<?xml version="1.0" encoding="UTF-8" ?>
<oai_dc:dc schemaLocation="http://www.openarchives.org/OAI/2.0/oai_dc/ http://www.openarchives.org/OAI/2.0/oai_dc.xsd">
<dc:title>A comparative analysis of helicopter recovery maneuvers on a SFS by means of PIV and balance measurements</dc:title>
<dc:creator>Matías García, J. C.</dc:creator>
<dc:creator>Bardera, Rafael</dc:creator>
<dc:creator>Franchini, Sebastián</dc:creator>
<dc:creator>Barroso, Estela</dc:creator>
<dc:creator>Sor, Suthyvann</dc:creator>
<dc:contributor>Instituto Nacional de Técnica Aeroespacial (INTA)</dc:contributor>
<dc:subject>PIV</dc:subject>
<dc:subject>Forces</dc:subject>
<dc:subject>Frigate</dc:subject>
<dc:subject>Helicopter recovery</dc:subject>
<dc:description>The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.</dc:description>
<dc:description>The flow field around a frigate is complex due to flow detachments, high velocity gradients, and flow unsteadiness. These flow patterns can endanger helicopter operations around frigates and increase pilot workload above the flight deck. This paper contains a comparative analysis of three different recovery maneuvers: an approach from the stern in the centerline plane (S); a diagonal maneuver (D); and an L-shaped maneuver. The comparison is made using wind tunnel tests with a scaled frigate and a motorized helicopter. For the three maneuvers, velocity contours around the helicopter with Particle Image Velocimetry are obtained. An internal balance is also used to obtain forces and moments on the helicopter during the flight path of the maneuvers. Those measurements show that the wake of the ship mostly affects longitudinal and thrust forces. In addition, pitch torque is highly reduced when the helicopter is behind the frigate superstructure, and the roll moment is also important when the wind angle increases. In the end, an estimation of pilot workload is presented to conclude that L-shaped maneuver is the best for 0° and small WOD angles and D or S recoveries for moderately high negative WOD angles.</dc:description>
<dc:description>The authors would like to thank the staff of the Experimental Aerodynamics department of INTA who participated in the tests presented in this paper. This study is included in the“Termofluidodinámica” program 464A 64 1999 14 205 0005 of the Spanish Ministry of Defense with INTA internal code IDATEC S.IGB21001.</dc:description>
<dc:description>Peerreview</dc:description>
<dc:date>2023-12-01T08:00:31Z</dc:date>
<dc:date>2023-12-01T08:00:31Z</dc:date>
<dc:date>2023-05-23</dc:date>
<dc:type>info:eu-repo/semantics/article</dc:type>
<dc:type>info:eu-repo/semantics/acceptedVersion</dc:type>
<dc:type>http://purl.org/coar/resource_type/c_6501</dc:type>
<dc:identifier>Ocean Engineering 275: 114119(2023)</dc:identifier>
<dc:identifier>0029-8018</dc:identifier>
<dc:identifier>https://www.sciencedirect.com/science/article/abs/pii/S0029801823005036</dc:identifier>
<dc:identifier>http://hdl.handle.net/20.500.12666/904</dc:identifier>
<dc:identifier>https://doi.org/10.1016/j.oceaneng.2023.114119</dc:identifier>
<dc:identifier>1873-5258</dc:identifier>
<dc:language>eng</dc:language>
<dc:rights>© 2023 Elsevier Ltd. All rights reserved.</dc:rights>
<dc:rights>info:eu-repo/semantics/restrictedAccess</dc:rights>
<dc:format>application/pdf</dc:format>
<dc:publisher>Elsevier</dc:publisher>
</oai_dc:dc>
<?xml version="1.0" encoding="UTF-8" ?>
<d:DIDL schemaLocation="urn:mpeg:mpeg21:2002:02-DIDL-NS http://standards.iso.org/ittf/PubliclyAvailableStandards/MPEG-21_schema_files/did/didl.xsd">
<d:DIDLInfo>
<dcterms:created schemaLocation="http://purl.org/dc/terms/ http://dublincore.org/schemas/xmls/qdc/dcterms.xsd">2023-12-01T08:00:31Z</dcterms:created>
</d:DIDLInfo>
<d:Item id="hdl_20.500.12666_904">
<d:Descriptor>
<d:Statement mimeType="application/xml; charset=utf-8">
<dii:Identifier schemaLocation="urn:mpeg:mpeg21:2002:01-DII-NS http://standards.iso.org/ittf/PubliclyAvailableStandards/MPEG-21_schema_files/dii/dii.xsd">urn:hdl:20.500.12666/904</dii:Identifier>
</d:Statement>
</d:Descriptor>
<d:Descriptor>
<d:Statement mimeType="application/xml; charset=utf-8">
<oai_dc:dc schemaLocation="http://www.openarchives.org/OAI/2.0/oai_dc/ http://www.openarchives.org/OAI/2.0/oai_dc.xsd">
<dc:title>A comparative analysis of helicopter recovery maneuvers on a SFS by means of PIV and balance measurements</dc:title>
<dc:creator>Matías García, J. C.</dc:creator>
<dc:creator>Bardera, Rafael</dc:creator>
<dc:creator>Franchini, Sebastián</dc:creator>
<dc:creator>Barroso, Estela</dc:creator>
<dc:creator>Sor, Suthyvann</dc:creator>
<dc:contributor>Instituto Nacional de Técnica Aeroespacial (INTA)</dc:contributor>
<dc:subject>PIV</dc:subject>
<dc:subject>Forces</dc:subject>
<dc:subject>Frigate</dc:subject>
<dc:subject>Helicopter recovery</dc:subject>
<dc:description>The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.</dc:description>
<dc:description>The flow field around a frigate is complex due to flow detachments, high velocity gradients, and flow unsteadiness. These flow patterns can endanger helicopter operations around frigates and increase pilot workload above the flight deck. This paper contains a comparative analysis of three different recovery maneuvers: an approach from the stern in the centerline plane (S); a diagonal maneuver (D); and an L-shaped maneuver. The comparison is made using wind tunnel tests with a scaled frigate and a motorized helicopter. For the three maneuvers, velocity contours around the helicopter with Particle Image Velocimetry are obtained. An internal balance is also used to obtain forces and moments on the helicopter during the flight path of the maneuvers. Those measurements show that the wake of the ship mostly affects longitudinal and thrust forces. In addition, pitch torque is highly reduced when the helicopter is behind the frigate superstructure, and the roll moment is also important when the wind angle increases. In the end, an estimation of pilot workload is presented to conclude that L-shaped maneuver is the best for 0° and small WOD angles and D or S recoveries for moderately high negative WOD angles.</dc:description>
<dc:date>2023-12-01T08:00:31Z</dc:date>
<dc:date>2023-12-01T08:00:31Z</dc:date>
<dc:date>2023-05-23</dc:date>
<dc:type>info:eu-repo/semantics/article</dc:type>
<dc:identifier>Ocean Engineering 275: 114119(2023)</dc:identifier>
<dc:identifier>0029-8018</dc:identifier>
<dc:identifier>https://www.sciencedirect.com/science/article/abs/pii/S0029801823005036</dc:identifier>
<dc:identifier>http://hdl.handle.net/20.500.12666/904</dc:identifier>
<dc:identifier>https://doi.org/10.1016/j.oceaneng.2023.114119</dc:identifier>
<dc:identifier>1873-5258</dc:identifier>
<dc:language>eng</dc:language>
<dc:rights>© 2023 Elsevier Ltd. All rights reserved.</dc:rights>
<dc:rights>info:eu-repo/semantics/restrictedAccess</dc:rights>
<dc:publisher>Elsevier</dc:publisher>
</oai_dc:dc>
</d:Statement>
</d:Descriptor>
<d:Component id="20.500.12666_904_1">
</d:Component>
</d:Item>
</d:DIDL>
<?xml version="1.0" encoding="UTF-8" ?>
<dim:dim schemaLocation="http://www.dspace.org/xmlns/dspace/dim http://www.dspace.org/schema/dim.xsd">
<dim:field element="rights" lang="es" mdschema="dc" qualifier="license">© 2023 Elsevier Ltd. All rights reserved.</dim:field>
<dim:field element="rights" lang="es" mdschema="dc" qualifier="accessRights">info:eu-repo/semantics/restrictedAccess</dim:field>
<dim:field authority="b4f0042d-ec56-4e92-98e2-d54089921d4b" confidence="600" element="contributor" lang="es" mdschema="dc" qualifier="author">Matías García, J. C.</dim:field>
<dim:field authority="67c8c3c8-6dec-48d6-aaca-4b283bcd6865" confidence="600" element="contributor" lang="es" mdschema="dc" qualifier="author">Bardera, Rafael</dim:field>
<dim:field authority="439b0014-be3e-4d81-a296-935ce5f148c6" confidence="600" element="contributor" lang="es" mdschema="dc" qualifier="author">Franchini, Sebastián</dim:field>
<dim:field authority="2b9d07df-73db-44eb-95ce-552c96e94fae" confidence="600" element="contributor" lang="es" mdschema="dc" qualifier="author">Barroso, Estela</dim:field>
<dim:field authority="d85e3f8c-966e-4751-84bf-fa9fb3e776d5" confidence="600" element="contributor" lang="es" mdschema="dc" qualifier="author">Sor, Suthyvann</dim:field>
<dim:field element="contributor" lang="es" mdschema="dc" qualifier="funder">Instituto Nacional de Técnica Aeroespacial (INTA)</dim:field>
<dim:field element="date" mdschema="dc" qualifier="accessioned">2023-12-01T08:00:31Z</dim:field>
<dim:field element="date" mdschema="dc" qualifier="available">2023-12-01T08:00:31Z</dim:field>
<dim:field element="date" mdschema="dc" qualifier="issued">2023-05-23</dim:field>
<dim:field element="identifier" lang="es" mdschema="dc" qualifier="citation">Ocean Engineering 275: 114119(2023)</dim:field>
<dim:field element="identifier" mdschema="dc" qualifier="issn">0029-8018</dim:field>
<dim:field element="identifier" lang="es" mdschema="dc" qualifier="other">https://www.sciencedirect.com/science/article/abs/pii/S0029801823005036</dim:field>
<dim:field element="identifier" mdschema="dc" qualifier="uri">http://hdl.handle.net/20.500.12666/904</dim:field>
<dim:field element="identifier" mdschema="dc" qualifier="doi">https://doi.org/10.1016/j.oceaneng.2023.114119</dim:field>
<dim:field element="identifier" mdschema="dc" qualifier="e-issn">1873-5258</dim:field>
<dim:field element="description" lang="es" mdschema="dc">The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.</dim:field>
<dim:field element="description" lang="es" mdschema="dc" qualifier="abstract">The flow field around a frigate is complex due to flow detachments, high velocity gradients, and flow unsteadiness. These flow patterns can endanger helicopter operations around frigates and increase pilot workload above the flight deck. This paper contains a comparative analysis of three different recovery maneuvers: an approach from the stern in the centerline plane (S); a diagonal maneuver (D); and an L-shaped maneuver. The comparison is made using wind tunnel tests with a scaled frigate and a motorized helicopter. For the three maneuvers, velocity contours around the helicopter with Particle Image Velocimetry are obtained. An internal balance is also used to obtain forces and moments on the helicopter during the flight path of the maneuvers. Those measurements show that the wake of the ship mostly affects longitudinal and thrust forces. In addition, pitch torque is highly reduced when the helicopter is behind the frigate superstructure, and the roll moment is also important when the wind angle increases. In the end, an estimation of pilot workload is presented to conclude that L-shaped maneuver is the best for 0° and small WOD angles and D or S recoveries for moderately high negative WOD angles.</dim:field>
<dim:field element="description" lang="es" mdschema="dc" qualifier="sponsorship">The authors would like to thank the staff of the Experimental Aerodynamics department of INTA who participated in the tests presented in this paper. This study is included in the“Termofluidodinámica” program 464A 64 1999 14 205 0005 of the Spanish Ministry of Defense with INTA internal code IDATEC S.IGB21001.</dim:field>
<dim:field element="description" lang="es" mdschema="dc" qualifier="peerreviewed">Peerreview</dim:field>
<dim:field element="language" lang="es" mdschema="dc" qualifier="iso">eng</dim:field>
<dim:field element="publisher" lang="es" mdschema="dc">Elsevier</dim:field>
<dim:field element="subject" lang="es" mdschema="dc">PIV</dim:field>
<dim:field element="subject" lang="es" mdschema="dc">Forces</dim:field>
<dim:field element="subject" lang="es" mdschema="dc">Frigate</dim:field>
<dim:field element="subject" lang="es" mdschema="dc">Helicopter recovery</dim:field>
<dim:field element="title" lang="es" mdschema="dc">A comparative analysis of helicopter recovery maneuvers on a SFS by means of PIV and balance measurements</dim:field>
<dim:field element="type" lang="es" mdschema="dc">info:eu-repo/semantics/article</dim:field>
<dim:field element="type" lang="es" mdschema="dc" qualifier="hasVersion">info:eu-repo/semantics/acceptedVersion</dim:field>
<dim:field element="type" lang="es" mdschema="dc" qualifier="coar">http://purl.org/coar/resource_type/c_6501</dim:field>
</dim:dim>
<?xml version="1.0" encoding="UTF-8" ?>
<thesis schemaLocation="http://www.ndltd.org/standards/metadata/etdms/1.0/ http://www.ndltd.org/standards/metadata/etdms/1.0/etdms.xsd">
<title>A comparative analysis of helicopter recovery maneuvers on a SFS by means of PIV and balance measurements</title>
<creator>Matías García, J. C.</creator>
<creator>Bardera, Rafael</creator>
<creator>Franchini, Sebastián</creator>
<creator>Barroso, Estela</creator>
<creator>Sor, Suthyvann</creator>
<contributor>Instituto Nacional de Técnica Aeroespacial (INTA)</contributor>
<subject>PIV</subject>
<subject>Forces</subject>
<subject>Frigate</subject>
<subject>Helicopter recovery</subject>
<description>The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.</description>
<description>The flow field around a frigate is complex due to flow detachments, high velocity gradients, and flow unsteadiness. These flow patterns can endanger helicopter operations around frigates and increase pilot workload above the flight deck. This paper contains a comparative analysis of three different recovery maneuvers: an approach from the stern in the centerline plane (S); a diagonal maneuver (D); and an L-shaped maneuver. The comparison is made using wind tunnel tests with a scaled frigate and a motorized helicopter. For the three maneuvers, velocity contours around the helicopter with Particle Image Velocimetry are obtained. An internal balance is also used to obtain forces and moments on the helicopter during the flight path of the maneuvers. Those measurements show that the wake of the ship mostly affects longitudinal and thrust forces. In addition, pitch torque is highly reduced when the helicopter is behind the frigate superstructure, and the roll moment is also important when the wind angle increases. In the end, an estimation of pilot workload is presented to conclude that L-shaped maneuver is the best for 0° and small WOD angles and D or S recoveries for moderately high negative WOD angles.</description>
<date>2023-12-01</date>
<date>2023-12-01</date>
<date>2023-05-23</date>
<type>info:eu-repo/semantics/article</type>
<identifier>Ocean Engineering 275: 114119(2023)</identifier>
<identifier>0029-8018</identifier>
<identifier>https://www.sciencedirect.com/science/article/abs/pii/S0029801823005036</identifier>
<identifier>http://hdl.handle.net/20.500.12666/904</identifier>
<identifier>https://doi.org/10.1016/j.oceaneng.2023.114119</identifier>
<identifier>1873-5258</identifier>
<language>eng</language>
<rights>© 2023 Elsevier Ltd. All rights reserved.</rights>
<rights>info:eu-repo/semantics/restrictedAccess</rights>
<publisher>Elsevier</publisher>
</thesis>
<?xml version="1.0" encoding="UTF-8" ?>
<record schemaLocation="http://www.loc.gov/MARC21/slim http://www.loc.gov/standards/marcxml/schema/MARC21slim.xsd">
<leader>00925njm 22002777a 4500</leader>
<datafield ind1=" " ind2=" " tag="042">
<subfield code="a">dc</subfield>
</datafield>
<datafield ind1=" " ind2=" " tag="720">
<subfield code="a">Matías García, J. C.</subfield>
<subfield code="e">author</subfield>
</datafield>
<datafield ind1=" " ind2=" " tag="720">
<subfield code="a">Bardera, Rafael</subfield>
<subfield code="e">author</subfield>
</datafield>
<datafield ind1=" " ind2=" " tag="720">
<subfield code="a">Franchini, Sebastián</subfield>
<subfield code="e">author</subfield>
</datafield>
<datafield ind1=" " ind2=" " tag="720">
<subfield code="a">Barroso, Estela</subfield>
<subfield code="e">author</subfield>
</datafield>
<datafield ind1=" " ind2=" " tag="720">
<subfield code="a">Sor, Suthyvann</subfield>
<subfield code="e">author</subfield>
</datafield>
<datafield ind1=" " ind2=" " tag="260">
<subfield code="c">2023-05-23</subfield>
</datafield>
<datafield ind1=" " ind2=" " tag="520">
<subfield code="a">The flow field around a frigate is complex due to flow detachments, high velocity gradients, and flow unsteadiness. These flow patterns can endanger helicopter operations around frigates and increase pilot workload above the flight deck. This paper contains a comparative analysis of three different recovery maneuvers: an approach from the stern in the centerline plane (S); a diagonal maneuver (D); and an L-shaped maneuver. The comparison is made using wind tunnel tests with a scaled frigate and a motorized helicopter. For the three maneuvers, velocity contours around the helicopter with Particle Image Velocimetry are obtained. An internal balance is also used to obtain forces and moments on the helicopter during the flight path of the maneuvers. Those measurements show that the wake of the ship mostly affects longitudinal and thrust forces. In addition, pitch torque is highly reduced when the helicopter is behind the frigate superstructure, and the roll moment is also important when the wind angle increases. In the end, an estimation of pilot workload is presented to conclude that L-shaped maneuver is the best for 0° and small WOD angles and D or S recoveries for moderately high negative WOD angles.</subfield>
</datafield>
<datafield ind1="8" ind2=" " tag="024">
<subfield code="a">Ocean Engineering 275: 114119(2023)</subfield>
</datafield>
<datafield ind1="8" ind2=" " tag="024">
<subfield code="a">0029-8018</subfield>
</datafield>
<datafield ind1="8" ind2=" " tag="024">
<subfield code="a">https://www.sciencedirect.com/science/article/abs/pii/S0029801823005036</subfield>
</datafield>
<datafield ind1="8" ind2=" " tag="024">
<subfield code="a">http://hdl.handle.net/20.500.12666/904</subfield>
</datafield>
<datafield ind1="8" ind2=" " tag="024">
<subfield code="a">https://doi.org/10.1016/j.oceaneng.2023.114119</subfield>
</datafield>
<datafield ind1="8" ind2=" " tag="024">
<subfield code="a">1873-5258</subfield>
</datafield>
<datafield ind1=" " ind2=" " tag="653">
<subfield code="a">PIV</subfield>
</datafield>
<datafield ind1=" " ind2=" " tag="653">
<subfield code="a">Forces</subfield>
</datafield>
<datafield ind1=" " ind2=" " tag="653">
<subfield code="a">Frigate</subfield>
</datafield>
<datafield ind1=" " ind2=" " tag="653">
<subfield code="a">Helicopter recovery</subfield>
</datafield>
<datafield ind1="0" ind2="0" tag="245">
<subfield code="a">A comparative analysis of helicopter recovery maneuvers on a SFS by means of PIV and balance measurements</subfield>
</datafield>
</record>
<?xml version="1.0" encoding="UTF-8" ?>
<mets ID=" DSpace_ITEM_20.500.12666-904" OBJID=" hdl:20.500.12666/904" PROFILE="DSpace METS SIP Profile 1.0" TYPE="DSpace ITEM" schemaLocation="http://www.loc.gov/METS/ http://www.loc.gov/standards/mets/mets.xsd">
<metsHdr CREATEDATE="2024-04-03T13:31:30Z">
<agent ROLE="CUSTODIAN" TYPE="ORGANIZATION">
<name>Digital INTA</name>
</agent>
</metsHdr>
<dmdSec ID="DMD_20.500.12666_904">
<mdWrap MDTYPE="MODS">
<xmlData schemaLocation="http://www.loc.gov/mods/v3 http://www.loc.gov/standards/mods/v3/mods-3-1.xsd">
<mods:mods schemaLocation="http://www.loc.gov/mods/v3 http://www.loc.gov/standards/mods/v3/mods-3-1.xsd">
<mods:name>
<mods:role>
<mods:roleTerm type="text">author</mods:roleTerm>
</mods:role>
<mods:namePart>Matías García, J. C.</mods:namePart>
</mods:name>
<mods:name>
<mods:role>
<mods:roleTerm type="text">author</mods:roleTerm>
</mods:role>
<mods:namePart>Bardera, Rafael</mods:namePart>
</mods:name>
<mods:name>
<mods:role>
<mods:roleTerm type="text">author</mods:roleTerm>
</mods:role>
<mods:namePart>Franchini, Sebastián</mods:namePart>
</mods:name>
<mods:name>
<mods:role>
<mods:roleTerm type="text">author</mods:roleTerm>
</mods:role>
<mods:namePart>Barroso, Estela</mods:namePart>
</mods:name>
<mods:name>
<mods:role>
<mods:roleTerm type="text">author</mods:roleTerm>
</mods:role>
<mods:namePart>Sor, Suthyvann</mods:namePart>
</mods:name>
<mods:name>
<mods:role>
<mods:roleTerm type="text">funder</mods:roleTerm>
</mods:role>
<mods:namePart>Instituto Nacional de Técnica Aeroespacial (INTA)</mods:namePart>
</mods:name>
<mods:extension>
<mods:dateAccessioned encoding="iso8601">2023-12-01T08:00:31Z</mods:dateAccessioned>
</mods:extension>
<mods:extension>
<mods:dateAvailable encoding="iso8601">2023-12-01T08:00:31Z</mods:dateAvailable>
</mods:extension>
<mods:originInfo>
<mods:dateIssued encoding="iso8601">2023-05-23</mods:dateIssued>
</mods:originInfo>
<mods:identifier type="citation">Ocean Engineering 275: 114119(2023)</mods:identifier>
<mods:identifier type="issn">0029-8018</mods:identifier>
<mods:identifier type="other">https://www.sciencedirect.com/science/article/abs/pii/S0029801823005036</mods:identifier>
<mods:identifier type="uri">http://hdl.handle.net/20.500.12666/904</mods:identifier>
<mods:identifier type="doi">https://doi.org/10.1016/j.oceaneng.2023.114119</mods:identifier>
<mods:identifier type="e-issn">1873-5258</mods:identifier>
<mods:abstract>The flow field around a frigate is complex due to flow detachments, high velocity gradients, and flow unsteadiness. These flow patterns can endanger helicopter operations around frigates and increase pilot workload above the flight deck. This paper contains a comparative analysis of three different recovery maneuvers: an approach from the stern in the centerline plane (S); a diagonal maneuver (D); and an L-shaped maneuver. The comparison is made using wind tunnel tests with a scaled frigate and a motorized helicopter. For the three maneuvers, velocity contours around the helicopter with Particle Image Velocimetry are obtained. An internal balance is also used to obtain forces and moments on the helicopter during the flight path of the maneuvers. Those measurements show that the wake of the ship mostly affects longitudinal and thrust forces. In addition, pitch torque is highly reduced when the helicopter is behind the frigate superstructure, and the roll moment is also important when the wind angle increases. In the end, an estimation of pilot workload is presented to conclude that L-shaped maneuver is the best for 0° and small WOD angles and D or S recoveries for moderately high negative WOD angles.</mods:abstract>
<mods:language>
<mods:languageTerm authority="rfc3066">eng</mods:languageTerm>
</mods:language>
<mods:subject>
<mods:topic>PIV</mods:topic>
</mods:subject>
<mods:subject>
<mods:topic>Forces</mods:topic>
</mods:subject>
<mods:subject>
<mods:topic>Frigate</mods:topic>
</mods:subject>
<mods:subject>
<mods:topic>Helicopter recovery</mods:topic>
</mods:subject>
<mods:titleInfo>
<mods:title>A comparative analysis of helicopter recovery maneuvers on a SFS by means of PIV and balance measurements</mods:title>
</mods:titleInfo>
<mods:genre>info:eu-repo/semantics/article</mods:genre>
</mods:mods>
</xmlData>
</mdWrap>
</dmdSec>
<amdSec ID="TMD_20.500.12666_904">
<rightsMD ID="RIG_20.500.12666_904">
<mdWrap MDTYPE="OTHER" MIMETYPE="text/plain" OTHERMDTYPE="DSpaceDepositLicense">
<binData>Cgo8aDEgc3R5bGU9ImZvbnQtZmFtaWx5OnZlcmRhbmE7Ij5MSUNFTkNJQSBJTlRBIERFIERJU1RSSUJVQ0kmT2FjdXRlO04gTk8gRVhDTFVTSVZBPC9oMT4KCgpQYXJhIHF1ZSBlbCByZXBvc2l0b3JpbyA8Yj5EaWdpdGFsLjxlbT5JTlRBPC9lbT48L2I+IHB1ZWRhIGFsbWFjZW5hciB5IGRpc3RyaWJ1aXIgZWwgb2JqZXRvIGRpZ2l0YWwgZGVwb3NpdGFkbywgZXMgbmVjZXNhcmlvIHF1ZSBsYSBwZXJzb25hIHF1ZSBoYWdhIGVsIGRlcCZvYWN1dGU7c2l0byBsZWEgeSBhY2VwdGUgbGFzIGNvbmRpY2lvbmVzIGVzdGFiZWNpZGFzIGVuIGVzdGEgbGljZW5jaWE6CgoxLiBFbC9sb3MgYXV0b3IvZXMgbyBwb3NlZWRvci9lcyBkZWwgY29weXJpZ2h0IGRlbCB0cmFiYWpvIGRlcG9zaXRhZG8gbyBlbiBzdSBjYXNvIGxhIHBlcnNvbmEgZGVsZWdhZGEgcGFyYSBoYWNlcmxvLCBnYXJhbnRpemEgYWwgSU5UQSBlbCBkZXJlY2hvIG5vIGV4Y2x1c2l2byBwYXJhIGRpc3RyaWJ1aXIsIGFsbWFjZW5hciB5IHByZXNlcnZhciBlbiBmb3JtYXRvIGVsZWN0ciZvYWN1dGU7bmljbyBlbCBvYmpldG8gZGlnaXRhbCBkZXBvc2l0YWRvLgoKMi4gRWwgZGVwb3NpdGFudGUsIGVuIGNhc28gZGUgdW5hIG9icmEgY29uIG0mYWFjdXRlO3MgZGUgdW4gYXV0b3IsIGdhcmFudGl6YSBxdWUgbG8gaGFjZSByZXNwb25zYWJsZW1lbnRlIGVuIG5vbWJyZSB5IGNvbiBjb25zZW50aW1pZW50byBkZSBsb3MgZGVtJmFhY3V0ZTtzIGNvYXV0b3Jlcy4KCjMuIERlY2xhcmEgcXVlIHNlIHRyYXRhIGRlIHVuIHRyYWJham8gb3JpZ2luYWwgeSBubyBlc3QmYWFjdXRlOyBzdWpldG8gYSByZXN0cmljY2lvbmVzIGRlICBjb3B5cmlnaHQgY29uIHRlcmNlcm9zIHBhcmEgcG9kZXIgb3RvcmdhciBhbCBJTlRBIGxvcyBkZXJlY2hvcyByZXF1ZXJpZG9zIGVuIGVzdGEgbGljZW5jaWEuCgo0LiBTaSBlbCB0cmFiYWpvIGRlcG9zaXRhZG8gY29udGllbmUgbWF0ZXJpYWwgZGVsIHF1ZSBlbCBhdXRvciBubyBwb3NlZSBlbCBjb3B5cmlnaHQsIGVsIGF1dG9yIGRlY2xhcmEgcXVlIGhhIG9idGVuaWRvIGVsIHBlcm1pc28gbmVjZXNhcmlvIGRlbCBwcm9waWV0YXJpbyBkZWwgY29weXJpZ2h0IHBhcmEgZ2FyYW50aXphciBhbCBJTlRBIGxvcyBkZXJlY2hvcyBkZXNjcml0b3MgZW4gZXN0YSBsaWNlbmNpYSwgeSBxdWUgZWwgcG9zZWVkb3IgZGVsIGNvcHlyaWdodCBlc3QmYWFjdXRlOyBjbGFyYW1lbnRlIGlkZW50aWZpY2FkbyB5IHJlY29ub2NpZG8gZW4gZWwgdGV4dG8gbyBjb250ZW5pZG8gZGVsIGFyY2hpdm8gZGVwb3NpdGFkby4KCjUuIEVsIGF1dG9yIGFjZXB0YSBxdWUgZWwgSU5UQSBwdWVkZSwgc2luIHJlYWxpemFyIGNhbWJpb3MgZW4gZWwgY29udGVuaWRvLCBjb252ZXJ0aXIgZWwgdHJhYmFqbyBhIGN1YWxxdWllciBtZWRpbyBvIGZvcm1hdG8gY29uIG9iamV0aXZvcyBkZSBwcmVzZXJ2YWNpJm9hY3V0ZTtuLgoKNi4gQXNpbWlzbW8gZWwgYXV0b3IgYWNlcHRhIHF1ZSBlbCBJTlRBIHB1ZWRlIGNvbnNlcnZhcyBtJmFhY3V0ZTtzIGRlIHVuYSBjb3BpYSBkZSBlc3RlIHRyYWJham8gcGFyYSBnYXJhbnRpemFyIGxhIHNlZ3VyaWRhZCB5IGxhIHByZXNlcnZhY2kmb2FjdXRlO24gZGUgbG9zIGFyY2hpdm9zLgoKNy4gRWwgSU5UQSBwcmVzZXJ2YXImYWFjdXRlOyB5IGRpZnVuZGlyJmFhY3V0ZTsgZXN0ZSB0cmFiYWpvLiBFbiBlbCBjYXNvIGRlIHF1ZSBubyBwdWVkYSBjb250aW51YXIgbWFudGVuaWVuZG8gZWwgYXJjaGl2byBjb21vIHBhcnRlIGRlbCByZXBvc2l0b3JpbyBpbnN0aXR1Y2lhbCBzZSByZXNlcnZhIGVsIGRlcmVjaG8gZGUgZGV2b2x2ZXIgZWwgY29udGVuaWRvIGFsIGRlcG9zaXRhbnRlLiBTaSBlc3RvIG5vIGVzIHBvc2libGUgKHBvcnF1ZSBsYSBjb211bmlkYWQsIGNvbGVjY2kmb2FjdXRlO24sIGV0Yy4geWEgbm8gZXhpc3RhIG8gZWwgYXV0b3Igbm8gZXN0JmFhY3V0ZTsgbG9jYWxpemFibGUpLCBlbCBtYXRlcmlhbCBwb2RyJmlhY3V0ZTthIHNlciBhcmNoaXZhZG8gY29tbyBwYXJ0ZSBkZWwgYXJjaGl2byBkaWdpdGFsIGRlIGxhIGluc3RpdHVjaSZvYWN1dGU7bi4KCjguIFNpIGxhIGNvbnRyaWJ1Y2kmb2FjdXRlO24gc2UgYmFzYSBlbiB0cmFiYWpvcyBmaW5hbmNpYWRvcyBvIHBhdHJvY2luYWRvcyBwb3Igb3JnYW5pemFjaW9uZXMgZGlzdGludGFzIGFsIElOVEEsIGRlY2xhcmEgaGFiZXIgY3VtcGxpZG8gY29uIGN1YWxxdWllciBkZXJlY2hvIHkgb2JsaWdhY2kmb2FjdXRlO24gZXhwcmVzYWRvcyBlbiBlbCBjb250cmF0byBvIGFjdWVyZG8gZGUgZGljaGFzIG9yZ2FuaXphY2lvbmVzLgoKOS4gRWwgbm9tYnJlIGRlbCBkZXBvc2l0YW50ZSBxdWVkYXImYWFjdXRlOyBjbGFyYW1lbnRlIGlkZW50aWZpY2FkbyBwb3IgZWwgSU5UQSBjb21vIGVsIGRlbCBhdXRvciBvIHByb3BpZXRhcmlvIGRlIGxhIGNvbnRyaWJ1Y2kmb2FjdXRlO24sIHkgZWwgSU5UQSBubyByZWFsaXphciZhYWN1dGU7IG5pbmd1bmEgYWx0ZXJhY2kmb2FjdXRlO24gZGUgc3UgY29udHJpYnVjaSZvYWN1dGU7biwgZXhjZXB0byBsYXMgcmVmZXJpZGFzIGFsIGZvcm1hdG8sIHBlcm1pdGlkYXMgcG9yIGVzdGEgbGljZW5jaWEuCgoKCklOVEEgTElDRU5TRSBPRiBOT04tRVhDTFVTSVZFIERJU1RSSUJVVElPTi4KCkluIG9yZGVyIGZvciB0aGUgRGlnaXRhbC5JTlRBIHJlcG9zaXRvcnkgdG8gc3RvcmUgYW5kIGRpc3RyaWJ1dGUgdGhlIGRlcG9zaXRlZCBkaWdpdGFsIG9iamVjdCwgaXQgaXMgbmVjZXNzYXJ5IGZvciB0aGUgcGVyc29uIG1ha2luZyB0aGUgZGVwb3NpdCB0byByZWFkIGFuZCBhY2NlcHQgdGhlIGNvbmRpdGlvbnMgZXN0YWJsaXNoZWQgaW4gdGhpcyBsaWNlbnNlOgoKMS4gVGhlIGF1dGhvciAocykgb3IgaG9sZGVyIC8gcyBvZiB0aGUgY29weXJpZ2h0IG9mIHRoZSBkZXBvc2l0ZWQgd29yayBvciwgd2hlcmUgYXBwcm9wcmlhdGUsIHRoZSBwZXJzb24gZGVsZWdhdGVkIHRvIGRvIHNvLCBndWFyYW50ZWVzIElOVEEgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gZGlzdHJpYnV0ZSwgc3RvcmUgYW5kIHByZXNlcnZlIHRoZSBkZXBvc2l0ZWQgZGlnaXRhbCBvYmplY3QgaW4gZWxlY3Ryb25pYyBmb3JtYXQuCgoyLiBUaGUgZGVwb3NpdG9yLCBpbiB0aGUgY2FzZSBvZiBhIHdvcmsgd2l0aCBtb3JlIHRoYW4gb25lIGF1dGhvciwgZ3VhcmFudGVlcyB0aGF0IGhlIGRvZXMgc28gcmVzcG9uc2libHkgb24gYmVoYWxmIGFuZCB3aXRoIHRoZSBjb25zZW50IG9mIHRoZSBvdGhlciBjby1hdXRob3JzLgoKMy4gRGVjbGFyZXMgdGhhdCBpdCBpcyBhbiBvcmlnaW5hbCB3b3JrIGFuZCBpcyBub3Qgc3ViamVjdCB0byBjb3B5cmlnaHQgcmVzdHJpY3Rpb25zIHdpdGggdGhpcmQgcGFydGllcyBpbiBvcmRlciB0byBncmFudCBJTlRBIHRoZSByaWdodHMgcmVxdWlyZWQgaW4gdGhpcyBsaWNlbnNlLgoKNC4gSWYgdGhlIGRlcG9zaXRlZCB3b3JrIGNvbnRhaW5zIG1hdGVyaWFsIHRoYXQgdGhlIGF1dGhvciBkb2VzIG5vdCBvd24gdGhlIGNvcHlyaWdodCwgdGhlIGF1dGhvciBkZWNsYXJlcyB0aGF0IGhlIGhhcyBvYnRhaW5lZCB0aGUgbmVjZXNzYXJ5IHBlcm1pc3Npb24gZnJvbSB0aGUgY29weXJpZ2h0IG93bmVyIHRvIGd1YXJhbnRlZSBJTlRBIHRoZSByaWdodHMgZGVzY3JpYmVkIGluIHRoaXMgbGljZW5zZSwgYW5kIHRoYXQgdGhlIGNvcHlyaWdodCBob2xkZXIgaXMgY2xlYXJseSBpZGVudGlmaWVkIGFuZCByZWNvZ25pemVkIGluIHRoZSB0ZXh0IG9yIGNvbnRlbnQgb2YgdGhlIGRlcG9zaXRlZCBmaWxlLgoKNS4gVGhlIGF1dGhvciBhY2NlcHRzIHRoYXQgSU5UQSBjYW4sIHdpdGhvdXQgbWFraW5nIGNoYW5nZXMgdG8gdGhlIGNvbnRlbnQsIGNvbnZlcnQgdGhlIHdvcmsgdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgd2l0aCBwcmVzZXJ2YXRpb24gb2JqZWN0aXZlcy4KCjYuIFRoZSBhdXRob3IgYWxzbyBhY2NlcHRzIHRoYXQgSU5UQSBtYXkga2VlcCBtb3JlIHRoYW4gb25lIGNvcHkgb2YgdGhpcyB3b3JrIHRvIGVuc3VyZSB0aGUgc2VjdXJpdHkgYW5kIHByZXNlcnZhdGlvbiBvZiB0aGUgYXJjaGl2ZXMuCgo3LiBJTlRBIHdpbGwgcHJlc2VydmUgYW5kIGRpc3NlbWluYXRlIHRoaXMgd29yay4gSW4gdGhlIGV2ZW50IHRoYXQgeW91IGNhbm5vdCBjb250aW51ZSB0byBtYWludGFpbiB0aGUgZmlsZSBhcyBwYXJ0IG9mIHRoZSBpbnN0aXR1dGlvbmFsIHJlcG9zaXRvcnksIHlvdSByZXNlcnZlIHRoZSByaWdodCB0byByZXR1cm4gdGhlIGNvbnRlbnQgdG8gdGhlIGRlcG9zaXRvci4gSWYgdGhpcyBpcyBub3QgcG9zc2libGUgKGJlY2F1c2UgdGhlIGNvbW11bml0eSwgY29sbGVjdGlvbiwgZXRjLiBubyBsb25nZXIgZXhpc3RzIG9yIHRoZSBhdXRob3IgaXMgbm90IHJlYWNoYWJsZSksIHRoZSBtYXRlcmlhbCBjb3VsZCBiZSBhcmNoaXZlZCBhcyBwYXJ0IG9mIHRoZSBpbnN0aXR1dGlvbidzIGRpZ2l0YWwgYXJjaGl2ZS4KCjguIElmIHRoZSBjb250cmlidXRpb24gaXMgYmFzZWQgb24gd29ya3MgZmluYW5jZWQgb3Igc3BvbnNvcmVkIGJ5IG9yZ2FuaXphdGlvbnMgb3RoZXIgdGhhbiBJTlRBLCBpdCBkZWNsYXJlcyB0aGF0IGl0IGhhcyBjb21wbGllZCB3aXRoIGFueSByaWdodCBhbmQgb2JsaWdhdGlvbiBleHByZXNzZWQgaW4gdGhlIGNvbnRyYWN0IG9yIGFncmVlbWVudCBvZiBzYWlkIG9yZ2FuaXphdGlvbnMuCgo5LiBUaGUgbmFtZSBvZiB0aGUgZGVwb3NpdG9yIHdpbGwgYmUgY2xlYXJseSBpZGVudGlmaWVkIGJ5IHRoZSBJTlRBIGFzIHRoYXQgb2YgdGhlIGF1dGhvciBvciBvd25lciBvZiB0aGUgY29udHJpYnV0aW9uLCBhbmQgSU5UQSB3aWxsIG5vdCBtYWtlIGFueSBhbHRlcmF0aW9uIG9mIGl0cyBjb250cmlidXRpb24sIGV4Y2VwdCB0aG9zZSByZWZlcnJpbmcgdG8gdGhlIGZvcm1hdCwgYWxsb3dlZCBieSB0aGlzIGxpY2Vuc2UuCg==</binData>
</mdWrap>
</rightsMD>
</amdSec>
<amdSec ID="FO_20.500.12666_904_1">
<techMD ID="TECH_O_20.500.12666_904_1">
<mdWrap MDTYPE="PREMIS">
<xmlData schemaLocation="http://www.loc.gov/standards/premis http://www.loc.gov/standards/premis/PREMIS-v1-0.xsd">
<premis:premis>
<premis:object>
<premis:objectIdentifier>
<premis:objectIdentifierType>URL</premis:objectIdentifierType>
<premis:objectIdentifierValue>https://digital.inta.es:8443/jspui/bitstream/20.500.12666/904/1/A%20comparative%20analysis%20of%20helicopter%20recovery%20manuevers%20on%20a%20SFS%20by%20means%20of%20PIV%20and%20balance%20measurements.pdf</premis:objectIdentifierValue>
</premis:objectIdentifier>
<premis:objectCategory>File</premis:objectCategory>
<premis:objectCharacteristics>
<premis:fixity>
<premis:messageDigestAlgorithm>MD5</premis:messageDigestAlgorithm>
<premis:messageDigest>c02bd76e9cf73214fbf3cd0d880a2654</premis:messageDigest>
</premis:fixity>
<premis:size>3263391</premis:size>
<premis:format>
<premis:formatDesignation>
<premis:formatName>application/pdf</premis:formatName>
</premis:formatDesignation>
</premis:format>
</premis:objectCharacteristics>
<premis:originalName>A comparative analysis of helicopter recovery manuevers on a SFS by means of PIV and balance measurements.pdf</premis:originalName>
</premis:object>
</premis:premis>
</xmlData>
</mdWrap>
</techMD>
</amdSec>
<amdSec ID="FT_20.500.12666_904_3">
<techMD ID="TECH_T_20.500.12666_904_3">
<mdWrap MDTYPE="PREMIS">
<xmlData schemaLocation="http://www.loc.gov/standards/premis http://www.loc.gov/standards/premis/PREMIS-v1-0.xsd">
<premis:premis>
<premis:object>
<premis:objectIdentifier>
<premis:objectIdentifierType>URL</premis:objectIdentifierType>
<premis:objectIdentifierValue>https://digital.inta.es:8443/jspui/bitstream/20.500.12666/904/3/A%20comparative%20analysis%20of%20helicopter%20recovery%20manuevers%20on%20a%20SFS%20by%20means%20of%20PIV%20and%20balance%20measurements.pdf.txt</premis:objectIdentifierValue>
</premis:objectIdentifier>
<premis:objectCategory>File</premis:objectCategory>
<premis:objectCharacteristics>
<premis:fixity>
<premis:messageDigestAlgorithm>MD5</premis:messageDigestAlgorithm>
<premis:messageDigest>726dd8f00c217cb274452de9d11215e0</premis:messageDigest>
</premis:fixity>
<premis:size>44087</premis:size>
<premis:format>
<premis:formatDesignation>
<premis:formatName>text/plain</premis:formatName>
</premis:formatDesignation>
</premis:format>
</premis:objectCharacteristics>
<premis:originalName>A comparative analysis of helicopter recovery manuevers on a SFS by means of PIV and balance measurements.pdf.txt</premis:originalName>
</premis:object>
</premis:premis>
</xmlData>
</mdWrap>
</techMD>
</amdSec>
<fileSec>
<fileGrp USE="ORIGINAL">
<file ADMID="FO_20.500.12666_904_1" CHECKSUM="c02bd76e9cf73214fbf3cd0d880a2654" CHECKSUMTYPE="MD5" GROUPID="GROUP_BITSTREAM_20.500.12666_904_1" ID="BITSTREAM_ORIGINAL_20.500.12666_904_1" MIMETYPE="application/pdf" SEQ="1" SIZE="3263391">
</file>
</fileGrp>
<fileGrp USE="TEXT">
<file ADMID="FT_20.500.12666_904_3" CHECKSUM="726dd8f00c217cb274452de9d11215e0" CHECKSUMTYPE="MD5" GROUPID="GROUP_BITSTREAM_20.500.12666_904_3" ID="BITSTREAM_TEXT_20.500.12666_904_3" MIMETYPE="text/plain" SEQ="3" SIZE="44087">
</file>
</fileGrp>
</fileSec>
<structMap LABEL="DSpace Object" TYPE="LOGICAL">
<div ADMID="DMD_20.500.12666_904" TYPE="DSpace Object Contents">
<div TYPE="DSpace BITSTREAM">
</div>
</div>
</structMap>
</mets>
<?xml version="1.0" encoding="UTF-8" ?>
<mods:mods schemaLocation="http://www.loc.gov/mods/v3 http://www.loc.gov/standards/mods/v3/mods-3-1.xsd">
<mods:name>
<mods:namePart>Matías García, J. C.</mods:namePart>
</mods:name>
<mods:name>
<mods:namePart>Bardera, Rafael</mods:namePart>
</mods:name>
<mods:name>
<mods:namePart>Franchini, Sebastián</mods:namePart>
</mods:name>
<mods:name>
<mods:namePart>Barroso, Estela</mods:namePart>
</mods:name>
<mods:name>
<mods:namePart>Sor, Suthyvann</mods:namePart>
</mods:name>
<mods:extension>
<mods:dateAvailable encoding="iso8601">2023-12-01T08:00:31Z</mods:dateAvailable>
</mods:extension>
<mods:extension>
<mods:dateAccessioned encoding="iso8601">2023-12-01T08:00:31Z</mods:dateAccessioned>
</mods:extension>
<mods:originInfo>
<mods:dateIssued encoding="iso8601">2023-05-23</mods:dateIssued>
</mods:originInfo>
<mods:identifier type="citation">Ocean Engineering 275: 114119(2023)</mods:identifier>
<mods:identifier type="issn">0029-8018</mods:identifier>
<mods:identifier type="other">https://www.sciencedirect.com/science/article/abs/pii/S0029801823005036</mods:identifier>
<mods:identifier type="uri">http://hdl.handle.net/20.500.12666/904</mods:identifier>
<mods:identifier type="doi">https://doi.org/10.1016/j.oceaneng.2023.114119</mods:identifier>
<mods:identifier type="e-issn">1873-5258</mods:identifier>
<mods:abstract>The flow field around a frigate is complex due to flow detachments, high velocity gradients, and flow unsteadiness. These flow patterns can endanger helicopter operations around frigates and increase pilot workload above the flight deck. This paper contains a comparative analysis of three different recovery maneuvers: an approach from the stern in the centerline plane (S); a diagonal maneuver (D); and an L-shaped maneuver. The comparison is made using wind tunnel tests with a scaled frigate and a motorized helicopter. For the three maneuvers, velocity contours around the helicopter with Particle Image Velocimetry are obtained. An internal balance is also used to obtain forces and moments on the helicopter during the flight path of the maneuvers. Those measurements show that the wake of the ship mostly affects longitudinal and thrust forces. In addition, pitch torque is highly reduced when the helicopter is behind the frigate superstructure, and the roll moment is also important when the wind angle increases. In the end, an estimation of pilot workload is presented to conclude that L-shaped maneuver is the best for 0° and small WOD angles and D or S recoveries for moderately high negative WOD angles.</mods:abstract>
<mods:language>
<mods:languageTerm>eng</mods:languageTerm>
</mods:language>
<mods:accessCondition type="useAndReproduction">© 2023 Elsevier Ltd. All rights reserved.</mods:accessCondition>
<mods:accessCondition type="useAndReproduction">info:eu-repo/semantics/restrictedAccess</mods:accessCondition>
<mods:subject>
<mods:topic>PIV</mods:topic>
</mods:subject>
<mods:subject>
<mods:topic>Forces</mods:topic>
</mods:subject>
<mods:subject>
<mods:topic>Frigate</mods:topic>
</mods:subject>
<mods:subject>
<mods:topic>Helicopter recovery</mods:topic>
</mods:subject>
<mods:titleInfo>
<mods:title>A comparative analysis of helicopter recovery maneuvers on a SFS by means of PIV and balance measurements</mods:title>
</mods:titleInfo>
<mods:genre>info:eu-repo/semantics/article</mods:genre>
</mods:mods>
<?xml version="1.0" encoding="UTF-8" ?>
<atom:entry schemaLocation="http://www.w3.org/2005/Atom http://www.kbcafe.com/rss/atom.xsd.xml">
<atom:id>http://hdl.handle.net/20.500.12666/904/ore.xml</atom:id>
<atom:published>2023-12-01T08:00:31Z</atom:published>
<atom:updated>2023-12-01T08:00:31Z</atom:updated>
<atom:source>
<atom:generator>Digital INTA</atom:generator>
</atom:source>
<atom:title>A comparative analysis of helicopter recovery maneuvers on a SFS by means of PIV and balance measurements</atom:title>
<atom:author>
<atom:name>Matías García, J. C.</atom:name>
</atom:author>
<atom:author>
<atom:name>Bardera, Rafael</atom:name>
</atom:author>
<atom:author>
<atom:name>Franchini, Sebastián</atom:name>
</atom:author>
<atom:author>
<atom:name>Barroso, Estela</atom:name>
</atom:author>
<atom:author>
<atom:name>Sor, Suthyvann</atom:name>
</atom:author>
<oreatom:triples>
<rdf:Description about="http://hdl.handle.net/20.500.12666/904/ore.xml#atom">
<dcterms:modified>2023-12-01T08:00:31Z</dcterms:modified>
</rdf:Description>
<rdf:Description about="https://digital.inta.es:8443/jspui/bitstream/20.500.12666/904/1/A%20comparative%20analysis%20of%20helicopter%20recovery%20manuevers%20on%20a%20SFS%20by%20means%20of%20PIV%20and%20balance%20measurements.pdf">
<dcterms:description>ORIGINAL</dcterms:description>
</rdf:Description>
<rdf:Description about="https://digital.inta.es:8443/jspui/bitstream/20.500.12666/904/2/license.txt">
<dcterms:description>LICENSE</dcterms:description>
</rdf:Description>
<rdf:Description about="https://digital.inta.es:8443/jspui/bitstream/20.500.12666/904/3/A%20comparative%20analysis%20of%20helicopter%20recovery%20manuevers%20on%20a%20SFS%20by%20means%20of%20PIV%20and%20balance%20measurements.pdf.txt">
<dcterms:description>TEXT</dcterms:description>
</rdf:Description>
<rdf:Description about="https://digital.inta.es:8443/jspui/bitstream/20.500.12666/904/4/A%20comparative%20analysis%20of%20helicopter%20recovery%20manuevers%20on%20a%20SFS%20by%20means%20of%20PIV%20and%20balance%20measurements.pdf.jpg">
<dcterms:description>THUMBNAIL</dcterms:description>
</rdf:Description>
</oreatom:triples>
</atom:entry>
<?xml version="1.0" encoding="UTF-8" ?>
<qdc:qualifieddc schemaLocation="http://purl.org/dc/elements/1.1/ http://dublincore.org/schemas/xmls/qdc/2006/01/06/dc.xsd http://purl.org/dc/terms/ http://dublincore.org/schemas/xmls/qdc/2006/01/06/dcterms.xsd http://dspace.org/qualifieddc/ http://www.ukoln.ac.uk/metadata/dcmi/xmlschema/qualifieddc.xsd">
<dc:title>A comparative analysis of helicopter recovery maneuvers on a SFS by means of PIV and balance measurements</dc:title>
<dc:creator>Matías García, J. C.</dc:creator>
<dc:creator>Bardera, Rafael</dc:creator>
<dc:creator>Franchini, Sebastián</dc:creator>
<dc:creator>Barroso, Estela</dc:creator>
<dc:creator>Sor, Suthyvann</dc:creator>
<dc:contributor>Instituto Nacional de Técnica Aeroespacial (INTA)</dc:contributor>
<dc:subject>PIV</dc:subject>
<dc:subject>Forces</dc:subject>
<dc:subject>Frigate</dc:subject>
<dc:subject>Helicopter recovery</dc:subject>
<dcterms:abstract>The flow field around a frigate is complex due to flow detachments, high velocity gradients, and flow unsteadiness. These flow patterns can endanger helicopter operations around frigates and increase pilot workload above the flight deck. This paper contains a comparative analysis of three different recovery maneuvers: an approach from the stern in the centerline plane (S); a diagonal maneuver (D); and an L-shaped maneuver. The comparison is made using wind tunnel tests with a scaled frigate and a motorized helicopter. For the three maneuvers, velocity contours around the helicopter with Particle Image Velocimetry are obtained. An internal balance is also used to obtain forces and moments on the helicopter during the flight path of the maneuvers. Those measurements show that the wake of the ship mostly affects longitudinal and thrust forces. In addition, pitch torque is highly reduced when the helicopter is behind the frigate superstructure, and the roll moment is also important when the wind angle increases. In the end, an estimation of pilot workload is presented to conclude that L-shaped maneuver is the best for 0° and small WOD angles and D or S recoveries for moderately high negative WOD angles.</dcterms:abstract>
<dcterms:dateAccepted>2023-12-01T08:00:31Z</dcterms:dateAccepted>
<dcterms:available>2023-12-01T08:00:31Z</dcterms:available>
<dcterms:created>2023-12-01T08:00:31Z</dcterms:created>
<dcterms:issued>2023-05-23</dcterms:issued>
<dc:type>info:eu-repo/semantics/article</dc:type>
<dc:identifier>Ocean Engineering 275: 114119(2023)</dc:identifier>
<dc:identifier>0029-8018</dc:identifier>
<dc:identifier>https://www.sciencedirect.com/science/article/abs/pii/S0029801823005036</dc:identifier>
<dc:identifier>http://hdl.handle.net/20.500.12666/904</dc:identifier>
<dc:identifier>https://doi.org/10.1016/j.oceaneng.2023.114119</dc:identifier>
<dc:identifier>1873-5258</dc:identifier>
<dc:language>eng</dc:language>
<dc:rights>© 2023 Elsevier Ltd. All rights reserved.</dc:rights>
<dc:rights>info:eu-repo/semantics/restrictedAccess</dc:rights>
<dc:publisher>Elsevier</dc:publisher>
</qdc:qualifieddc>
<?xml version="1.0" encoding="UTF-8" ?>
<rdf:RDF schemaLocation="http://www.openarchives.org/OAI/2.0/rdf/ http://www.openarchives.org/OAI/2.0/rdf.xsd">
<ow:Publication about="oai:digital.inta.es:20.500.12666/904">
<dc:title>A comparative analysis of helicopter recovery maneuvers on a SFS by means of PIV and balance measurements</dc:title>
<dc:creator>Matías García, J. C.</dc:creator>
<dc:creator>Bardera, Rafael</dc:creator>
<dc:creator>Franchini, Sebastián</dc:creator>
<dc:creator>Barroso, Estela</dc:creator>
<dc:creator>Sor, Suthyvann</dc:creator>
<dc:contributor>Instituto Nacional de Técnica Aeroespacial (INTA)</dc:contributor>
<dc:subject>PIV</dc:subject>
<dc:subject>Forces</dc:subject>
<dc:subject>Frigate</dc:subject>
<dc:subject>Helicopter recovery</dc:subject>
<dc:description>The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.</dc:description>
<dc:description>The flow field around a frigate is complex due to flow detachments, high velocity gradients, and flow unsteadiness. These flow patterns can endanger helicopter operations around frigates and increase pilot workload above the flight deck. This paper contains a comparative analysis of three different recovery maneuvers: an approach from the stern in the centerline plane (S); a diagonal maneuver (D); and an L-shaped maneuver. The comparison is made using wind tunnel tests with a scaled frigate and a motorized helicopter. For the three maneuvers, velocity contours around the helicopter with Particle Image Velocimetry are obtained. An internal balance is also used to obtain forces and moments on the helicopter during the flight path of the maneuvers. Those measurements show that the wake of the ship mostly affects longitudinal and thrust forces. In addition, pitch torque is highly reduced when the helicopter is behind the frigate superstructure, and the roll moment is also important when the wind angle increases. In the end, an estimation of pilot workload is presented to conclude that L-shaped maneuver is the best for 0° and small WOD angles and D or S recoveries for moderately high negative WOD angles.</dc:description>
<dc:date>2023-12-01T08:00:31Z</dc:date>
<dc:date>2023-12-01T08:00:31Z</dc:date>
<dc:date>2023-05-23</dc:date>
<dc:type>info:eu-repo/semantics/article</dc:type>
<dc:identifier>Ocean Engineering 275: 114119(2023)</dc:identifier>
<dc:identifier>0029-8018</dc:identifier>
<dc:identifier>https://www.sciencedirect.com/science/article/abs/pii/S0029801823005036</dc:identifier>
<dc:identifier>http://hdl.handle.net/20.500.12666/904</dc:identifier>
<dc:identifier>https://doi.org/10.1016/j.oceaneng.2023.114119</dc:identifier>
<dc:identifier>1873-5258</dc:identifier>
<dc:language>eng</dc:language>
<dc:rights>© 2023 Elsevier Ltd. All rights reserved.</dc:rights>
<dc:rights>info:eu-repo/semantics/restrictedAccess</dc:rights>
<dc:publisher>Elsevier</dc:publisher>
</ow:Publication>
</rdf:RDF>
Se ha omitido la presentación del registro por ser demasiado largo. Si lo desea, puede descargárselo en el enlace anterior.