Logotipo de HISPANA
Logotipo del Ministerio de Cultura
  • Què és Hispana?
  • Cerca
  • Directori de col.leccions
  • Contacte
  • ca
    • Español
    • Euskara
    • English
    • Galego
    • Català
    • Valencià
Está en:  › Dades de registre
Linked Open Data
3D printing in situ gelification of κ-carrageenan solutions: Effect of printing variables on the rheological response
Identificadores del recurso
Diañez, I., Gallegos, C., Brito-de la Fuente, E., Martínez, I., Valencia, C., Sánchez, M. C., Diaz, M. J., & Franco, J. M. (2019). 3D printing in situ gelification of κ-carrageenan solutions: Effect of printing variables on the rheological response. In Food Hydrocolloids (Vol. 87, pp. 321–330). Elsevier BV. https://doi.org/10.1016/j.foodhyd.2018.08.010
0268-005X
1873-7137 (electrónico)
https://hdl.handle.net/10272/25281
10.1016/j.foodhyd.2018.08.010
Procedència
(Arias Montano: Repositorio Institucional de la Universidad de Huelva)

Fitxa

Títol:
3D printing in situ gelification of κ-carrageenan solutions: Effect of printing variables on the rheological response
Tema:
3D printing
Additive manufacturing
κ-Carrageenan
Food design
Gel
Rheology
3303 Ingeniería y Tecnología Químicas
Descripció:
This work reports a successful 3D printing-based in situ temperature-induced gelification procedure of κ-carrageenan aqueous dispersions. 3D printer was modified to handle low viscosity fluid feeding and more efficiently distribute ambient air at room temperature causing forced convection to accelerate the cooling of the printed layer. Thus, obtained gel samples, containing 30 mg/g κ-carrageenan in water, showed self-sustaining capability and a rheological response comparable with a reference conventionally prepared gel. Moreover, the effect of main printing variables, such as temperature of the hotend, printing speed and layer height, on the linear viscoelastic response of the gels was analysed by application of the response surface methodology (RSM). In general, gel strength linearly increases by decreasing printing speed and layer height whereas not noticeable improvement in gel strength was achieved by applying hotend temperatures above 80–85 °C. Based on the results obtained from this analysis, an optimisation method is proposed to minimise the temperature and time needed to 3D print a gel with pre-set rheological properties. Overall, this study demonstrates that it is possible to generate in situ 3D printed gel materials with potential uses in food and pharmaco-nutrition, without the aid of reactive additives or initiators, and using a facile protocol.
Ingeniería Química, Química Física y Ciencias de los Materiales
Idioma:
English
Relació:
https://doi.org/10.1016/j.foodhyd.2018.08.010
Autor/Productor:
Diañez Amores, Isabel
Gallegos Montes, Críspulo
Brito de la Fuente, Edmundo
Martinez García, Inmaculada
Valencia Barragán, Concepción
Sánchez Carrillo, María Carmen
Díaz Blanco, Manuel Jesús
Franco Gómez, José María
Editor:
Elsevier
Drets:
Atribución-NoComercial-SinDerivadas 3.0 España
http://creativecommons.org/licenses/by-nc-nd/3.0/es/
open access
Data:
2025-03-31T06:37:09Z
2018-08
Tipo de recurso:
journal article
AM

oai_dc

Descarregar XML

    <?xml version="1.0" encoding="UTF-8" ?>

  1. <oai_dc:dc schemaLocation="http://www.openarchives.org/OAI/2.0/oai_dc/ http://www.openarchives.org/OAI/2.0/oai_dc.xsd">

    1. <dc:title>3D printing in situ gelification of κ-carrageenan solutions: Effect of printing variables on the rheological response</dc:title>

    2. <dc:creator>Diañez Amores, Isabel</dc:creator>

    3. <dc:creator>Gallegos Montes, Críspulo</dc:creator>

    4. <dc:creator>Brito de la Fuente, Edmundo</dc:creator>

    5. <dc:creator>Martinez García, Inmaculada</dc:creator>

    6. <dc:creator>Valencia Barragán, Concepción</dc:creator>

    7. <dc:creator>Sánchez Carrillo, María Carmen</dc:creator>

    8. <dc:creator>Díaz Blanco, Manuel Jesús</dc:creator>

    9. <dc:creator>Franco Gómez, José María</dc:creator>

    10. <dc:subject>3D printing</dc:subject>

    11. <dc:subject>Additive manufacturing</dc:subject>

    12. <dc:subject>κ-Carrageenan</dc:subject>

    13. <dc:subject>Food design</dc:subject>

    14. <dc:subject>Gel</dc:subject>

    15. <dc:subject>Rheology</dc:subject>

    16. <dc:subject>3303 Ingeniería y Tecnología Químicas</dc:subject>

    17. <dc:description>This work reports a successful 3D printing-based in situ temperature-induced gelification procedure of κ-carrageenan aqueous dispersions. 3D printer was modified to handle low viscosity fluid feeding and more efficiently distribute ambient air at room temperature causing forced convection to accelerate the cooling of the printed layer. Thus, obtained gel samples, containing 30 mg/g κ-carrageenan in water, showed self-sustaining capability and a rheological response comparable with a reference conventionally prepared gel. Moreover, the effect of main printing variables, such as temperature of the hotend, printing speed and layer height, on the linear viscoelastic response of the gels was analysed by application of the response surface methodology (RSM). In general, gel strength linearly increases by decreasing printing speed and layer height whereas not noticeable improvement in gel strength was achieved by applying hotend temperatures above 80–85 °C. Based on the results obtained from this analysis, an optimisation method is proposed to minimise the temperature and time needed to 3D print a gel with pre-set rheological properties. Overall, this study demonstrates that it is possible to generate in situ 3D printed gel materials with potential uses in food and pharmaco-nutrition, without the aid of reactive additives or initiators, and using a facile protocol.</dc:description>

    18. <dc:description>Ingeniería Química, Química Física y Ciencias de los Materiales</dc:description>

    19. <dc:date>2025-03-31T06:37:09Z</dc:date>

    20. <dc:date>2025-03-31T06:37:09Z</dc:date>

    21. <dc:date>2018-08</dc:date>

    22. <dc:type>journal article</dc:type>

    23. <dc:type>AM</dc:type>

    24. <dc:identifier>Diañez, I., Gallegos, C., Brito-de la Fuente, E., Martínez, I., Valencia, C., Sánchez, M. C., Diaz, M. J., & Franco, J. M. (2019). 3D printing in situ gelification of κ-carrageenan solutions: Effect of printing variables on the rheological response. In Food Hydrocolloids (Vol. 87, pp. 321–330). Elsevier BV. https://doi.org/10.1016/j.foodhyd.2018.08.010</dc:identifier>

    25. <dc:identifier>0268-005X</dc:identifier>

    26. <dc:identifier>1873-7137 (electrónico)</dc:identifier>

    27. <dc:identifier>https://hdl.handle.net/10272/25281</dc:identifier>

    28. <dc:identifier>10.1016/j.foodhyd.2018.08.010</dc:identifier>

    29. <dc:language>eng</dc:language>

    30. <dc:relation>https://doi.org/10.1016/j.foodhyd.2018.08.010</dc:relation>

    31. <dc:rights>Atribución-NoComercial-SinDerivadas 3.0 España</dc:rights>

    32. <dc:rights>http://creativecommons.org/licenses/by-nc-nd/3.0/es/</dc:rights>

    33. <dc:rights>open access</dc:rights>

    34. <dc:publisher>Elsevier</dc:publisher>

    </oai_dc:dc>

edm

Descarregar XML

    <?xml version="1.0" encoding="UTF-8" ?>

  1. <rdf:RDF schemaLocation="http://www.w3.org/1999/02/22-rdf-syntax-ns# http://www.europeana.eu/schemas/edm/EDM.xsd">

    1. <edm:ProvidedCHO about="https://hdl.handle.net/10272/25281">

      1. <dc:creator>Diañez Amores, Isabel</dc:creator>

      2. <dc:creator>Gallegos Montes, Críspulo</dc:creator>

      3. <dc:creator>Brito de la Fuente, Edmundo</dc:creator>

      4. <dc:creator>Martinez García, Inmaculada</dc:creator>

      5. <dc:creator>Valencia Barragán, Concepción</dc:creator>

      6. <dc:creator>Sánchez Carrillo, María Carmen</dc:creator>

      7. <dc:creator>Díaz Blanco, Manuel Jesús</dc:creator>

      8. <dc:creator>Franco Gómez, José María</dc:creator>

      9. <dc:date>2018-08</dc:date>

      10. <dc:description>This work reports a successful 3D printing-based in situ temperature-induced gelification procedure of κ-carrageenan aqueous dispersions. 3D printer was modified to handle low viscosity fluid feeding and more efficiently distribute ambient air at room temperature causing forced convection to accelerate the cooling of the printed layer. Thus, obtained gel samples, containing 30 mg/g κ-carrageenan in water, showed self-sustaining capability and a rheological response comparable with a reference conventionally prepared gel. Moreover, the effect of main printing variables, such as temperature of the hotend, printing speed and layer height, on the linear viscoelastic response of the gels was analysed by application of the response surface methodology (RSM). In general, gel strength linearly increases by decreasing printing speed and layer height whereas not noticeable improvement in gel strength was achieved by applying hotend temperatures above 80–85 °C. Based on the results obtained from this analysis, an optimisation method is proposed to minimise the temperature and time needed to 3D print a gel with pre-set rheological properties. Overall, this study demonstrates that it is possible to generate in situ 3D printed gel materials with potential uses in food and pharmaco-nutrition, without the aid of reactive additives or initiators, and using a facile protocol.</dc:description>

      11. <dc:identifier>https://hdl.handle.net/10272/25281</dc:identifier>

      12. <dc:language>eng</dc:language>

      13. <dc:publisher>Elsevier</dc:publisher>

      14. <dc:subject>3303 Ingeniería y Tecnología Químicas</dc:subject>

      15. <dc:title>3D printing in situ gelification of κ-carrageenan solutions: Effect of printing variables on the rheological response</dc:title>

      16. <dc:type>journal article</dc:type>

      17. <edm:type>TEXT</edm:type>

      </edm:ProvidedCHO>

    2. <ore:Aggregation about="https://hdl.handle.net/10272/25281#aggregation">

      1. <edm:aggregatedCHO resource="https://hdl.handle.net/10272/25281" />
      2. <edm:dataProvider>Repositorio Institucional de la Universidad de Huelva</edm:dataProvider>

      3. <edm:isShownAt resource="https://hdl.handle.net/10272/25281" />
      4. <edm:isShownBy resource="https://rabida.uhu.es/dspace/bitstream/10272/25281/2/Post-print%202019_3D%20printing%20in%20situ%20gelification%20of%20%ce%ba%20carrageenan%20solutions%20Effect%20of%20printing.pdf" />
      5. <edm:object resource="https://rabida.uhu.es/dspace/bitstream/10272/25281/6/Post-print%202019_3D%20printing%20in%20situ%20gelification%20of%20%ce%ba%20carrageenan%20solutions%20Effect%20of%20printing.pdf.jpg" />
      6. <edm:provider>Hispana</edm:provider>

      7. <edm:rights resource="http://creativecommons.org/licenses/by-nc-nd/4.0/" />

      </ore:Aggregation>

    3. <edm:WebResource about="https://rabida.uhu.es/dspace/bitstream/10272/25281/2/Post-print%202019_3D%20printing%20in%20situ%20gelification%20of%20%ce%ba%20carrageenan%20solutions%20Effect%20of%20printing.pdf">

      1. <edm:rights resource="http://creativecommons.org/licenses/by-nc-nd/4.0/" />

      </edm:WebResource>

    </rdf:RDF>

Hispana

Portal d'accés al patrimoni digital i l'agregador nacional de continguts a Europeana

Contacte

Accedeix al nostre formulari i et contestarem el més aviat

Contacte

X

Tweets by Hispana_roai

Facebook

HISPANA
© Ministeri de Cultura
  • Avís legal