<?xml version="1.0" encoding="UTF-8" ?>
<oai_dc:dc schemaLocation="http://www.openarchives.org/OAI/2.0/oai_dc/ http://www.openarchives.org/OAI/2.0/oai_dc.xsd">
<dc:title>A mathematical analysis of an extended MHD Darcy–Forchheimer type fluid.</dc:title>
<dc:creator>Díaz Palencia, José Luis</dc:creator>
<dc:description>The presented analysis has the aim of introducing general properties of solutions to an Extended Darcy–Forchheimer flow. The Extended Darcy–Forchheimer set of equations are introduced based on mathematical principles. Firstly, the diffusion is formulated with a non-homogeneous operator, and is supported by the addition of a non-linear advection together with a non-uniform reaction term. The involved analysis is given in generalized Hilbert–Sobolev spaces to account for regularity, existence and uniqueness of solutions supported by the semi-group theory. Afterwards, oscillating patterns of Travelling wave solutions are analyzed inspired by a set of Lemmas focused on solutions instability. Based on this, the Geometric Perturbation Theory provides linearized flows for which the eigenvalues are provided in an homotopy representation, and hence, any exponential bundles of solutions by direct linear combination. In addition, a numerical exploration is developed to find exact Travelling waves profiles and to study zones where solutions are positive. It is shown that, in general, solutions are oscillating in the proximity of the null critical state. In addition, an inner region (inner as a contrast to an outer region where solutions oscillate) of positive solutions is shown to hold locally in time.</dc:description>
<dc:description>post-print</dc:description>
<dc:description>2749 KB</dc:description>
<dc:date>2023-02-24T13:18:48Z</dc:date>
<dc:date>2023-02-24T13:18:48Z</dc:date>
<dc:date>2022</dc:date>
<dc:type>article</dc:type>
<dc:identifier>2045-2322</dc:identifier>
<dc:identifier>https://hdl.handle.net/10641/3274</dc:identifier>
<dc:identifier>10.1038/s41598-022-08623-0</dc:identifier>
<dc:language>eng</dc:language>
<dc:relation>https://www.nature.com/articles/s41598-022-08623-0</dc:relation>
<dc:rights>Atribución-NoComercial-SinDerivadas 3.0 España</dc:rights>
<dc:rights>http://creativecommons.org/licenses/by-nc-nd/3.0/es/</dc:rights>
<dc:rights>openAccess</dc:rights>
<dc:publisher>Scientific Reports</dc:publisher>
</oai_dc:dc>
<?xml version="1.0" encoding="UTF-8" ?>
<d:DIDL schemaLocation="urn:mpeg:mpeg21:2002:02-DIDL-NS http://standards.iso.org/ittf/PubliclyAvailableStandards/MPEG-21_schema_files/did/didl.xsd">
<d:DIDLInfo>
<dcterms:created schemaLocation="http://purl.org/dc/terms/ http://dublincore.org/schemas/xmls/qdc/dcterms.xsd">2023-02-24T13:18:48Z</dcterms:created>
</d:DIDLInfo>
<d:Item id="hdl_10641_3274">
<d:Descriptor>
<d:Statement mimeType="application/xml; charset=utf-8">
<dii:Identifier schemaLocation="urn:mpeg:mpeg21:2002:01-DII-NS http://standards.iso.org/ittf/PubliclyAvailableStandards/MPEG-21_schema_files/dii/dii.xsd">urn:hdl:10641/3274</dii:Identifier>
</d:Statement>
</d:Descriptor>
<d:Descriptor>
<d:Statement mimeType="application/xml; charset=utf-8">
<oai_dc:dc schemaLocation="http://www.openarchives.org/OAI/2.0/oai_dc/ http://www.openarchives.org/OAI/2.0/oai_dc.xsd">
<dc:title>A mathematical analysis of an extended MHD Darcy–Forchheimer type fluid.</dc:title>
<dc:creator>Díaz Palencia, José Luis</dc:creator>
<dc:description>The presented analysis has the aim of introducing general properties of solutions to an Extended Darcy–Forchheimer flow. The Extended Darcy–Forchheimer set of equations are introduced based on mathematical principles. Firstly, the diffusion is formulated with a non-homogeneous operator, and is supported by the addition of a non-linear advection together with a non-uniform reaction term. The involved analysis is given in generalized Hilbert–Sobolev spaces to account for regularity, existence and uniqueness of solutions supported by the semi-group theory. Afterwards, oscillating patterns of Travelling wave solutions are analyzed inspired by a set of Lemmas focused on solutions instability. Based on this, the Geometric Perturbation Theory provides linearized flows for which the eigenvalues are provided in an homotopy representation, and hence, any exponential bundles of solutions by direct linear combination. In addition, a numerical exploration is developed to find exact Travelling waves profiles and to study zones where solutions are positive. It is shown that, in general, solutions are oscillating in the proximity of the null critical state. In addition, an inner region (inner as a contrast to an outer region where solutions oscillate) of positive solutions is shown to hold locally in time.</dc:description>
<dc:date>2023-02-24T13:18:48Z</dc:date>
<dc:date>2023-02-24T13:18:48Z</dc:date>
<dc:date>2022</dc:date>
<dc:type>article</dc:type>
<dc:identifier>2045-2322</dc:identifier>
<dc:identifier>https://hdl.handle.net/10641/3274</dc:identifier>
<dc:identifier>10.1038/s41598-022-08623-0</dc:identifier>
<dc:language>eng</dc:language>
<dc:relation>https://www.nature.com/articles/s41598-022-08623-0</dc:relation>
<dc:rights>http://creativecommons.org/licenses/by-nc-nd/3.0/es/</dc:rights>
<dc:rights>openAccess</dc:rights>
<dc:rights>Atribución-NoComercial-SinDerivadas 3.0 España</dc:rights>
<dc:publisher>Scientific Reports</dc:publisher>
</oai_dc:dc>
</d:Statement>
</d:Descriptor>
<d:Component id="10641_3274_1">
</d:Component>
</d:Item>
</d:DIDL>
<?xml version="1.0" encoding="UTF-8" ?>
<dim:dim schemaLocation="http://www.dspace.org/xmlns/dspace/dim http://www.dspace.org/schema/dim.xsd">
<dim:field authority="208" confidence="600" element="contributor" mdschema="dc" qualifier="author">Díaz Palencia, José Luis</dim:field>
<dim:field element="date" mdschema="dc" qualifier="accessioned">2023-02-24T13:18:48Z</dim:field>
<dim:field element="date" mdschema="dc" qualifier="available">2023-02-24T13:18:48Z</dim:field>
<dim:field element="date" mdschema="dc" qualifier="issued">2022</dim:field>
<dim:field element="identifier" lang="spa" mdschema="dc" qualifier="issn">2045-2322</dim:field>
<dim:field element="identifier" mdschema="dc" qualifier="uri">https://hdl.handle.net/10641/3274</dim:field>
<dim:field element="identifier" lang="spa" mdschema="dc" qualifier="doi">10.1038/s41598-022-08623-0</dim:field>
<dim:field element="description" lang="spa" mdschema="dc" qualifier="abstract">The presented analysis has the aim of introducing general properties of solutions to an Extended Darcy–Forchheimer flow. The Extended Darcy–Forchheimer set of equations are introduced based on mathematical principles. Firstly, the diffusion is formulated with a non-homogeneous operator, and is supported by the addition of a non-linear advection together with a non-uniform reaction term. The involved analysis is given in generalized Hilbert–Sobolev spaces to account for regularity, existence and uniqueness of solutions supported by the semi-group theory. Afterwards, oscillating patterns of Travelling wave solutions are analyzed inspired by a set of Lemmas focused on solutions instability. Based on this, the Geometric Perturbation Theory provides linearized flows for which the eigenvalues are provided in an homotopy representation, and hence, any exponential bundles of solutions by direct linear combination. In addition, a numerical exploration is developed to find exact Travelling waves profiles and to study zones where solutions are positive. It is shown that, in general, solutions are oscillating in the proximity of the null critical state. In addition, an inner region (inner as a contrast to an outer region where solutions oscillate) of positive solutions is shown to hold locally in time.</dim:field>
<dim:field element="description" lang="spa" mdschema="dc" qualifier="version">post-print</dim:field>
<dim:field element="description" lang="spa" mdschema="dc" qualifier="extent">2749 KB</dim:field>
<dim:field element="language" lang="spa" mdschema="dc" qualifier="iso">eng</dim:field>
<dim:field element="publisher" lang="spa" mdschema="dc">Scientific Reports</dim:field>
<dim:field element="rights" lang="*" mdschema="dc">Atribución-NoComercial-SinDerivadas 3.0 España</dim:field>
<dim:field element="rights" lang="*" mdschema="dc" qualifier="uri">http://creativecommons.org/licenses/by-nc-nd/3.0/es/</dim:field>
<dim:field element="rights" lang="spa" mdschema="dc" qualifier="accessRights">openAccess</dim:field>
<dim:field element="title" lang="spa" mdschema="dc">A mathematical analysis of an extended MHD Darcy–Forchheimer type fluid.</dim:field>
<dim:field element="type" lang="spa" mdschema="dc">article</dim:field>
<dim:field element="relation" lang="spa" mdschema="dc" qualifier="publisherversion">https://www.nature.com/articles/s41598-022-08623-0</dim:field>
</dim:dim>
<?xml version="1.0" encoding="UTF-8" ?>
<thesis schemaLocation="http://www.ndltd.org/standards/metadata/etdms/1.0/ http://www.ndltd.org/standards/metadata/etdms/1.0/etdms.xsd">
<title>A mathematical analysis of an extended MHD Darcy–Forchheimer type fluid.</title>
<creator>Díaz Palencia, José Luis</creator>
<description>The presented analysis has the aim of introducing general properties of solutions to an Extended Darcy–Forchheimer flow. The Extended Darcy–Forchheimer set of equations are introduced based on mathematical principles. Firstly, the diffusion is formulated with a non-homogeneous operator, and is supported by the addition of a non-linear advection together with a non-uniform reaction term. The involved analysis is given in generalized Hilbert–Sobolev spaces to account for regularity, existence and uniqueness of solutions supported by the semi-group theory. Afterwards, oscillating patterns of Travelling wave solutions are analyzed inspired by a set of Lemmas focused on solutions instability. Based on this, the Geometric Perturbation Theory provides linearized flows for which the eigenvalues are provided in an homotopy representation, and hence, any exponential bundles of solutions by direct linear combination. In addition, a numerical exploration is developed to find exact Travelling waves profiles and to study zones where solutions are positive. It is shown that, in general, solutions are oscillating in the proximity of the null critical state. In addition, an inner region (inner as a contrast to an outer region where solutions oscillate) of positive solutions is shown to hold locally in time.</description>
<date>2023-02-24</date>
<date>2023-02-24</date>
<date>2022</date>
<type>article</type>
<identifier>2045-2322</identifier>
<identifier>https://hdl.handle.net/10641/3274</identifier>
<identifier>10.1038/s41598-022-08623-0</identifier>
<language>eng</language>
<relation>https://www.nature.com/articles/s41598-022-08623-0</relation>
<rights>http://creativecommons.org/licenses/by-nc-nd/3.0/es/</rights>
<rights>openAccess</rights>
<rights>Atribución-NoComercial-SinDerivadas 3.0 España</rights>
<publisher>Scientific Reports</publisher>
</thesis>
<?xml version="1.0" encoding="UTF-8" ?>
<record schemaLocation="http://www.loc.gov/MARC21/slim http://www.loc.gov/standards/marcxml/schema/MARC21slim.xsd">
<leader>00925njm 22002777a 4500</leader>
<datafield ind1=" " ind2=" " tag="042">
<subfield code="a">dc</subfield>
</datafield>
<datafield ind1=" " ind2=" " tag="720">
<subfield code="a">Díaz Palencia, José Luis</subfield>
<subfield code="e">author</subfield>
</datafield>
<datafield ind1=" " ind2=" " tag="260">
<subfield code="c">2022</subfield>
</datafield>
<datafield ind1=" " ind2=" " tag="520">
<subfield code="a">The presented analysis has the aim of introducing general properties of solutions to an Extended Darcy–Forchheimer flow. The Extended Darcy–Forchheimer set of equations are introduced based on mathematical principles. Firstly, the diffusion is formulated with a non-homogeneous operator, and is supported by the addition of a non-linear advection together with a non-uniform reaction term. The involved analysis is given in generalized Hilbert–Sobolev spaces to account for regularity, existence and uniqueness of solutions supported by the semi-group theory. Afterwards, oscillating patterns of Travelling wave solutions are analyzed inspired by a set of Lemmas focused on solutions instability. Based on this, the Geometric Perturbation Theory provides linearized flows for which the eigenvalues are provided in an homotopy representation, and hence, any exponential bundles of solutions by direct linear combination. In addition, a numerical exploration is developed to find exact Travelling waves profiles and to study zones where solutions are positive. It is shown that, in general, solutions are oscillating in the proximity of the null critical state. In addition, an inner region (inner as a contrast to an outer region where solutions oscillate) of positive solutions is shown to hold locally in time.</subfield>
</datafield>
<datafield ind1="8" ind2=" " tag="024">
<subfield code="a">2045-2322</subfield>
</datafield>
<datafield ind1="8" ind2=" " tag="024">
<subfield code="a">https://hdl.handle.net/10641/3274</subfield>
</datafield>
<datafield ind1="8" ind2=" " tag="024">
<subfield code="a">10.1038/s41598-022-08623-0</subfield>
</datafield>
<datafield ind1="0" ind2="0" tag="245">
<subfield code="a">A mathematical analysis of an extended MHD Darcy–Forchheimer type fluid.</subfield>
</datafield>
</record>
<?xml version="1.0" encoding="UTF-8" ?>
<mets ID=" DSpace_ITEM_10641-3274" OBJID=" hdl:10641/3274" PROFILE="DSpace METS SIP Profile 1.0" TYPE="DSpace ITEM" schemaLocation="http://www.loc.gov/METS/ http://www.loc.gov/standards/mets/mets.xsd">
<metsHdr CREATEDATE="2023-04-18T04:35:14Z">
<agent ROLE="CUSTODIAN" TYPE="ORGANIZATION">
<name>DDFV</name>
</agent>
</metsHdr>
<dmdSec ID="DMD_10641_3274">
<mdWrap MDTYPE="MODS">
<xmlData schemaLocation="http://www.loc.gov/mods/v3 http://www.loc.gov/standards/mods/v3/mods-3-1.xsd">
<mods:mods schemaLocation="http://www.loc.gov/mods/v3 http://www.loc.gov/standards/mods/v3/mods-3-1.xsd">
<mods:name>
<mods:role>
<mods:roleTerm type="text">author</mods:roleTerm>
</mods:role>
<mods:namePart>Díaz Palencia, José Luis</mods:namePart>
</mods:name>
<mods:extension>
<mods:dateAccessioned encoding="iso8601">2023-02-24T13:18:48Z</mods:dateAccessioned>
</mods:extension>
<mods:extension>
<mods:dateAvailable encoding="iso8601">2023-02-24T13:18:48Z</mods:dateAvailable>
</mods:extension>
<mods:originInfo>
<mods:dateIssued encoding="iso8601">2022</mods:dateIssued>
</mods:originInfo>
<mods:identifier type="issn">2045-2322</mods:identifier>
<mods:identifier type="uri">https://hdl.handle.net/10641/3274</mods:identifier>
<mods:identifier type="doi">10.1038/s41598-022-08623-0</mods:identifier>
<mods:abstract>The presented analysis has the aim of introducing general properties of solutions to an Extended Darcy–Forchheimer flow. The Extended Darcy–Forchheimer set of equations are introduced based on mathematical principles. Firstly, the diffusion is formulated with a non-homogeneous operator, and is supported by the addition of a non-linear advection together with a non-uniform reaction term. The involved analysis is given in generalized Hilbert–Sobolev spaces to account for regularity, existence and uniqueness of solutions supported by the semi-group theory. Afterwards, oscillating patterns of Travelling wave solutions are analyzed inspired by a set of Lemmas focused on solutions instability. Based on this, the Geometric Perturbation Theory provides linearized flows for which the eigenvalues are provided in an homotopy representation, and hence, any exponential bundles of solutions by direct linear combination. In addition, a numerical exploration is developed to find exact Travelling waves profiles and to study zones where solutions are positive. It is shown that, in general, solutions are oscillating in the proximity of the null critical state. In addition, an inner region (inner as a contrast to an outer region where solutions oscillate) of positive solutions is shown to hold locally in time.</mods:abstract>
<mods:language>
<mods:languageTerm authority="rfc3066">eng</mods:languageTerm>
</mods:language>
<mods:accessCondition type="useAndReproduction">Atribución-NoComercial-SinDerivadas 3.0 España</mods:accessCondition>
<mods:titleInfo>
<mods:title>A mathematical analysis of an extended MHD Darcy–Forchheimer type fluid.</mods:title>
</mods:titleInfo>
<mods:genre>article</mods:genre>
</mods:mods>
</xmlData>
</mdWrap>
</dmdSec>
<amdSec ID="TMD_10641_3274">
<rightsMD ID="RIG_10641_3274">
<mdWrap MDTYPE="OTHER" MIMETYPE="text/plain" OTHERMDTYPE="DSpaceDepositLicense">
<binData>LSBFbCByZXBvc2l0b3JpbyBpbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIEZyYW5jaXNjbyBkZSBWaXRvcmlhIGRlIE1hZHJpZCAoRERGViksIHBvbmUgYSBkaXNwb3NpY2nDs24gZGUgbG9zIHVzdWFyaW9zIGxhIHBsYXRhZm9ybWEgZGlnaXRhbCBhYmllcnRhIHkgZGUgYWNjZXNvIGxpYnJlIGRlIGxhIHByb2R1Y2Npw7NuIGNpZW50w61maWNhIGRlIGxhIGluc3RpdHVjacOzbi4KCi0gQSB0YWxlcyBmaW5lcywgbG9zIGF1dG9yZXMgZGVjbGFyYW4gcXVlIHNvbiB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCBkZSBsYSBvYnJhIHkgcXVlIMOpc3RhIGVzIG9yaWdpbmFsLgoKLSBNZWRpYW50ZSBsYSBhY2VwdGFjacOzbiBkZSBlc3RhIGxpY2VuY2lhLCBlbCBhdXRvciwgY29tbyB0aXR1bGFyIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciwgYXV0b3JpemEgeSBjZWRlIGEgbGEgVW5pdmVyc2lkYWQgRnJhbmNpc2NvIGRlIFZpdG9yaWEsIGRlIGZvcm1hIGdyYXR1aXRhIHkgbm8gZXhjbHVzaXZhLCBwb3IgZWwgbcOheGltbyBwbGF6byBsZWdhbCB5IGNvbiDDoW1iaXRvIHVuaXZlcnNhbCwgbG9zIGRlcmVjaG9zIGRlIHJlcHJvZHVjY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EsIGluY2x1aWRvIGVsIGRlcmVjaG8gZGUgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVsZWN0csOzbmljYSwgeSBsYSB0cmFuc2Zvcm1hY2nDs24gZGUgZm9ybWF0byBzb2JyZSBsYSBvYnJhIGluZGljYWRhLCBzaSBmdWVyYSBlbCBjYXNvLgoKLSBFbiBlbCBjYXNvIGRlIGNlc2nDs24gZGUgZGVyZWNob3MgZGUgZXhwbG90YWNpw7NuIGEgdGVyY2Vyb3MsIGRlY2xhcmEgcXVlIGN1ZW50YSBjb24gbGEgYXV0b3JpemFjacOzbiBkZSBkaWNob3MgdGl0dWxhcmVzIHkgcXVlIGhhIG9idGVuaWRvIGVsIHBlcm1pc28gc2luIHJlc3RyaWNjaW9uZXMgZGVsIHByb3BpZXRhcmlvIGRlbCBjb3B5cmlnaHQgcGFyYSBvdG9yZ2FyIGEgbGEgaW5zdGl0dWNpw7NuIGxvcyBkZXJlY2hvcyByZXF1ZXJpZG9zIHBhcmEgZXN0YSBsaWNlbmNpYSB5IHF1ZSBkaWNobyBwcm9waWV0YXJpbyBjb25vY2UgZWwgdGV4dG8gbyBlbCBjb250ZW5pZG8gZGUgbGEgb2JyYS4KCi0gU2kgZnVlcmEgdW5hIG9icmEgcGF0cm9jaW5hZGEgcG9yIGFsZ3VuYSBpbnN0aXR1Y2nDs24gZGlzdGludGEgYSBsYSBVbml2ZXJzaWRhZCBGcmFuY2lzY28gZGUgVml0b3JpYSwgZGVjbGFyYSBxdWUgZW4gY2FzbyBuZWNlc2FyaW8sIGN1ZW50YSBjb24gbG9zIHBlcm1pc29zIHBlcnRpbmVudGVzLCBkZSBsYSBpbnN0aXR1Y2nDs24gbyBlbnRpZGFkLCBxdWUgbGUgcGVybWl0YW4gbGEgZGlmdXNpw7NuIGRlIGRpY2hhIG9icmEuCgotIExhIFVuaXZlcnNpZGFkIEZyYW5jaXNjbyBkZSBWaXRvcmlhIG5vIHRpZW5lIGxhIHRpdHVsYXJpZGFkIGRlIGxvcyBkZXJlY2hvcyBzb2JyZSBsYSBvYnJhLCBxdWUgY29ycmVzcG9uZGVuIGFsIGF1dG9yLCBwZXJvIHNpbiBlbWJhcmdvIMOpc3RhIGxpY2VuY2lhIGRhIGRlcmVjaG8gYSByZXByb2R1Y2lybGEgZW4gdW4gc29wb3J0ZSBkaWdpdGFsLCBkaXN0cmlidWlyIGEgbG9zIHVzdWFyaW9zIGNvcGlhcyBlbGVjdHLDs25pY2FzIGRlIGxhIG9icmEgZW4gZm9ybWF0byBkaWdpdGFsLCBjb211bmljYWNpw7NuIHDDumJsaWNhIHkgc3UgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGEgdHJhdsOpcyBkZSB1biBhcmNoaXZvIGFiaWVydG8gaW5zdGl0dWNpb25hbC4KCi0gTGEgb2JyYSBzZSBwb25kcsOhIGEgZGlzcG9zaWNpw7NuIGRlIGxvcyB1c3VhcmlvcyBwYXJhIHF1ZSBoYWdhbiBkZSBlbGxhIHVuIHVzbyBqdXN0byB5IHJlc3BldHVvc28gY29uIGxvcyBkZXJlY2hvcyBkZSBhdXRvciwgc2VhIGNvbiBmaW5lcyBkZSBlc3R1ZGlvLCBpbnZlc3RpZ2FjacOzbiBvIGN1YWxxdWllciBvdHJvIGZpbiBsw61jaXRvLCB5IGRlIGFjdWVyZG8gYSBsYXMgY29uZGljaW9uZXMgZXN0YWJsZWNpZGFzIGVuIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMsIGRlIG1vZG8gcXVlIGxhcyBvYnJhcyBwdWVkYW4gc2VyIGRpc3RyaWJ1aWRhcywgY29waWFkYXMgeSBleGhpYmlkYXMgc2llbXByZSBxdWUgc2UgY2l0ZSBsYSBhdXRvcsOtYSB5IG5vIHNlIG9idGVuZ2EgYmVuZWZpY2lvIGNvbWVyY2lhbC4gUG9yIHRhbnRvLCBsYSBVbml2ZXJzaWRhZCBubyBhc3VtaXLDoSByZXNwb25zYWJpbGlkYWQgYWxndW5hIHBvciBsYSBmb3JtYSBlZmVjdGl2YSBlbiBxdWUgbG9zIHVzdWFyaW9zIHV0aWxpY2VuIGVsIG1hdGVyaWFsIHB1ZXN0byBhIHN1IGRpc3Bvc2ljacOzbi4KCi0gRWwgYXV0b3IgcG9kcsOhIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBsYSBvYnJhIGRlbCByZXBvc2l0b3JpbyBwb3IgY2F1c2EganVzdGlmaWNhZGEuIAoK</binData>
</mdWrap>
</rightsMD>
</amdSec>
<amdSec ID="FO_10641_3274_1">
<techMD ID="TECH_O_10641_3274_1">
<mdWrap MDTYPE="PREMIS">
<xmlData schemaLocation="http://www.loc.gov/standards/premis http://www.loc.gov/standards/premis/PREMIS-v1-0.xsd">
<premis:premis>
<premis:object>
<premis:objectIdentifier>
<premis:objectIdentifierType>URL</premis:objectIdentifierType>
<premis:objectIdentifierValue>http://ddfv.ufv.es/bitstream/10641/3274/1/s41598-022-08623-0.pdf</premis:objectIdentifierValue>
</premis:objectIdentifier>
<premis:objectCategory>File</premis:objectCategory>
<premis:objectCharacteristics>
<premis:fixity>
<premis:messageDigestAlgorithm>MD5</premis:messageDigestAlgorithm>
<premis:messageDigest>1def23748cda4d8aebc17d3bfefb5201</premis:messageDigest>
</premis:fixity>
<premis:size>2814694</premis:size>
<premis:format>
<premis:formatDesignation>
<premis:formatName>application/pdf</premis:formatName>
</premis:formatDesignation>
</premis:format>
</premis:objectCharacteristics>
<premis:originalName>s41598-022-08623-0.pdf</premis:originalName>
</premis:object>
</premis:premis>
</xmlData>
</mdWrap>
</techMD>
</amdSec>
<amdSec ID="FT_10641_3274_4">
<techMD ID="TECH_T_10641_3274_4">
<mdWrap MDTYPE="PREMIS">
<xmlData schemaLocation="http://www.loc.gov/standards/premis http://www.loc.gov/standards/premis/PREMIS-v1-0.xsd">
<premis:premis>
<premis:object>
<premis:objectIdentifier>
<premis:objectIdentifierType>URL</premis:objectIdentifierType>
<premis:objectIdentifierValue>http://ddfv.ufv.es/bitstream/10641/3274/4/s41598-022-08623-0.pdf.txt</premis:objectIdentifierValue>
</premis:objectIdentifier>
<premis:objectCategory>File</premis:objectCategory>
<premis:objectCharacteristics>
<premis:fixity>
<premis:messageDigestAlgorithm>MD5</premis:messageDigestAlgorithm>
<premis:messageDigest>5cb31b4450831b347a7b4fd7a4e746c4</premis:messageDigest>
</premis:fixity>
<premis:size>50776</premis:size>
<premis:format>
<premis:formatDesignation>
<premis:formatName>text/plain</premis:formatName>
</premis:formatDesignation>
</premis:format>
</premis:objectCharacteristics>
<premis:originalName>s41598-022-08623-0.pdf.txt</premis:originalName>
</premis:object>
</premis:premis>
</xmlData>
</mdWrap>
</techMD>
</amdSec>
<fileSec>
<fileGrp USE="ORIGINAL">
<file ADMID="FO_10641_3274_1" CHECKSUM="1def23748cda4d8aebc17d3bfefb5201" CHECKSUMTYPE="MD5" GROUPID="GROUP_BITSTREAM_10641_3274_1" ID="BITSTREAM_ORIGINAL_10641_3274_1" MIMETYPE="application/pdf" SEQ="1" SIZE="2814694">
</file>
</fileGrp>
<fileGrp USE="TEXT">
<file ADMID="FT_10641_3274_4" CHECKSUM="5cb31b4450831b347a7b4fd7a4e746c4" CHECKSUMTYPE="MD5" GROUPID="GROUP_BITSTREAM_10641_3274_4" ID="BITSTREAM_TEXT_10641_3274_4" MIMETYPE="text/plain" SEQ="4" SIZE="50776">
</file>
</fileGrp>
</fileSec>
<structMap LABEL="DSpace Object" TYPE="LOGICAL">
<div ADMID="DMD_10641_3274" TYPE="DSpace Object Contents">
<div TYPE="DSpace BITSTREAM">
</div>
</div>
</structMap>
</mets>
<?xml version="1.0" encoding="UTF-8" ?>
<mods:mods schemaLocation="http://www.loc.gov/mods/v3 http://www.loc.gov/standards/mods/v3/mods-3-1.xsd">
<mods:name>
<mods:namePart>Díaz Palencia, José Luis</mods:namePart>
</mods:name>
<mods:extension>
<mods:dateAvailable encoding="iso8601">2023-02-24T13:18:48Z</mods:dateAvailable>
</mods:extension>
<mods:extension>
<mods:dateAccessioned encoding="iso8601">2023-02-24T13:18:48Z</mods:dateAccessioned>
</mods:extension>
<mods:originInfo>
<mods:dateIssued encoding="iso8601">2022</mods:dateIssued>
</mods:originInfo>
<mods:identifier type="issn">2045-2322</mods:identifier>
<mods:identifier type="uri">https://hdl.handle.net/10641/3274</mods:identifier>
<mods:identifier type="doi">10.1038/s41598-022-08623-0</mods:identifier>
<mods:abstract>The presented analysis has the aim of introducing general properties of solutions to an Extended Darcy–Forchheimer flow. The Extended Darcy–Forchheimer set of equations are introduced based on mathematical principles. Firstly, the diffusion is formulated with a non-homogeneous operator, and is supported by the addition of a non-linear advection together with a non-uniform reaction term. The involved analysis is given in generalized Hilbert–Sobolev spaces to account for regularity, existence and uniqueness of solutions supported by the semi-group theory. Afterwards, oscillating patterns of Travelling wave solutions are analyzed inspired by a set of Lemmas focused on solutions instability. Based on this, the Geometric Perturbation Theory provides linearized flows for which the eigenvalues are provided in an homotopy representation, and hence, any exponential bundles of solutions by direct linear combination. In addition, a numerical exploration is developed to find exact Travelling waves profiles and to study zones where solutions are positive. It is shown that, in general, solutions are oscillating in the proximity of the null critical state. In addition, an inner region (inner as a contrast to an outer region where solutions oscillate) of positive solutions is shown to hold locally in time.</mods:abstract>
<mods:language>
<mods:languageTerm>eng</mods:languageTerm>
</mods:language>
<mods:accessCondition type="useAndReproduction">http://creativecommons.org/licenses/by-nc-nd/3.0/es/</mods:accessCondition>
<mods:accessCondition type="useAndReproduction">openAccess</mods:accessCondition>
<mods:accessCondition type="useAndReproduction">Atribución-NoComercial-SinDerivadas 3.0 España</mods:accessCondition>
<mods:titleInfo>
<mods:title>A mathematical analysis of an extended MHD Darcy–Forchheimer type fluid.</mods:title>
</mods:titleInfo>
<mods:genre>article</mods:genre>
</mods:mods>
<?xml version="1.0" encoding="UTF-8" ?>
<atom:entry schemaLocation="http://www.w3.org/2005/Atom http://www.kbcafe.com/rss/atom.xsd.xml">
<atom:id>https://hdl.handle.net/10641/3274/ore.xml</atom:id>
<atom:published>2023-02-24T13:18:48Z</atom:published>
<atom:updated>2023-02-24T13:18:48Z</atom:updated>
<atom:source>
<atom:generator>DDFV</atom:generator>
</atom:source>
<atom:title>A mathematical analysis of an extended MHD Darcy–Forchheimer type fluid.</atom:title>
<atom:author>
<atom:name>Díaz Palencia, José Luis</atom:name>
</atom:author>
<oreatom:triples>
<rdf:Description about="https://hdl.handle.net/10641/3274/ore.xml#atom">
<dcterms:modified>2023-02-24T13:18:48Z</dcterms:modified>
</rdf:Description>
<rdf:Description about="http://ddfv.ufv.es/bitstream/10641/3274/1/s41598-022-08623-0.pdf">
<dcterms:description>ORIGINAL</dcterms:description>
</rdf:Description>
<rdf:Description about="http://ddfv.ufv.es/bitstream/10641/3274/2/license_rdf">
<dcterms:description>CC-LICENSE</dcterms:description>
</rdf:Description>
<rdf:Description about="http://ddfv.ufv.es/bitstream/10641/3274/3/license.txt">
<dcterms:description>LICENSE</dcterms:description>
</rdf:Description>
<rdf:Description about="http://ddfv.ufv.es/bitstream/10641/3274/4/s41598-022-08623-0.pdf.txt">
<dcterms:description>TEXT</dcterms:description>
</rdf:Description>
<rdf:Description about="http://ddfv.ufv.es/bitstream/10641/3274/5/s41598-022-08623-0.pdf.jpg">
<dcterms:description>THUMBNAIL</dcterms:description>
</rdf:Description>
</oreatom:triples>
</atom:entry>
<?xml version="1.0" encoding="UTF-8" ?>
<qdc:qualifieddc schemaLocation="http://purl.org/dc/elements/1.1/ http://dublincore.org/schemas/xmls/qdc/2006/01/06/dc.xsd http://purl.org/dc/terms/ http://dublincore.org/schemas/xmls/qdc/2006/01/06/dcterms.xsd http://dspace.org/qualifieddc/ http://www.ukoln.ac.uk/metadata/dcmi/xmlschema/qualifieddc.xsd">
<dc:title>A mathematical analysis of an extended MHD Darcy–Forchheimer type fluid.</dc:title>
<dc:creator>Díaz Palencia, José Luis</dc:creator>
<dcterms:abstract>The presented analysis has the aim of introducing general properties of solutions to an Extended Darcy–Forchheimer flow. The Extended Darcy–Forchheimer set of equations are introduced based on mathematical principles. Firstly, the diffusion is formulated with a non-homogeneous operator, and is supported by the addition of a non-linear advection together with a non-uniform reaction term. The involved analysis is given in generalized Hilbert–Sobolev spaces to account for regularity, existence and uniqueness of solutions supported by the semi-group theory. Afterwards, oscillating patterns of Travelling wave solutions are analyzed inspired by a set of Lemmas focused on solutions instability. Based on this, the Geometric Perturbation Theory provides linearized flows for which the eigenvalues are provided in an homotopy representation, and hence, any exponential bundles of solutions by direct linear combination. In addition, a numerical exploration is developed to find exact Travelling waves profiles and to study zones where solutions are positive. It is shown that, in general, solutions are oscillating in the proximity of the null critical state. In addition, an inner region (inner as a contrast to an outer region where solutions oscillate) of positive solutions is shown to hold locally in time.</dcterms:abstract>
<dcterms:dateAccepted>2023-02-24T13:18:48Z</dcterms:dateAccepted>
<dcterms:available>2023-02-24T13:18:48Z</dcterms:available>
<dcterms:created>2023-02-24T13:18:48Z</dcterms:created>
<dcterms:issued>2022</dcterms:issued>
<dc:type>article</dc:type>
<dc:identifier>2045-2322</dc:identifier>
<dc:identifier>https://hdl.handle.net/10641/3274</dc:identifier>
<dc:identifier>10.1038/s41598-022-08623-0</dc:identifier>
<dc:language>eng</dc:language>
<dc:relation>https://www.nature.com/articles/s41598-022-08623-0</dc:relation>
<dc:rights>http://creativecommons.org/licenses/by-nc-nd/3.0/es/</dc:rights>
<dc:rights>openAccess</dc:rights>
<dc:rights>Atribución-NoComercial-SinDerivadas 3.0 España</dc:rights>
<dc:publisher>Scientific Reports</dc:publisher>
</qdc:qualifieddc>
<?xml version="1.0" encoding="UTF-8" ?>
<rdf:RDF schemaLocation="http://www.openarchives.org/OAI/2.0/rdf/ http://www.openarchives.org/OAI/2.0/rdf.xsd">
<ow:Publication about="oai:ddfv.ufv.es:10641/3274">
<dc:title>A mathematical analysis of an extended MHD Darcy–Forchheimer type fluid.</dc:title>
<dc:creator>Díaz Palencia, José Luis</dc:creator>
<dc:description>The presented analysis has the aim of introducing general properties of solutions to an Extended Darcy–Forchheimer flow. The Extended Darcy–Forchheimer set of equations are introduced based on mathematical principles. Firstly, the diffusion is formulated with a non-homogeneous operator, and is supported by the addition of a non-linear advection together with a non-uniform reaction term. The involved analysis is given in generalized Hilbert–Sobolev spaces to account for regularity, existence and uniqueness of solutions supported by the semi-group theory. Afterwards, oscillating patterns of Travelling wave solutions are analyzed inspired by a set of Lemmas focused on solutions instability. Based on this, the Geometric Perturbation Theory provides linearized flows for which the eigenvalues are provided in an homotopy representation, and hence, any exponential bundles of solutions by direct linear combination. In addition, a numerical exploration is developed to find exact Travelling waves profiles and to study zones where solutions are positive. It is shown that, in general, solutions are oscillating in the proximity of the null critical state. In addition, an inner region (inner as a contrast to an outer region where solutions oscillate) of positive solutions is shown to hold locally in time.</dc:description>
<dc:date>2023-02-24T13:18:48Z</dc:date>
<dc:date>2023-02-24T13:18:48Z</dc:date>
<dc:date>2022</dc:date>
<dc:type>article</dc:type>
<dc:identifier>2045-2322</dc:identifier>
<dc:identifier>https://hdl.handle.net/10641/3274</dc:identifier>
<dc:identifier>10.1038/s41598-022-08623-0</dc:identifier>
<dc:language>eng</dc:language>
<dc:relation>https://www.nature.com/articles/s41598-022-08623-0</dc:relation>
<dc:rights>http://creativecommons.org/licenses/by-nc-nd/3.0/es/</dc:rights>
<dc:rights>openAccess</dc:rights>
<dc:rights>Atribución-NoComercial-SinDerivadas 3.0 España</dc:rights>
<dc:publisher>Scientific Reports</dc:publisher>
</ow:Publication>
</rdf:RDF>
<?xml version="1.0" encoding="UTF-8" ?>
<metadata schemaLocation="http://www.lyncode.com/xoai http://www.lyncode.com/xsd/xoai.xsd">
<element name="dc">
<element name="contributor">
<element name="author">
<element name="none">
<field name="value">Díaz Palencia, José Luis</field>
<field name="authority">208</field>
<field name="confidence">600</field>
</element>
</element>
</element>
<element name="date">
<element name="accessioned">
<element name="none">
<field name="value">2023-02-24T13:18:48Z</field>
</element>
</element>
<element name="available">
<element name="none">
<field name="value">2023-02-24T13:18:48Z</field>
</element>
</element>
<element name="issued">
<element name="none">
<field name="value">2022</field>
</element>
</element>
</element>
<element name="identifier">
<element name="issn">
<element name="spa">
<field name="value">2045-2322</field>
</element>
</element>
<element name="uri">
<element name="none">
<field name="value">https://hdl.handle.net/10641/3274</field>
</element>
</element>
<element name="doi">
<element name="spa">
<field name="value">10.1038/s41598-022-08623-0</field>
</element>
</element>
</element>
<element name="description">
<element name="abstract">
<element name="spa">
<field name="value">The presented analysis has the aim of introducing general properties of solutions to an Extended Darcy–Forchheimer flow. The Extended Darcy–Forchheimer set of equations are introduced based on mathematical principles. Firstly, the diffusion is formulated with a non-homogeneous operator, and is supported by the addition of a non-linear advection together with a non-uniform reaction term. The involved analysis is given in generalized Hilbert–Sobolev spaces to account for regularity, existence and uniqueness of solutions supported by the semi-group theory. Afterwards, oscillating patterns of Travelling wave solutions are analyzed inspired by a set of Lemmas focused on solutions instability. Based on this, the Geometric Perturbation Theory provides linearized flows for which the eigenvalues are provided in an homotopy representation, and hence, any exponential bundles of solutions by direct linear combination. In addition, a numerical exploration is developed to find exact Travelling waves profiles and to study zones where solutions are positive. It is shown that, in general, solutions are oscillating in the proximity of the null critical state. In addition, an inner region (inner as a contrast to an outer region where solutions oscillate) of positive solutions is shown to hold locally in time.</field>
</element>
</element>
<element name="version">
<element name="spa">
<field name="value">post-print</field>
</element>
</element>
<element name="extent">
<element name="spa">
<field name="value">2749 KB</field>
</element>
</element>
</element>
<element name="language">
<element name="iso">
<element name="spa">
<field name="value">eng</field>
</element>
</element>
</element>
<element name="publisher">
<element name="spa">
<field name="value">Scientific Reports</field>
</element>
</element>
<element name="rights">
<element name="*">
<field name="value">Atribución-NoComercial-SinDerivadas 3.0 España</field>
</element>
<element name="uri">
<element name="*">
<field name="value">http://creativecommons.org/licenses/by-nc-nd/3.0/es/</field>
</element>
</element>
<element name="accessRights">
<element name="spa">
<field name="value">openAccess</field>
</element>
</element>
</element>
<element name="title">
<element name="spa">
<field name="value">A mathematical analysis of an extended MHD Darcy–Forchheimer type fluid.</field>
</element>
</element>
<element name="type">
<element name="spa">
<field name="value">article</field>
</element>
</element>
<element name="relation">
<element name="publisherversion">
<element name="spa">
<field name="value">https://www.nature.com/articles/s41598-022-08623-0</field>
</element>
</element>
</element>
</element>
<element name="bundles">
<element name="bundle">
<field name="name">ORIGINAL</field>
<element name="bitstreams">
<element name="bitstream">
<field name="name">s41598-022-08623-0.pdf</field>
<field name="originalName">s41598-022-08623-0.pdf</field>
<field name="format">application/pdf</field>
<field name="size">2814694</field>
<field name="url">http://ddfv.ufv.es/bitstream/10641/3274/1/s41598-022-08623-0.pdf</field>
<field name="checksum">1def23748cda4d8aebc17d3bfefb5201</field>
<field name="checksumAlgorithm">MD5</field>
<field name="sid">1</field>
<field name="drm">open access</field>
</element>
</element>
</element>
<element name="bundle">
<field name="name">CC-LICENSE</field>
<element name="bitstreams">
<element name="bitstream">
<field name="name">license_rdf</field>
<field name="originalName">license_rdf</field>
<field name="format">application/rdf+xml; charset=utf-8</field>
<field name="size">811</field>
<field name="url">http://ddfv.ufv.es/bitstream/10641/3274/2/license_rdf</field>
<field name="checksum">4d01a8abc68801ab758ec8c2c04918c3</field>
<field name="checksumAlgorithm">MD5</field>
<field name="sid">2</field>
<field name="drm">open access</field>
</element>
</element>
</element>
<element name="bundle">
<field name="name">LICENSE</field>
<element name="bitstreams">
<element name="bitstream">
<field name="name">license.txt</field>
<field name="originalName">license.txt</field>
<field name="format">text/plain; charset=utf-8</field>
<field name="size">2418</field>
<field name="url">http://ddfv.ufv.es/bitstream/10641/3274/3/license.txt</field>
<field name="checksum">8b6e3a0bc6a1ca51936267b0e6e4740c</field>
<field name="checksumAlgorithm">MD5</field>
<field name="sid">3</field>
<field name="drm">open access</field>
</element>
</element>
</element>
<element name="bundle">
<field name="name">TEXT</field>
<element name="bitstreams">
<element name="bitstream">
<field name="name">s41598-022-08623-0.pdf.txt</field>
<field name="originalName">s41598-022-08623-0.pdf.txt</field>
<field name="description">Extracted text</field>
<field name="format">text/plain</field>
<field name="size">50776</field>
<field name="url">http://ddfv.ufv.es/bitstream/10641/3274/4/s41598-022-08623-0.pdf.txt</field>
<field name="checksum">5cb31b4450831b347a7b4fd7a4e746c4</field>
<field name="checksumAlgorithm">MD5</field>
<field name="sid">4</field>
<field name="drm">open access</field>
</element>
</element>
</element>
<element name="bundle">
<field name="name">THUMBNAIL</field>
<element name="bitstreams">
<element name="bitstream">
<field name="name">s41598-022-08623-0.pdf.jpg</field>
<field name="originalName">s41598-022-08623-0.pdf.jpg</field>
<field name="description">Generated Thumbnail</field>
<field name="format">image/jpeg</field>
<field name="size">1811</field>
<field name="url">http://ddfv.ufv.es/bitstream/10641/3274/5/s41598-022-08623-0.pdf.jpg</field>
<field name="checksum">e9b96b24e71694ca3d90b254f21fb4be</field>
<field name="checksumAlgorithm">MD5</field>
<field name="sid">5</field>
<field name="drm">open access</field>
</element>
</element>
</element>
</element>
<element name="others">
<field name="handle">10641/3274</field>
<field name="identifier">oai:ddfv.ufv.es:10641/3274</field>
<field name="lastModifyDate">2023-02-25 02:00:15.149</field>
<field name="drm">open access</field>
</element>
<element name="repository">
<field name="name">DDFV</field>
<field name="mail">dspace@ufv.es</field>
</element>
<element name="license">
<field name="bin">LSBFbCByZXBvc2l0b3JpbyBpbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIEZyYW5jaXNjbyBkZSBWaXRvcmlhIGRlIE1hZHJpZCAoRERGViksIHBvbmUgYSBkaXNwb3NpY2nDs24gZGUgbG9zIHVzdWFyaW9zIGxhIHBsYXRhZm9ybWEgZGlnaXRhbCBhYmllcnRhIHkgZGUgYWNjZXNvIGxpYnJlIGRlIGxhIHByb2R1Y2Npw7NuIGNpZW50w61maWNhIGRlIGxhIGluc3RpdHVjacOzbi4KCi0gQSB0YWxlcyBmaW5lcywgbG9zIGF1dG9yZXMgZGVjbGFyYW4gcXVlIHNvbiB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCBkZSBsYSBvYnJhIHkgcXVlIMOpc3RhIGVzIG9yaWdpbmFsLgoKLSBNZWRpYW50ZSBsYSBhY2VwdGFjacOzbiBkZSBlc3RhIGxpY2VuY2lhLCBlbCBhdXRvciwgY29tbyB0aXR1bGFyIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciwgYXV0b3JpemEgeSBjZWRlIGEgbGEgVW5pdmVyc2lkYWQgRnJhbmNpc2NvIGRlIFZpdG9yaWEsIGRlIGZvcm1hIGdyYXR1aXRhIHkgbm8gZXhjbHVzaXZhLCBwb3IgZWwgbcOheGltbyBwbGF6byBsZWdhbCB5IGNvbiDDoW1iaXRvIHVuaXZlcnNhbCwgbG9zIGRlcmVjaG9zIGRlIHJlcHJvZHVjY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EsIGluY2x1aWRvIGVsIGRlcmVjaG8gZGUgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVsZWN0csOzbmljYSwgeSBsYSB0cmFuc2Zvcm1hY2nDs24gZGUgZm9ybWF0byBzb2JyZSBsYSBvYnJhIGluZGljYWRhLCBzaSBmdWVyYSBlbCBjYXNvLgoKLSBFbiBlbCBjYXNvIGRlIGNlc2nDs24gZGUgZGVyZWNob3MgZGUgZXhwbG90YWNpw7NuIGEgdGVyY2Vyb3MsIGRlY2xhcmEgcXVlIGN1ZW50YSBjb24gbGEgYXV0b3JpemFjacOzbiBkZSBkaWNob3MgdGl0dWxhcmVzIHkgcXVlIGhhIG9idGVuaWRvIGVsIHBlcm1pc28gc2luIHJlc3RyaWNjaW9uZXMgZGVsIHByb3BpZXRhcmlvIGRlbCBjb3B5cmlnaHQgcGFyYSBvdG9yZ2FyIGEgbGEgaW5zdGl0dWNpw7NuIGxvcyBkZXJlY2hvcyByZXF1ZXJpZG9zIHBhcmEgZXN0YSBsaWNlbmNpYSB5IHF1ZSBkaWNobyBwcm9waWV0YXJpbyBjb25vY2UgZWwgdGV4dG8gbyBlbCBjb250ZW5pZG8gZGUgbGEgb2JyYS4KCi0gU2kgZnVlcmEgdW5hIG9icmEgcGF0cm9jaW5hZGEgcG9yIGFsZ3VuYSBpbnN0aXR1Y2nDs24gZGlzdGludGEgYSBsYSBVbml2ZXJzaWRhZCBGcmFuY2lzY28gZGUgVml0b3JpYSwgZGVjbGFyYSBxdWUgZW4gY2FzbyBuZWNlc2FyaW8sIGN1ZW50YSBjb24gbG9zIHBlcm1pc29zIHBlcnRpbmVudGVzLCBkZSBsYSBpbnN0aXR1Y2nDs24gbyBlbnRpZGFkLCBxdWUgbGUgcGVybWl0YW4gbGEgZGlmdXNpw7NuIGRlIGRpY2hhIG9icmEuCgotIExhIFVuaXZlcnNpZGFkIEZyYW5jaXNjbyBkZSBWaXRvcmlhIG5vIHRpZW5lIGxhIHRpdHVsYXJpZGFkIGRlIGxvcyBkZXJlY2hvcyBzb2JyZSBsYSBvYnJhLCBxdWUgY29ycmVzcG9uZGVuIGFsIGF1dG9yLCBwZXJvIHNpbiBlbWJhcmdvIMOpc3RhIGxpY2VuY2lhIGRhIGRlcmVjaG8gYSByZXByb2R1Y2lybGEgZW4gdW4gc29wb3J0ZSBkaWdpdGFsLCBkaXN0cmlidWlyIGEgbG9zIHVzdWFyaW9zIGNvcGlhcyBlbGVjdHLDs25pY2FzIGRlIGxhIG9icmEgZW4gZm9ybWF0byBkaWdpdGFsLCBjb211bmljYWNpw7NuIHDDumJsaWNhIHkgc3UgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGEgdHJhdsOpcyBkZSB1biBhcmNoaXZvIGFiaWVydG8gaW5zdGl0dWNpb25hbC4KCi0gTGEgb2JyYSBzZSBwb25kcsOhIGEgZGlzcG9zaWNpw7NuIGRlIGxvcyB1c3VhcmlvcyBwYXJhIHF1ZSBoYWdhbiBkZSBlbGxhIHVuIHVzbyBqdXN0byB5IHJlc3BldHVvc28gY29uIGxvcyBkZXJlY2hvcyBkZSBhdXRvciwgc2VhIGNvbiBmaW5lcyBkZSBlc3R1ZGlvLCBpbnZlc3RpZ2FjacOzbiBvIGN1YWxxdWllciBvdHJvIGZpbiBsw61jaXRvLCB5IGRlIGFjdWVyZG8gYSBsYXMgY29uZGljaW9uZXMgZXN0YWJsZWNpZGFzIGVuIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMsIGRlIG1vZG8gcXVlIGxhcyBvYnJhcyBwdWVkYW4gc2VyIGRpc3RyaWJ1aWRhcywgY29waWFkYXMgeSBleGhpYmlkYXMgc2llbXByZSBxdWUgc2UgY2l0ZSBsYSBhdXRvcsOtYSB5IG5vIHNlIG9idGVuZ2EgYmVuZWZpY2lvIGNvbWVyY2lhbC4gUG9yIHRhbnRvLCBsYSBVbml2ZXJzaWRhZCBubyBhc3VtaXLDoSByZXNwb25zYWJpbGlkYWQgYWxndW5hIHBvciBsYSBmb3JtYSBlZmVjdGl2YSBlbiBxdWUgbG9zIHVzdWFyaW9zIHV0aWxpY2VuIGVsIG1hdGVyaWFsIHB1ZXN0byBhIHN1IGRpc3Bvc2ljacOzbi4KCi0gRWwgYXV0b3IgcG9kcsOhIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBsYSBvYnJhIGRlbCByZXBvc2l0b3JpbyBwb3IgY2F1c2EganVzdGlmaWNhZGEuIAoK</field>
</element>
</metadata>