Logotipo de HISPANA
Logotipo del Ministerio de Cultura
  • WHAT IS HISPANA?
  • Search
  • DIRECTORY OF COLLECTIONS
  • Contact
  • en
    • Español
    • Euskara
    • English
    • Galego
    • Català
    • Valencià
Está en:  › Record data
Linked Open Data
The Invariant Two-Parameter Function of Algebras ψ
Identificadores del recurso
Escobar, J. M., Núñez-Valdés, J., & Pérez-Fernández, P. (2019). The Invariant Two-Parameter Function of Algebras ψ. Mathematical and Computational Applications, 24(4), 89.
http://hdl.handle.net/10481/58913
10.3390/mca24040089
Origin
(Ilíberis: fondo bibliográfico histórico de la Universidad de Granada)

File

Title:
The Invariant Two-Parameter Function of Algebras ψ
Tema:
Invariant functions
Contractions of algebras
Lie algebras
Malcev algebras
Heisenberg algebras
Description:
At present, the research on invariant functions for algebras is very extended since Hrivnák and Novotný defined in 2007 the invariant functions y and j as a tool to study the Inönü–Wigner contractions (IW-contractions), previously introduced by those authors in 1953. In this paper, we introduce a new invariant two-parameter function of algebras, which we call ¯y, as a tool which makes easier the computations and allows researchers to deal with contractions of algebras. Our study of this new function is mainly focused in Malcev algebras of the type Lie, although it can also be used with any other types of algebras. The main goal of the paper is to prove, by means of this function, that the five-dimensional classical-mechanical model built upon certain types of five-dimensional Lie algebras cannot be obtained as a limit process of a quantum-mechanical model based on a fifth Heisenberg algebra. As an example of other applications of the new function obtained, its computation in the case of the Lie algebra induced by the Lorentz group SO(3, 1) is shown and some open physical problems related to contractions are also formulated.
This research was funded by the Spanish Ministerio de Ciencia e Innovación and Junta de Andalucía via grants No. MTM2013-40455-P and No. FQM-326 (J.N.-V.) and No. FQM-160 (P.P.-F.).
Idioma:
English
Autor/Productor:
Escobar, José María
Núñez-Valdés, Juan
Pérez Fernández, Pedro
Publisher:
MDPI
Rights:
Atribución 3.0 España
http://creativecommons.org/licenses/by/3.0/es/
info:eu-repo/semantics/openAccess
Date:
2020-01-20T08:34:35Z
2019-10-14
Tipo de recurso:
info:eu-repo/semantics/article

oai_dc

Download XML

    <?xml version="1.0" encoding="UTF-8" ?>

  1. <oai_dc:dc schemaLocation="http://www.openarchives.org/OAI/2.0/oai_dc/ http://www.openarchives.org/OAI/2.0/oai_dc.xsd">

    1. <dc:title>The Invariant Two-Parameter Function of Algebras ψ</dc:title>

    2. <dc:creator>Escobar, José María</dc:creator>

    3. <dc:creator>Núñez-Valdés, Juan</dc:creator>

    4. <dc:creator>Pérez Fernández, Pedro</dc:creator>

    5. <dc:subject>Invariant functions</dc:subject>

    6. <dc:subject>Contractions of algebras</dc:subject>

    7. <dc:subject>Lie algebras</dc:subject>

    8. <dc:subject>Malcev algebras</dc:subject>

    9. <dc:subject>Heisenberg algebras</dc:subject>

    10. <dc:description>At present, the research on invariant functions for algebras is very extended since Hrivnák and Novotný defined in 2007 the invariant functions y and j as a tool to study the Inönü–Wigner contractions (IW-contractions), previously introduced by those authors in 1953. In this paper, we introduce a new invariant two-parameter function of algebras, which we call ¯y, as a tool which makes easier the computations and allows researchers to deal with contractions of algebras. Our study of this new function is mainly focused in Malcev algebras of the type Lie, although it can also be used with any other types of algebras. The main goal of the paper is to prove, by means of this function, that the five-dimensional classical-mechanical model built upon certain types of five-dimensional Lie algebras cannot be obtained as a limit process of a quantum-mechanical model based on a fifth Heisenberg algebra. As an example of other applications of the new function obtained, its computation in the case of the Lie algebra induced by the Lorentz group SO(3, 1) is shown and some open physical problems related to contractions are also formulated.</dc:description>

    11. <dc:description>This research was funded by the Spanish Ministerio de Ciencia e Innovación and Junta de Andalucía via grants No. MTM2013-40455-P and No. FQM-326 (J.N.-V.) and No. FQM-160 (P.P.-F.).</dc:description>

    12. <dc:date>2020-01-20T08:34:35Z</dc:date>

    13. <dc:date>2020-01-20T08:34:35Z</dc:date>

    14. <dc:date>2019-10-14</dc:date>

    15. <dc:type>info:eu-repo/semantics/article</dc:type>

    16. <dc:identifier>Escobar, J. M., Núñez-Valdés, J., & Pérez-Fernández, P. (2019). The Invariant Two-Parameter Function of Algebras ψ. Mathematical and Computational Applications, 24(4), 89.</dc:identifier>

    17. <dc:identifier>http://hdl.handle.net/10481/58913</dc:identifier>

    18. <dc:identifier>10.3390/mca24040089</dc:identifier>

    19. <dc:language>eng</dc:language>

    20. <dc:rights>Atribución 3.0 España</dc:rights>

    21. <dc:rights>http://creativecommons.org/licenses/by/3.0/es/</dc:rights>

    22. <dc:rights>info:eu-repo/semantics/openAccess</dc:rights>

    23. <dc:publisher>MDPI</dc:publisher>

    </oai_dc:dc>

edm

Download XML

    <?xml version="1.0" encoding="UTF-8" ?>

  1. <rdf:RDF schemaLocation="http://www.w3.org/1999/02/22-rdf-syntax-ns# http://www.europeana.eu/schemas/edm/EDM.xsd">

    1. <edm:ProvidedCHO about="http://hdl.handle.net/10481/58913">

      1. <dc:creator>Escobar, José María</dc:creator>

      2. <dc:creator>Núñez-Valdés, Juan</dc:creator>

      3. <dc:creator>Pérez Fernández, Pedro</dc:creator>

      4. <dc:date>2019-10-14</dc:date>

      5. <dc:description>At present, the research on invariant functions for algebras is very extended since Hrivnák and Novotný defined in 2007 the invariant functions y and j as a tool to study the Inönü–Wigner contractions (IW-contractions), previously introduced by those authors in 1953. In this paper, we introduce a new invariant two-parameter function of algebras, which we call ¯y, as a tool which makes easier the computations and allows researchers to deal with contractions of algebras. Our study of this new function is mainly focused in Malcev algebras of the type Lie, although it can also be used with any other types of algebras. The main goal of the paper is to prove, by means of this function, that the five-dimensional classical-mechanical model built upon certain types of five-dimensional Lie algebras cannot be obtained as a limit process of a quantum-mechanical model based on a fifth Heisenberg algebra. As an example of other applications of the new function obtained, its computation in the case of the Lie algebra induced by the Lorentz group SO(3, 1) is shown and some open physical problems related to contractions are also formulated.</dc:description>

      6. <dc:identifier>http://hdl.handle.net/10481/58913</dc:identifier>

      7. <dc:language>eng</dc:language>

      8. <dc:publisher>MDPI</dc:publisher>

      9. <dc:title>The Invariant Two-Parameter Function of Algebras ψ</dc:title>

      10. <dc:type>info:eu-repo/semantics/article</dc:type>

      11. <edm:type>TEXT</edm:type>

      </edm:ProvidedCHO>

    2. <ore:Aggregation about="http://hdl.handle.net/10481/58913#aggregation">

      1. <edm:aggregatedCHO resource="http://hdl.handle.net/10481/58913" />
      2. <edm:dataProvider>DIGIBUG. Repositorio Institucional de la Universidad de Granada</edm:dataProvider>

      3. <edm:isShownAt resource="http://hdl.handle.net/10481/58913" />
      4. <edm:isShownBy resource="https://digibug.ugr.es/bitstream/10481/58913/1/Escobar-Invariant.pdf" />
      5. <edm:provider>Hispana</edm:provider>

      6. <edm:rights resource="http://creativecommons.org/licenses/by/4.0/" />

      </ore:Aggregation>

    3. <edm:WebResource about="https://digibug.ugr.es/bitstream/10481/58913/1/Escobar-Invariant.pdf">

      1. <edm:rights resource="http://creativecommons.org/licenses/by/4.0/" />

      </edm:WebResource>

    </rdf:RDF>

Hispana

Access portal to digital heritage and the national content aggregator to Europeana

Contact

Access our form and we will answer you as soon as possible

Contact

X

Tweets by Hispana_roai

Facebook

HISPANA
© Ministry of Culture
  • Legal notice