CSIC, MDM-2017-0737</dc:contributor>

      24. <dc:contributor>0000-0003-2658-6559</dc:contributor>

      25. <dc:contributor>European Research Council (ERC)</dc:contributor>

      26. <dc:contributor>Science and Technology Facilities Council (STFC)</dc:contributor>

      27. <dc:contributor>European Space Agency (ESA)</dc:contributor>

      28. <dc:contributor>European Commission (EC)</dc:contributor>

      29. <dc:contributor>Agencia Estatal de Investigación (AEI)</dc:contributor>

      30. <dc:subject>Black Hole</dc:subject>

      31. <dc:subject>Active Galaxy</dc:subject>

      32. <dc:subject>X ray</dc:subject>

      33. <dc:subject>Reverberation mapping</dc:subject>

      34. <dc:subject>Galactic Nuclei</dc:subject>

      35. <dc:subject>Scattering</dc:subject>

      36. <dc:description>Alston, W.N., Fabian, A.C., Kara, E. et al. A dynamic black hole corona in an active galaxy through X-ray reverberation mapping. Nat Astron 4, 597–602 (2020). https://doi.org/10.1038/s41550-019-1002-x</dc:description>

      37. <dc:description>X-ray reverberation echoes are assumed to be produced in the strongly distorted spacetime around accreting supermassive black holes. This signal allows us to spatially map the geometry of the inner accretion flow1,2—a region that cannot yet be spatially resolved by any telescope—and provides a direct measure of the black hole mass and spin. The reverberation timescale is set by the light travel path between the direct emission from a hot X-ray corona and the reprocessed emission from the inner edge of the accretion disk3,4,5,6. However, there is an inherent degeneracy in the reverberation signal between black hole mass, inner disk radius and height of the illuminating corona above the disk. Here we use a long X-ray observation of the highly variable active galaxy IRAS 13224−3809 to track the reverberation signal as the system evolves on timescales of a day7,8. With the inclusion of all the relativistic effects, modelling reveals that the height of the X-ray corona increases with increasing luminosity, providing a dynamic view of the inner accretion region. This simultaneous modelling allows us to break the inherent degeneracies and obtain an independent timing-based estimate for the mass and spin of the black hole. The uncertainty on black hole mass is comparable to the leading optical reverberation method9, making X-ray reverberation a powerful technique, particularly for sources with low optical variability10.</dc:description>

      38. <dc:date>2021-04-08T07:28:16Z</dc:date>

      39. <dc:date>2021-04-08T07:28:16Z</dc:date>

      40. <dc:date>2020-01-20</dc:date>

      41. <dc:type>info:eu-repo/semantics/article</dc:type>

      42. <dc:identifier>Nature Astronomy 4: 597- 602 (2020)</dc:identifier>

      43. <dc:identifier>http://hdl.handle.net/20.500.12666/152</dc:identifier>

      44. <dc:identifier>10.1038/s41550-019-1002-x</dc:identifier>

      45. <dc:identifier>2397-3366</dc:identifier>

      46. <dc:language>eng</dc:language>

      47. <dc:relation>info:eu-repo/grantAgreement/EC/FP7/340442</dc:relation>

      48. <dc:relation>info:eu-repo/grantAgreement/EC/H2020/798726</dc:relation>

      49. <dc:relation>info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/ESP2017-87676-C5-1-R</dc:relation>

      50. <dc:relation>info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/ESP2017-86582-C4-1-R/ES/CONTRIBUCION ESPAÑOLA A LAS MISIONES ESPACIALES CRIOGENICAS SPICA Y ATHENA, POST-OPERACIONES DE HERSCHEL Y EXPLOTACION CIENTIFICA MULTIFRECUENCIA/</dc:relation>

      51. <dc:rights>Copyright © 2020, The Author(s), under exclusive licence to Springer Nature Limited</dc:rights>

      52. <dc:rights>info:eu-repo/semantics/restrictedAccess</dc:rights>

      53. <dc:publisher>Springer Nature Research Journals</dc:publisher>

      </ow:Publication>

    </rdf:RDF>

xoai

Download XML

Se ha omitido la presentación del registro por ser demasiado largo. Si lo desea, puede descargárselo en el enlace anterior.

Hispana

Access portal to digital heritage and the national content aggregator to Europeana

Contact

Access our form and we will answer you as soon as possible

Contact

X

Tweets by Hispana_roai

Facebook

HISPANA
© Ministry of Culture
  • Legal notice