Logotipo de HISPANA
Logotipo del Ministerio de Cultura y Deporte
  • Què és Hispana?
  • Cerca
  • Directori de col.leccions
  • Contacte
  • ca
    • Español
    • Euskara
    • English
    • Galego
    • Català
    • Valencià
Está en:  › Dades de registre
Linked Open Data
A Comparison between Multiple Regression Models and CUN-BAE Equation to Predict Body Fat in Adults
Identificadores del recurso
Fuster-Parra P, Bennasar-Veny M, Tauler Riera P, Yañez AM, Lopez Gonzalez AA, Aguilo A. A Comparison between Multiple Regression Models and CUN-BAE Equation to Predict Body Fat in Adults. PLoS One. 2015 Mar 30;10(3):e0122291.
1932-6203
http://hdl.handle.net/20.500.13003/10904
10.1371/journal.pone.0122291
25821960
L603554891
2-s2.0-84926292396
000352134700162
Procedència
(Docusalut. Repositorio institucional del sistema sanitario público de las Islas Baleares)

Fitxa

Títol:
A Comparison between Multiple Regression Models and CUN-BAE Equation to Predict Body Fat in Adults
Tema:
Anthropometry
Aged
European Continental Ancestry Group
Young Adult
Adult
Adipose Tissue
Humans
Middle Aged
Cross-Sectional Studies
Adiposity
Body Mass Index
Models, Statistical
Regression Analysis
Índice de Masa Corporal
Modelos Estadísticos
Grupo de Ascendencia Continental Europea
Tejido Adiposo
Estudios Transversales
Humanos
Persona de Mediana Edad
Adulto Joven
Anciano
Antropometría
Adulto
Análisis de Regresión
Adiposidad
Descripció:
Background Because the accurate measure of body fat (BF) is difficult, several prediction equations have been proposed. The aim of this study was to compare different multiple regression models to predict BF, including the recently reported CUN-BAE equation. Methods Multi regression models using body mass index (BMI) and body adiposity index (BAI) as predictors of BF will be compared. These models will be also compared with the CUN-BAE equation. For all the analysis a sample including all the participants and another one including only the overweight and obese subjects will be considered. The BF reference measure was made using Bioelectrical Impedance Analysis. Results The simplest models including only BMI or BAI as independent variables showed that BAI is a better predictor of BF. However, adding the variable sex to both models made BMI a better predictor than the BAI. For both the whole group of participants and the group of overweight and obese participants, using simple models (BMI, age and sex as variables) allowed obtaining similar correlations with BF as when the more complex CUN-BAE was used (rho = 0:87 vs rho= 0:86 for the whole sample and rho= 0:88 vs rho= 0:89 for overweight and obese subjects, being the second value the one for CUN-BAE). Conclusions There are simpler models than CUN-BAE equation that fits BF as well as CUN-BAE does. Therefore, it could be considered that CUN-BAE overfits. Using a simple linear regression model, the BAI, as the only variable, predicts BF better than BMI. However, when the sex variable is introduced, BMI becomes the indicator of choice to predict BF.
This work was supported by the Spanish Ministry of Science and Innovation (PI 13/01477). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
Idioma:
English
Relació:
https://dx.doi.org/10.1371/journal.pone.0122291
Autor/Productor:
Fuster-Parra, Pilar
Bennasar-Veny, Miquel
Tauler, Pedro
Yáñez, Aina M
Lopez-Gonzalez, A.
Aguilo, Antoni
Editor:
Public Library Science
Drets:
Attribution 4.0 International
http://creativecommons.org/licenses/by/4.0/
open access
Data:
2021-08-25T06:50:22Z
2015-03-30
Tipo de recurso:
research article

oai_dc

Descarregar XML

    <?xml version="1.0" encoding="UTF-8" ?>

  1. <oai_dc:dc schemaLocation="http://www.openarchives.org/OAI/2.0/oai_dc/ http://www.openarchives.org/OAI/2.0/oai_dc.xsd">

    1. <dc:title>A Comparison between Multiple Regression Models and CUN-BAE Equation to Predict Body Fat in Adults</dc:title>

    2. <dc:creator>Fuster-Parra, Pilar</dc:creator>

    3. <dc:creator>Bennasar-Veny, Miquel</dc:creator>

    4. <dc:creator>Tauler, Pedro</dc:creator>

    5. <dc:creator>Yáñez, Aina M</dc:creator>

    6. <dc:creator>Lopez-Gonzalez, A.</dc:creator>

    7. <dc:creator>Aguilo, Antoni</dc:creator>

    8. <dc:subject>Anthropometry</dc:subject>

    9. <dc:subject>Aged</dc:subject>

    10. <dc:subject>European Continental Ancestry Group</dc:subject>

    11. <dc:subject>Young Adult</dc:subject>

    12. <dc:subject>Adult</dc:subject>

    13. <dc:subject>Adipose Tissue</dc:subject>

    14. <dc:subject>Humans</dc:subject>

    15. <dc:subject>Middle Aged</dc:subject>

    16. <dc:subject>Cross-Sectional Studies</dc:subject>

    17. <dc:subject>Adiposity</dc:subject>

    18. <dc:subject>Body Mass Index</dc:subject>

    19. <dc:subject>Models, Statistical</dc:subject>

    20. <dc:subject>Regression Analysis</dc:subject>

    21. <dc:subject>Índice de Masa Corporal</dc:subject>

    22. <dc:subject>Modelos Estadísticos</dc:subject>

    23. <dc:subject>Grupo de Ascendencia Continental Europea</dc:subject>

    24. <dc:subject>Tejido Adiposo</dc:subject>

    25. <dc:subject>Estudios Transversales</dc:subject>

    26. <dc:subject>Humanos</dc:subject>

    27. <dc:subject>Persona de Mediana Edad</dc:subject>

    28. <dc:subject>Adulto Joven</dc:subject>

    29. <dc:subject>Anciano</dc:subject>

    30. <dc:subject>Antropometría</dc:subject>

    31. <dc:subject>Adulto</dc:subject>

    32. <dc:subject>Análisis de Regresión</dc:subject>

    33. <dc:subject>Adiposidad</dc:subject>

    34. <dc:description>Background Because the accurate measure of body fat (BF) is difficult, several prediction equations have been proposed. The aim of this study was to compare different multiple regression models to predict BF, including the recently reported CUN-BAE equation. Methods Multi regression models using body mass index (BMI) and body adiposity index (BAI) as predictors of BF will be compared. These models will be also compared with the CUN-BAE equation. For all the analysis a sample including all the participants and another one including only the overweight and obese subjects will be considered. The BF reference measure was made using Bioelectrical Impedance Analysis. Results The simplest models including only BMI or BAI as independent variables showed that BAI is a better predictor of BF. However, adding the variable sex to both models made BMI a better predictor than the BAI. For both the whole group of participants and the group of overweight and obese participants, using simple models (BMI, age and sex as variables) allowed obtaining similar correlations with BF as when the more complex CUN-BAE was used (rho = 0:87 vs rho= 0:86 for the whole sample and rho= 0:88 vs rho= 0:89 for overweight and obese subjects, being the second value the one for CUN-BAE). Conclusions There are simpler models than CUN-BAE equation that fits BF as well as CUN-BAE does. Therefore, it could be considered that CUN-BAE overfits. Using a simple linear regression model, the BAI, as the only variable, predicts BF better than BMI. However, when the sex variable is introduced, BMI becomes the indicator of choice to predict BF.</dc:description>

    35. <dc:description>This work was supported by the Spanish Ministry of Science and Innovation (PI 13/01477). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.</dc:description>

    36. <dc:date>2021-08-25T06:50:22Z</dc:date>

    37. <dc:date>2021-08-25T06:50:22Z</dc:date>

    38. <dc:date>2015-03-30</dc:date>

    39. <dc:type>research article</dc:type>

    40. <dc:identifier>Fuster-Parra P, Bennasar-Veny M, Tauler Riera P, Yañez AM, Lopez Gonzalez AA, Aguilo A. A Comparison between Multiple Regression Models and CUN-BAE Equation to Predict Body Fat in Adults. PLoS One. 2015 Mar 30;10(3):e0122291.</dc:identifier>

    41. <dc:identifier>1932-6203</dc:identifier>

    42. <dc:identifier>http://hdl.handle.net/20.500.13003/10904</dc:identifier>

    43. <dc:identifier>10.1371/journal.pone.0122291</dc:identifier>

    44. <dc:identifier>25821960</dc:identifier>

    45. <dc:identifier>L603554891</dc:identifier>

    46. <dc:identifier>2-s2.0-84926292396</dc:identifier>

    47. <dc:identifier>000352134700162</dc:identifier>

    48. <dc:language>eng</dc:language>

    49. <dc:relation>https://dx.doi.org/10.1371/journal.pone.0122291</dc:relation>

    50. <dc:rights>Attribution 4.0 International</dc:rights>

    51. <dc:rights>http://creativecommons.org/licenses/by/4.0/</dc:rights>

    52. <dc:rights>open access</dc:rights>

    53. <dc:publisher>Public Library Science</dc:publisher>

    </oai_dc:dc>

didl

Descarregar XML

    <?xml version="1.0" encoding="UTF-8" ?>

  1. <d:DIDL schemaLocation="urn:mpeg:mpeg21:2002:02-DIDL-NS http://standards.iso.org/ittf/PubliclyAvailableStandards/MPEG-21_schema_files/did/didl.xsd">

    1. <d:DIDLInfo>

      1. <dcterms:created schemaLocation="http://purl.org/dc/terms/ http://dublincore.org/schemas/xmls/qdc/dcterms.xsd">2021-08-25T06:50:22Z</dcterms:created>

      </d:DIDLInfo>

    2. <d:Item id="hdl_20.500.13003_10904">

      1. <d:Descriptor>

        1. <d:Statement mimeType="application/xml; charset=utf-8">

          1. <dii:Identifier schemaLocation="urn:mpeg:mpeg21:2002:01-DII-NS http://standards.iso.org/ittf/PubliclyAvailableStandards/MPEG-21_schema_files/dii/dii.xsd">urn:hdl:20.500.13003/10904</dii:Identifier>

          </d:Statement>

        </d:Descriptor>

      2. <d:Descriptor>

        1. <d:Statement mimeType="application/xml; charset=utf-8">

          1. <oai_dc:dc schemaLocation="http://www.openarchives.org/OAI/2.0/oai_dc/ http://www.openarchives.org/OAI/2.0/oai_dc.xsd">

            1. <dc:title>A Comparison between Multiple Regression Models and CUN-BAE Equation to Predict Body Fat in Adults</dc:title>

            2. <dc:creator>Fuster-Parra, Pilar</dc:creator>

            3. <dc:creator>Bennasar-Veny, Miquel</dc:creator>

            4. <dc:creator>Tauler, Pedro</dc:creator>

            5. <dc:creator>Yáñez, Aina M</dc:creator>

            6. <dc:creator>Lopez-Gonzalez, A.</dc:creator>

            7. <dc:creator>Aguilo, Antoni</dc:creator>

            8. <dc:description>Background Because the accurate measure of body fat (BF) is difficult, several prediction equations have been proposed. The aim of this study was to compare different multiple regression models to predict BF, including the recently reported CUN-BAE equation. Methods Multi regression models using body mass index (BMI) and body adiposity index (BAI) as predictors of BF will be compared. These models will be also compared with the CUN-BAE equation. For all the analysis a sample including all the participants and another one including only the overweight and obese subjects will be considered. The BF reference measure was made using Bioelectrical Impedance Analysis. Results The simplest models including only BMI or BAI as independent variables showed that BAI is a better predictor of BF. However, adding the variable sex to both models made BMI a better predictor than the BAI. For both the whole group of participants and the group of overweight and obese participants, using simple models (BMI, age and sex as variables) allowed obtaining similar correlations with BF as when the more complex CUN-BAE was used (rho = 0:87 vs rho= 0:86 for the whole sample and rho= 0:88 vs rho= 0:89 for overweight and obese subjects, being the second value the one for CUN-BAE). Conclusions There are simpler models than CUN-BAE equation that fits BF as well as CUN-BAE does. Therefore, it could be considered that CUN-BAE overfits. Using a simple linear regression model, the BAI, as the only variable, predicts BF better than BMI. However, when the sex variable is introduced, BMI becomes the indicator of choice to predict BF.</dc:description>

            9. <dc:date>2021-08-25T06:50:22Z</dc:date>

            10. <dc:date>2021-08-25T06:50:22Z</dc:date>

            11. <dc:date>2015-03-30</dc:date>

            12. <dc:type>research article</dc:type>

            13. <dc:identifier>Fuster-Parra P, Bennasar-Veny M, Tauler Riera P, Yañez AM, Lopez Gonzalez AA, Aguilo A. A Comparison between Multiple Regression Models and CUN-BAE Equation to Predict Body Fat in Adults. PLoS One. 2015 Mar 30;10(3):e0122291.</dc:identifier>

            14. <dc:identifier>1932-6203</dc:identifier>

            15. <dc:identifier>http://hdl.handle.net/20.500.13003/10904</dc:identifier>

            16. <dc:identifier>10.1371/journal.pone.0122291</dc:identifier>

            17. <dc:identifier>25821960</dc:identifier>

            18. <dc:identifier>L603554891</dc:identifier>

            19. <dc:identifier>2-s2.0-84926292396</dc:identifier>

            20. <dc:identifier>000352134700162</dc:identifier>

            21. <dc:language>eng</dc:language>

            22. <dc:relation>https://dx.doi.org/10.1371/journal.pone.0122291</dc:relation>

            23. <dc:rights>http://creativecommons.org/licenses/by/4.0/</dc:rights>

            24. <dc:rights>open access</dc:rights>

            25. <dc:rights>Attribution 4.0 International</dc:rights>

            26. <dc:publisher>Public Library Science</dc:publisher>

            </oai_dc:dc>

          </d:Statement>

        </d:Descriptor>

      3. <d:Component id="20.500.13003_10904_1">

        1. <d:Resource mimeType="application/pdf" ref="https://docusalut.com/bitstream/20.500.13003/10904/1/000352134700162.pdf" />

        </d:Component>

      </d:Item>

    </d:DIDL>

dim

Descarregar XML

    <?xml version="1.0" encoding="UTF-8" ?>

  1. <dim:dim schemaLocation="http://www.dspace.org/xmlns/dspace/dim http://www.dspace.org/schema/dim.xsd">

    1. <dim:field authority="261" confidence="500" element="contributor" mdschema="dc" orcid_id="0000-0003-2929-1625" qualifier="author">Fuster-Parra, Pilar</dim:field>

    2. <dim:field authority="81" confidence="500" element="contributor" mdschema="dc" orcid_id="0000-0003-1668-2141" qualifier="author">Bennasar-Veny, Miquel</dim:field>

    3. <dim:field authority="833" confidence="500" element="contributor" mdschema="dc" orcid_id="0000-0003-0841-1720" qualifier="author">Tauler, Pedro</dim:field>

    4. <dim:field authority="956" confidence="500" element="contributor" mdschema="dc" orcid_id="" qualifier="author">Yáñez, Aina M</dim:field>

    5. <dim:field authority="68378645-ad1c-49db-aa21-49519c47dfc5" confidence="500" element="contributor" mdschema="dc" orcid_id="" qualifier="author">Lopez-Gonzalez, A.</dim:field>

    6. <dim:field authority="5" confidence="500" element="contributor" mdschema="dc" orcid_id="0000-0001-5162-0996" qualifier="author">Aguilo, Antoni</dim:field>

    7. <dim:field element="date" mdschema="dc" qualifier="accessioned">2021-08-25T06:50:22Z</dim:field>

    8. <dim:field element="date" mdschema="dc" qualifier="available">2021-08-25T06:50:22Z</dim:field>

    9. <dim:field element="date" mdschema="dc" qualifier="issued">2015-03-30</dim:field>

    10. <dim:field element="identifier" lang="en" mdschema="dc" qualifier="citation">Fuster-Parra P, Bennasar-Veny M, Tauler Riera P, Yañez AM, Lopez Gonzalez AA, Aguilo A. A Comparison between Multiple Regression Models and CUN-BAE Equation to Predict Body Fat in Adults. PLoS One. 2015 Mar 30;10(3):e0122291.</dim:field>

    11. <dim:field element="identifier" mdschema="dc" qualifier="issn">1932-6203</dim:field>

    12. <dim:field element="identifier" mdschema="dc" qualifier="uri">http://hdl.handle.net/20.500.13003/10904</dim:field>

    13. <dim:field element="identifier" mdschema="dc" qualifier="doi">10.1371/journal.pone.0122291</dim:field>

    14. <dim:field element="identifier" mdschema="dc" qualifier="pmid">25821960</dim:field>

    15. <dim:field element="identifier" mdschema="dc" qualifier="pui">L603554891</dim:field>

    16. <dim:field element="identifier" mdschema="dc" qualifier="scopus">2-s2.0-84926292396</dim:field>

    17. <dim:field element="identifier" mdschema="dc" qualifier="wos">000352134700162</dim:field>

    18. <dim:field element="description" lang="en" mdschema="dc" qualifier="abstract">Background Because the accurate measure of body fat (BF) is difficult, several prediction equations have been proposed. The aim of this study was to compare different multiple regression models to predict BF, including the recently reported CUN-BAE equation. Methods Multi regression models using body mass index (BMI) and body adiposity index (BAI) as predictors of BF will be compared. These models will be also compared with the CUN-BAE equation. For all the analysis a sample including all the participants and another one including only the overweight and obese subjects will be considered. The BF reference measure was made using Bioelectrical Impedance Analysis. Results The simplest models including only BMI or BAI as independent variables showed that BAI is a better predictor of BF. However, adding the variable sex to both models made BMI a better predictor than the BAI. For both the whole group of participants and the group of overweight and obese participants, using simple models (BMI, age and sex as variables) allowed obtaining similar correlations with BF as when the more complex CUN-BAE was used (rho = 0:87 vs rho= 0:86 for the whole sample and rho= 0:88 vs rho= 0:89 for overweight and obese subjects, being the second value the one for CUN-BAE). Conclusions There are simpler models than CUN-BAE equation that fits BF as well as CUN-BAE does. Therefore, it could be considered that CUN-BAE overfits. Using a simple linear regression model, the BAI, as the only variable, predicts BF better than BMI. However, when the sex variable is introduced, BMI becomes the indicator of choice to predict BF.</dim:field>

    19. <dim:field element="description" lang="en" mdschema="dc" qualifier="fundingtext">This work was supported by the Spanish Ministry of Science and Innovation (PI 13/01477). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.</dim:field>

    20. <dim:field element="language" lang="en" mdschema="dc" qualifier="iso">eng</dim:field>

    21. <dim:field element="publisher" lang="en" mdschema="dc">Public Library Science</dim:field>

    22. <dim:field element="rights" lang="*" mdschema="dc">Attribution 4.0 International</dim:field>

    23. <dim:field element="rights" lang="*" mdschema="dc" qualifier="uri">http://creativecommons.org/licenses/by/4.0/</dim:field>

    24. <dim:field element="rights" lang="en" mdschema="dc" qualifier="accessRights">open access</dim:field>

    25. <dim:field authority="D000886" confidence="500" element="subject" lang="*" mdschema="dc" qualifier="mesh">Anthropometry</dim:field>

    26. <dim:field authority="D000368" confidence="500" element="subject" lang="*" mdschema="dc" qualifier="mesh">Aged</dim:field>

    27. <dim:field authority="D044465" confidence="500" element="subject" lang="*" mdschema="dc" qualifier="mesh">European Continental Ancestry Group</dim:field>

    28. <dim:field authority="D055815" confidence="500" element="subject" lang="*" mdschema="dc" qualifier="mesh">Young Adult</dim:field>

    29. <dim:field authority="D000328" confidence="500" element="subject" lang="*" mdschema="dc" qualifier="mesh">Adult</dim:field>

    30. <dim:field authority="D000273" confidence="500" element="subject" lang="*" mdschema="dc" qualifier="mesh">Adipose Tissue</dim:field>

    31. <dim:field authority="D006801" confidence="500" element="subject" lang="*" mdschema="dc" qualifier="mesh">Humans</dim:field>

    32. <dim:field authority="D008875" confidence="500" element="subject" lang="*" mdschema="dc" qualifier="mesh">Middle Aged</dim:field>

    33. <dim:field authority="D003430" confidence="500" element="subject" lang="*" mdschema="dc" qualifier="mesh">Cross-Sectional Studies</dim:field>

    34. <dim:field authority="D050154" confidence="500" element="subject" lang="*" mdschema="dc" qualifier="mesh">Adiposity</dim:field>

    35. <dim:field authority="D015992" confidence="500" element="subject" lang="*" mdschema="dc" qualifier="mesh">Body Mass Index</dim:field>

    36. <dim:field authority="D015233" confidence="500" element="subject" lang="*" mdschema="dc" qualifier="mesh">Models, Statistical</dim:field>

    37. <dim:field authority="D012044" confidence="500" element="subject" lang="*" mdschema="dc" qualifier="mesh">Regression Analysis</dim:field>

    38. <dim:field authority="DECSD015992" confidence="500" element="subject" lang="*" mdschema="dc" qualifier="decs">Índice de Masa Corporal</dim:field>

    39. <dim:field authority="DECSD015233" confidence="500" element="subject" lang="*" mdschema="dc" qualifier="decs">Modelos Estadísticos</dim:field>

    40. <dim:field authority="DECSD044465" confidence="500" element="subject" lang="*" mdschema="dc" qualifier="decs">Grupo de Ascendencia Continental Europea</dim:field>

    41. <dim:field authority="DECSD000273" confidence="500" element="subject" lang="*" mdschema="dc" qualifier="decs">Tejido Adiposo</dim:field>

    42. <dim:field authority="DECSD003430" confidence="500" element="subject" lang="*" mdschema="dc" qualifier="decs">Estudios Transversales</dim:field>

    43. <dim:field authority="DECSD006801" confidence="500" element="subject" lang="*" mdschema="dc" qualifier="decs">Humanos</dim:field>

    44. <dim:field authority="DECSD008875" confidence="500" element="subject" lang="*" mdschema="dc" qualifier="decs">Persona de Mediana Edad</dim:field>

    45. <dim:field authority="DECSD055815" confidence="500" element="subject" lang="*" mdschema="dc" qualifier="decs">Adulto Joven</dim:field>

    46. <dim:field authority="DECSD000368" confidence="500" element="subject" lang="*" mdschema="dc" qualifier="decs">Anciano</dim:field>

    47. <dim:field authority="DECSD000886" confidence="500" element="subject" lang="*" mdschema="dc" qualifier="decs">Antropometría</dim:field>

    48. <dim:field authority="DECSD000328" confidence="500" element="subject" lang="*" mdschema="dc" qualifier="decs">Adulto</dim:field>

    49. <dim:field authority="DECSD012044" confidence="500" element="subject" lang="*" mdschema="dc" qualifier="decs">Análisis de Regresión</dim:field>

    50. <dim:field authority="DECSD050154" confidence="500" element="subject" lang="*" mdschema="dc" qualifier="decs">Adiposidad</dim:field>

    51. <dim:field element="title" lang="en" mdschema="dc">A Comparison between Multiple Regression Models and CUN-BAE Equation to Predict Body Fat in Adults</dim:field>

    52. <dim:field element="type" lang="en" mdschema="dc">research article</dim:field>

    53. <dim:field element="issue" lang="en" mdschema="dc" qualifier="number">3</dim:field>

    54. <dim:field element="journal" lang="en" mdschema="dc" qualifier="title">PloS One</dim:field>

    55. <dim:field element="page" lang="en" mdschema="dc" qualifier="initial">e0122291</dim:field>

    56. <dim:field element="relation" lang="en" mdschema="dc" qualifier="publisherversion">https://dx.doi.org/10.1371/journal.pone.0122291</dim:field>

    57. <dim:field element="volume" lang="en" mdschema="dc" qualifier="number">10</dim:field>

    </dim:dim>

etdms

Descarregar XML

    <?xml version="1.0" encoding="UTF-8" ?>

  1. <thesis schemaLocation="http://www.ndltd.org/standards/metadata/etdms/1.0/ http://www.ndltd.org/standards/metadata/etdms/1.0/etdms.xsd">

    1. <title>A Comparison between Multiple Regression Models and CUN-BAE Equation to Predict Body Fat in Adults</title>

    2. <creator>Fuster-Parra, Pilar</creator>

    3. <creator>Bennasar-Veny, Miquel</creator>

    4. <creator>Tauler, Pedro</creator>

    5. <creator>Yáñez, Aina M</creator>

    6. <creator>Lopez-Gonzalez, A.</creator>

    7. <creator>Aguilo, Antoni</creator>

    8. <description>Background Because the accurate measure of body fat (BF) is difficult, several prediction equations have been proposed. The aim of this study was to compare different multiple regression models to predict BF, including the recently reported CUN-BAE equation. Methods Multi regression models using body mass index (BMI) and body adiposity index (BAI) as predictors of BF will be compared. These models will be also compared with the CUN-BAE equation. For all the analysis a sample including all the participants and another one including only the overweight and obese subjects will be considered. The BF reference measure was made using Bioelectrical Impedance Analysis. Results The simplest models including only BMI or BAI as independent variables showed that BAI is a better predictor of BF. However, adding the variable sex to both models made BMI a better predictor than the BAI. For both the whole group of participants and the group of overweight and obese participants, using simple models (BMI, age and sex as variables) allowed obtaining similar correlations with BF as when the more complex CUN-BAE was used (rho = 0:87 vs rho= 0:86 for the whole sample and rho= 0:88 vs rho= 0:89 for overweight and obese subjects, being the second value the one for CUN-BAE). Conclusions There are simpler models than CUN-BAE equation that fits BF as well as CUN-BAE does. Therefore, it could be considered that CUN-BAE overfits. Using a simple linear regression model, the BAI, as the only variable, predicts BF better than BMI. However, when the sex variable is introduced, BMI becomes the indicator of choice to predict BF.</description>

    9. <date>2021-08-25</date>

    10. <date>2021-08-25</date>

    11. <date>2015-03-30</date>

    12. <type>research article</type>

    13. <identifier>Fuster-Parra P, Bennasar-Veny M, Tauler Riera P, Yañez AM, Lopez Gonzalez AA, Aguilo A. A Comparison between Multiple Regression Models and CUN-BAE Equation to Predict Body Fat in Adults. PLoS One. 2015 Mar 30;10(3):e0122291.</identifier>

    14. <identifier>1932-6203</identifier>

    15. <identifier>http://hdl.handle.net/20.500.13003/10904</identifier>

    16. <identifier>10.1371/journal.pone.0122291</identifier>

    17. <identifier>25821960</identifier>

    18. <identifier>L603554891</identifier>

    19. <identifier>2-s2.0-84926292396</identifier>

    20. <identifier>000352134700162</identifier>

    21. <language>eng</language>

    22. <relation>https://dx.doi.org/10.1371/journal.pone.0122291</relation>

    23. <rights>http://creativecommons.org/licenses/by/4.0/</rights>

    24. <rights>open access</rights>

    25. <rights>Attribution 4.0 International</rights>

    26. <publisher>Public Library Science</publisher>

    </thesis>

marc

Descarregar XML

    <?xml version="1.0" encoding="UTF-8" ?>

  1. <record schemaLocation="http://www.loc.gov/MARC21/slim http://www.loc.gov/standards/marcxml/schema/MARC21slim.xsd">

    1. <leader>00925njm 22002777a 4500</leader>

    2. <datafield ind1=" " ind2=" " tag="042">

      1. <subfield code="a">dc</subfield>

      </datafield>

    3. <datafield ind1=" " ind2=" " tag="720">

      1. <subfield code="a">Fuster-Parra, Pilar</subfield>

      2. <subfield code="e">author</subfield>

      </datafield>

    4. <datafield ind1=" " ind2=" " tag="720">

      1. <subfield code="a">Bennasar-Veny, Miquel</subfield>

      2. <subfield code="e">author</subfield>

      </datafield>

    5. <datafield ind1=" " ind2=" " tag="720">

      1. <subfield code="a">Tauler, Pedro</subfield>

      2. <subfield code="e">author</subfield>

      </datafield>

    6. <datafield ind1=" " ind2=" " tag="720">

      1. <subfield code="a">Yáñez, Aina M</subfield>

      2. <subfield code="e">author</subfield>

      </datafield>

    7. <datafield ind1=" " ind2=" " tag="720">

      1. <subfield code="a">Lopez-Gonzalez, A.</subfield>

      2. <subfield code="e">author</subfield>

      </datafield>

    8. <datafield ind1=" " ind2=" " tag="720">

      1. <subfield code="a">Aguilo, Antoni</subfield>

      2. <subfield code="e">author</subfield>

      </datafield>

    9. <datafield ind1=" " ind2=" " tag="260">

      1. <subfield code="c">2015-03-30</subfield>

      </datafield>

    10. <datafield ind1=" " ind2=" " tag="520">

      1. <subfield code="a">Background Because the accurate measure of body fat (BF) is difficult, several prediction equations have been proposed. The aim of this study was to compare different multiple regression models to predict BF, including the recently reported CUN-BAE equation. Methods Multi regression models using body mass index (BMI) and body adiposity index (BAI) as predictors of BF will be compared. These models will be also compared with the CUN-BAE equation. For all the analysis a sample including all the participants and another one including only the overweight and obese subjects will be considered. The BF reference measure was made using Bioelectrical Impedance Analysis. Results The simplest models including only BMI or BAI as independent variables showed that BAI is a better predictor of BF. However, adding the variable sex to both models made BMI a better predictor than the BAI. For both the whole group of participants and the group of overweight and obese participants, using simple models (BMI, age and sex as variables) allowed obtaining similar correlations with BF as when the more complex CUN-BAE was used (rho = 0:87 vs rho= 0:86 for the whole sample and rho= 0:88 vs rho= 0:89 for overweight and obese subjects, being the second value the one for CUN-BAE). Conclusions There are simpler models than CUN-BAE equation that fits BF as well as CUN-BAE does. Therefore, it could be considered that CUN-BAE overfits. Using a simple linear regression model, the BAI, as the only variable, predicts BF better than BMI. However, when the sex variable is introduced, BMI becomes the indicator of choice to predict BF.</subfield>

      </datafield>

    11. <datafield ind1="8" ind2=" " tag="024">

      1. <subfield code="a">Fuster-Parra P, Bennasar-Veny M, Tauler Riera P, Yañez AM, Lopez Gonzalez AA, Aguilo A. A Comparison between Multiple Regression Models and CUN-BAE Equation to Predict Body Fat in Adults. PLoS One. 2015 Mar 30;10(3):e0122291.</subfield>

      </datafield>

    12. <datafield ind1="8" ind2=" " tag="024">

      1. <subfield code="a">1932-6203</subfield>

      </datafield>

    13. <datafield ind1="8" ind2=" " tag="024">

      1. <subfield code="a">http://hdl.handle.net/20.500.13003/10904</subfield>

      </datafield>

    14. <datafield ind1="8" ind2=" " tag="024">

      1. <subfield code="a">10.1371/journal.pone.0122291</subfield>

      </datafield>

    15. <datafield ind1="8" ind2=" " tag="024">

      1. <subfield code="a">25821960</subfield>

      </datafield>

    16. <datafield ind1="8" ind2=" " tag="024">

      1. <subfield code="a">L603554891</subfield>

      </datafield>

    17. <datafield ind1="8" ind2=" " tag="024">

      1. <subfield code="a">2-s2.0-84926292396</subfield>

      </datafield>

    18. <datafield ind1="8" ind2=" " tag="024">

      1. <subfield code="a">000352134700162</subfield>

      </datafield>

    19. <datafield ind1="0" ind2="0" tag="245">

      1. <subfield code="a">A Comparison between Multiple Regression Models and CUN-BAE Equation to Predict Body Fat in Adults</subfield>

      </datafield>

    </record>

mets

Descarregar XML

    <?xml version="1.0" encoding="UTF-8" ?>

  1. <mets ID=" DSpace_ITEM_20.500.13003-10904" OBJID=" hdl:20.500.13003/10904" PROFILE="DSpace METS SIP Profile 1.0" TYPE="DSpace ITEM" schemaLocation="http://www.loc.gov/METS/ http://www.loc.gov/standards/mets/mets.xsd">

    1. <metsHdr CREATEDATE="2022-09-28T08:24:17Z">

      1. <agent ROLE="CUSTODIAN" TYPE="ORGANIZATION">

        1. <name>Docusalut</name>

        </agent>

      </metsHdr>

    2. <dmdSec ID="DMD_20.500.13003_10904">

      1. <mdWrap MDTYPE="MODS">

        1. <xmlData schemaLocation="http://www.loc.gov/mods/v3 http://www.loc.gov/standards/mods/v3/mods-3-1.xsd">

          1. <mods:mods schemaLocation="http://www.loc.gov/mods/v3 http://www.loc.gov/standards/mods/v3/mods-3-1.xsd">

            1. <mods:name>

              1. <mods:role>

                1. <mods:roleTerm type="text">author</mods:roleTerm>

                </mods:role>

              2. <mods:namePart>Fuster-Parra, Pilar</mods:namePart>

              </mods:name>

            2. <mods:name>

              1. <mods:role>

                1. <mods:roleTerm type="text">author</mods:roleTerm>

                </mods:role>

              2. <mods:namePart>Bennasar-Veny, Miquel</mods:namePart>

              </mods:name>

            3. <mods:name>

              1. <mods:role>

                1. <mods:roleTerm type="text">author</mods:roleTerm>

                </mods:role>

              2. <mods:namePart>Tauler, Pedro</mods:namePart>

              </mods:name>

            4. <mods:name>

              1. <mods:role>

                1. <mods:roleTerm type="text">author</mods:roleTerm>

                </mods:role>

              2. <mods:namePart>Yáñez, Aina M</mods:namePart>

              </mods:name>

            5. <mods:name>

              1. <mods:role>

                1. <mods:roleTerm type="text">author</mods:roleTerm>

                </mods:role>

              2. <mods:namePart>Lopez-Gonzalez, A.</mods:namePart>

              </mods:name>

            6. <mods:name>

              1. <mods:role>

                1. <mods:roleTerm type="text">author</mods:roleTerm>

                </mods:role>

              2. <mods:namePart>Aguilo, Antoni</mods:namePart>

              </mods:name>

            7. <mods:extension>

              1. <mods:dateAccessioned encoding="iso8601">2021-08-25T06:50:22Z</mods:dateAccessioned>

              </mods:extension>

            8. <mods:extension>

              1. <mods:dateAvailable encoding="iso8601">2021-08-25T06:50:22Z</mods:dateAvailable>

              </mods:extension>

            9. <mods:originInfo>

              1. <mods:dateIssued encoding="iso8601">2015-03-30</mods:dateIssued>

              </mods:originInfo>

            10. <mods:identifier type="citation">Fuster-Parra P, Bennasar-Veny M, Tauler Riera P, Yañez AM, Lopez Gonzalez AA, Aguilo A. A Comparison between Multiple Regression Models and CUN-BAE Equation to Predict Body Fat in Adults. PLoS One. 2015 Mar 30;10(3):e0122291.</mods:identifier>

            11. <mods:identifier type="issn">1932-6203</mods:identifier>

            12. <mods:identifier type="uri">http://hdl.handle.net/20.500.13003/10904</mods:identifier>

            13. <mods:identifier type="doi">10.1371/journal.pone.0122291</mods:identifier>

            14. <mods:identifier type="pmid">25821960</mods:identifier>

            15. <mods:identifier type="pui">L603554891</mods:identifier>

            16. <mods:identifier type="scopus">2-s2.0-84926292396</mods:identifier>

            17. <mods:identifier type="wos">000352134700162</mods:identifier>

            18. <mods:abstract>Background Because the accurate measure of body fat (BF) is difficult, several prediction equations have been proposed. The aim of this study was to compare different multiple regression models to predict BF, including the recently reported CUN-BAE equation. Methods Multi regression models using body mass index (BMI) and body adiposity index (BAI) as predictors of BF will be compared. These models will be also compared with the CUN-BAE equation. For all the analysis a sample including all the participants and another one including only the overweight and obese subjects will be considered. The BF reference measure was made using Bioelectrical Impedance Analysis. Results The simplest models including only BMI or BAI as independent variables showed that BAI is a better predictor of BF. However, adding the variable sex to both models made BMI a better predictor than the BAI. For both the whole group of participants and the group of overweight and obese participants, using simple models (BMI, age and sex as variables) allowed obtaining similar correlations with BF as when the more complex CUN-BAE was used (rho = 0:87 vs rho= 0:86 for the whole sample and rho= 0:88 vs rho= 0:89 for overweight and obese subjects, being the second value the one for CUN-BAE). Conclusions There are simpler models than CUN-BAE equation that fits BF as well as CUN-BAE does. Therefore, it could be considered that CUN-BAE overfits. Using a simple linear regression model, the BAI, as the only variable, predicts BF better than BMI. However, when the sex variable is introduced, BMI becomes the indicator of choice to predict BF.</mods:abstract>

            19. <mods:language>

              1. <mods:languageTerm authority="rfc3066">eng</mods:languageTerm>

              </mods:language>

            20. <mods:accessCondition type="useAndReproduction">Attribution 4.0 International</mods:accessCondition>

            21. <mods:titleInfo>

              1. <mods:title>A Comparison between Multiple Regression Models and CUN-BAE Equation to Predict Body Fat in Adults</mods:title>

              </mods:titleInfo>

            22. <mods:genre>research article</mods:genre>

            </mods:mods>

          </xmlData>

        </mdWrap>

      </dmdSec>

    3. <amdSec ID="FO_20.500.13003_10904_1">

      1. <techMD ID="TECH_O_20.500.13003_10904_1">

        1. <mdWrap MDTYPE="PREMIS">

          1. <xmlData schemaLocation="http://www.loc.gov/standards/premis http://www.loc.gov/standards/premis/PREMIS-v1-0.xsd">

            1. <premis:premis>

              1. <premis:object>

                1. <premis:objectIdentifier>

                  1. <premis:objectIdentifierType>URL</premis:objectIdentifierType>

                  2. <premis:objectIdentifierValue>https://docusalut.com/bitstream/20.500.13003/10904/1/000352134700162.pdf</premis:objectIdentifierValue>

                  </premis:objectIdentifier>

                2. <premis:objectCategory>File</premis:objectCategory>

                3. <premis:objectCharacteristics>

                  1. <premis:fixity>

                    1. <premis:messageDigestAlgorithm>MD5</premis:messageDigestAlgorithm>

                    2. <premis:messageDigest>6405140e5987995784df1914c9aedd87</premis:messageDigest>

                    </premis:fixity>

                  2. <premis:size>363353</premis:size>

                  3. <premis:format>

                    1. <premis:formatDesignation>

                      1. <premis:formatName>application/pdf</premis:formatName>

                      </premis:formatDesignation>

                    </premis:format>

                  </premis:objectCharacteristics>

                4. <premis:originalName>000352134700162.pdf</premis:originalName>

                </premis:object>

              </premis:premis>

            </xmlData>

          </mdWrap>

        </techMD>

      </amdSec>

    4. <amdSec ID="FT_20.500.13003_10904_3">

      1. <techMD ID="TECH_T_20.500.13003_10904_3">

        1. <mdWrap MDTYPE="PREMIS">

          1. <xmlData schemaLocation="http://www.loc.gov/standards/premis http://www.loc.gov/standards/premis/PREMIS-v1-0.xsd">

            1. <premis:premis>

              1. <premis:object>

                1. <premis:objectIdentifier>

                  1. <premis:objectIdentifierType>URL</premis:objectIdentifierType>

                  2. <premis:objectIdentifierValue>https://docusalut.com/bitstream/20.500.13003/10904/3/000352134700162.pdf.txt</premis:objectIdentifierValue>

                  </premis:objectIdentifier>

                2. <premis:objectCategory>File</premis:objectCategory>

                3. <premis:objectCharacteristics>

                  1. <premis:fixity>

                    1. <premis:messageDigestAlgorithm>MD5</premis:messageDigestAlgorithm>

                    2. <premis:messageDigest>8fc135df2198dbd6684f1ff0dab18371</premis:messageDigest>

                    </premis:fixity>

                  2. <premis:size>37448</premis:size>

                  3. <premis:format>

                    1. <premis:formatDesignation>

                      1. <premis:formatName>text/plain</premis:formatName>

                      </premis:formatDesignation>

                    </premis:format>

                  </premis:objectCharacteristics>

                4. <premis:originalName>000352134700162.pdf.txt</premis:originalName>

                </premis:object>

              </premis:premis>

            </xmlData>

          </mdWrap>

        </techMD>

      </amdSec>

    5. <fileSec>

      1. <fileGrp USE="ORIGINAL">

        1. <file ADMID="FO_20.500.13003_10904_1" CHECKSUM="6405140e5987995784df1914c9aedd87" CHECKSUMTYPE="MD5" GROUPID="GROUP_BITSTREAM_20.500.13003_10904_1" ID="BITSTREAM_ORIGINAL_20.500.13003_10904_1" MIMETYPE="application/pdf" SEQ="1" SIZE="363353">

          1. <FLocat LOCTYPE="URL" href="https://docusalut.com/bitstream/20.500.13003/10904/1/000352134700162.pdf" type="simple" />

          </file>

        </fileGrp>

      2. <fileGrp USE="TEXT">

        1. <file ADMID="FT_20.500.13003_10904_3" CHECKSUM="8fc135df2198dbd6684f1ff0dab18371" CHECKSUMTYPE="MD5" GROUPID="GROUP_BITSTREAM_20.500.13003_10904_3" ID="BITSTREAM_TEXT_20.500.13003_10904_3" MIMETYPE="text/plain" SEQ="3" SIZE="37448">

          1. <FLocat LOCTYPE="URL" href="https://docusalut.com/bitstream/20.500.13003/10904/3/000352134700162.pdf.txt" type="simple" />

          </file>

        </fileGrp>

      </fileSec>

    6. <structMap LABEL="DSpace Object" TYPE="LOGICAL">

      1. <div ADMID="DMD_20.500.13003_10904" TYPE="DSpace Object Contents">

        1. <div TYPE="DSpace BITSTREAM">

          1. <fptr FILEID="BITSTREAM_ORIGINAL_20.500.13003_10904_1" />

          </div>

        </div>

      </structMap>

    </mets>

mods

Descarregar XML

    <?xml version="1.0" encoding="UTF-8" ?>

  1. <mods:mods schemaLocation="http://www.loc.gov/mods/v3 http://www.loc.gov/standards/mods/v3/mods-3-1.xsd">

    1. <mods:name>

      1. <mods:namePart>Fuster-Parra, Pilar</mods:namePart>

      </mods:name>

    2. <mods:name>

      1. <mods:namePart>Bennasar-Veny, Miquel</mods:namePart>

      </mods:name>

    3. <mods:name>

      1. <mods:namePart>Tauler, Pedro</mods:namePart>

      </mods:name>

    4. <mods:name>

      1. <mods:namePart>Yáñez, Aina M</mods:namePart>

      </mods:name>

    5. <mods:name>

      1. <mods:namePart>Lopez-Gonzalez, A.</mods:namePart>

      </mods:name>

    6. <mods:name>

      1. <mods:namePart>Aguilo, Antoni</mods:namePart>

      </mods:name>

    7. <mods:extension>

      1. <mods:dateAvailable encoding="iso8601">2021-08-25T06:50:22Z</mods:dateAvailable>

      </mods:extension>

    8. <mods:extension>

      1. <mods:dateAccessioned encoding="iso8601">2021-08-25T06:50:22Z</mods:dateAccessioned>

      </mods:extension>

    9. <mods:originInfo>

      1. <mods:dateIssued encoding="iso8601">2015-03-30</mods:dateIssued>

      </mods:originInfo>

    10. <mods:identifier type="citation">Fuster-Parra P, Bennasar-Veny M, Tauler Riera P, Yañez AM, Lopez Gonzalez AA, Aguilo A. A Comparison between Multiple Regression Models and CUN-BAE Equation to Predict Body Fat in Adults. PLoS One. 2015 Mar 30;10(3):e0122291.</mods:identifier>

    11. <mods:identifier type="issn">1932-6203</mods:identifier>

    12. <mods:identifier type="uri">http://hdl.handle.net/20.500.13003/10904</mods:identifier>

    13. <mods:identifier type="doi">10.1371/journal.pone.0122291</mods:identifier>

    14. <mods:identifier type="pmid">25821960</mods:identifier>

    15. <mods:identifier type="pui">L603554891</mods:identifier>

    16. <mods:identifier type="scopus">2-s2.0-84926292396</mods:identifier>

    17. <mods:identifier type="wos">000352134700162</mods:identifier>

    18. <mods:abstract>Background Because the accurate measure of body fat (BF) is difficult, several prediction equations have been proposed. The aim of this study was to compare different multiple regression models to predict BF, including the recently reported CUN-BAE equation. Methods Multi regression models using body mass index (BMI) and body adiposity index (BAI) as predictors of BF will be compared. These models will be also compared with the CUN-BAE equation. For all the analysis a sample including all the participants and another one including only the overweight and obese subjects will be considered. The BF reference measure was made using Bioelectrical Impedance Analysis. Results The simplest models including only BMI or BAI as independent variables showed that BAI is a better predictor of BF. However, adding the variable sex to both models made BMI a better predictor than the BAI. For both the whole group of participants and the group of overweight and obese participants, using simple models (BMI, age and sex as variables) allowed obtaining similar correlations with BF as when the more complex CUN-BAE was used (rho = 0:87 vs rho= 0:86 for the whole sample and rho= 0:88 vs rho= 0:89 for overweight and obese subjects, being the second value the one for CUN-BAE). Conclusions There are simpler models than CUN-BAE equation that fits BF as well as CUN-BAE does. Therefore, it could be considered that CUN-BAE overfits. Using a simple linear regression model, the BAI, as the only variable, predicts BF better than BMI. However, when the sex variable is introduced, BMI becomes the indicator of choice to predict BF.</mods:abstract>

    19. <mods:language>

      1. <mods:languageTerm>eng</mods:languageTerm>

      </mods:language>

    20. <mods:accessCondition type="useAndReproduction">http://creativecommons.org/licenses/by/4.0/</mods:accessCondition>

    21. <mods:accessCondition type="useAndReproduction">open access</mods:accessCondition>

    22. <mods:accessCondition type="useAndReproduction">Attribution 4.0 International</mods:accessCondition>

    23. <mods:titleInfo>

      1. <mods:title>A Comparison between Multiple Regression Models and CUN-BAE Equation to Predict Body Fat in Adults</mods:title>

      </mods:titleInfo>

    24. <mods:genre>research article</mods:genre>

    </mods:mods>

ore

Descarregar XML

    <?xml version="1.0" encoding="UTF-8" ?>

  1. <atom:entry schemaLocation="http://www.w3.org/2005/Atom http://www.kbcafe.com/rss/atom.xsd.xml">

    1. <atom:id>http://hdl.handle.net/20.500.13003/10904/ore.xml</atom:id>

    2. <atom:link href="http://hdl.handle.net/20.500.13003/10904" rel="alternate" />
    3. <atom:link href="http://hdl.handle.net/20.500.13003/10904/ore.xml" rel="http://www.openarchives.org/ore/terms/describes" />
    4. <atom:link href="http://hdl.handle.net/20.500.13003/10904/ore.xml#atom" rel="self" type="application/atom+xml" />
    5. <atom:published>2021-08-25T06:50:22Z</atom:published>

    6. <atom:updated>2021-08-25T06:50:22Z</atom:updated>

    7. <atom:source>

      1. <atom:generator>Docusalut</atom:generator>

      </atom:source>

    8. <atom:title>A Comparison between Multiple Regression Models and CUN-BAE Equation to Predict Body Fat in Adults</atom:title>

    9. <atom:author>

      1. <atom:name>Fuster-Parra, Pilar</atom:name>

      </atom:author>

    10. <atom:author>

      1. <atom:name>Bennasar-Veny, Miquel</atom:name>

      </atom:author>

    11. <atom:author>

      1. <atom:name>Tauler, Pedro</atom:name>

      </atom:author>

    12. <atom:author>

      1. <atom:name>Yáñez, Aina M</atom:name>

      </atom:author>

    13. <atom:author>

      1. <atom:name>Lopez-Gonzalez, A.</atom:name>

      </atom:author>

    14. <atom:author>

      1. <atom:name>Aguilo, Antoni</atom:name>

      </atom:author>

    15. <atom:category label="Aggregation" scheme="http://www.openarchives.org/ore/terms/" term="http://www.openarchives.org/ore/terms/Aggregation" />
    16. <atom:category scheme="http://www.openarchives.org/ore/atom/modified" term="2021-08-25T06:50:22Z" />
    17. <atom:category label="DSpace Item" scheme="http://www.dspace.org/objectModel/" term="DSpaceItem" />
    18. <atom:link href="https://docusalut.com/bitstream/20.500.13003/10904/1/000352134700162.pdf" length="363353" rel="http://www.openarchives.org/ore/terms/aggregates" title="000352134700162.pdf" type="application/pdf" />
    19. <oreatom:triples>

      1. <rdf:Description about="http://hdl.handle.net/20.500.13003/10904/ore.xml#atom">

        1. <rdf:type resource="http://www.dspace.org/objectModel/DSpaceItem" />
        2. <dcterms:modified>2021-08-25T06:50:22Z</dcterms:modified>

        </rdf:Description>

      2. <rdf:Description about="https://docusalut.com/bitstream/20.500.13003/10904/1/000352134700162.pdf">

        1. <rdf:type resource="http://www.dspace.org/objectModel/DSpaceBitstream" />
        2. <dcterms:description>ORIGINAL</dcterms:description>

        </rdf:Description>

      3. <rdf:Description about="https://docusalut.com/bitstream/20.500.13003/10904/2/license_rdf">

        1. <rdf:type resource="http://www.dspace.org/objectModel/DSpaceBitstream" />
        2. <dcterms:description>CC-LICENSE</dcterms:description>

        </rdf:Description>

      4. <rdf:Description about="https://docusalut.com/bitstream/20.500.13003/10904/3/000352134700162.pdf.txt">

        1. <rdf:type resource="http://www.dspace.org/objectModel/DSpaceBitstream" />
        2. <dcterms:description>TEXT</dcterms:description>

        </rdf:Description>

      5. <rdf:Description about="https://docusalut.com/bitstream/20.500.13003/10904/4/000352134700162.pdf.jpg">

        1. <rdf:type resource="http://www.dspace.org/objectModel/DSpaceBitstream" />
        2. <dcterms:description>THUMBNAIL</dcterms:description>

        </rdf:Description>

      </oreatom:triples>

    </atom:entry>

qdc

Descarregar XML

    <?xml version="1.0" encoding="UTF-8" ?>

  1. <qdc:qualifieddc schemaLocation="http://purl.org/dc/elements/1.1/ http://dublincore.org/schemas/xmls/qdc/2006/01/06/dc.xsd http://purl.org/dc/terms/ http://dublincore.org/schemas/xmls/qdc/2006/01/06/dcterms.xsd http://dspace.org/qualifieddc/ http://www.ukoln.ac.uk/metadata/dcmi/xmlschema/qualifieddc.xsd">

    1. <dc:title>A Comparison between Multiple Regression Models and CUN-BAE Equation to Predict Body Fat in Adults</dc:title>

    2. <dc:creator>Fuster-Parra, Pilar</dc:creator>

    3. <dc:creator>Bennasar-Veny, Miquel</dc:creator>

    4. <dc:creator>Tauler, Pedro</dc:creator>

    5. <dc:creator>Yáñez, Aina M</dc:creator>

    6. <dc:creator>Lopez-Gonzalez, A.</dc:creator>

    7. <dc:creator>Aguilo, Antoni</dc:creator>

    8. <dcterms:abstract>Background Because the accurate measure of body fat (BF) is difficult, several prediction equations have been proposed. The aim of this study was to compare different multiple regression models to predict BF, including the recently reported CUN-BAE equation. Methods Multi regression models using body mass index (BMI) and body adiposity index (BAI) as predictors of BF will be compared. These models will be also compared with the CUN-BAE equation. For all the analysis a sample including all the participants and another one including only the overweight and obese subjects will be considered. The BF reference measure was made using Bioelectrical Impedance Analysis. Results The simplest models including only BMI or BAI as independent variables showed that BAI is a better predictor of BF. However, adding the variable sex to both models made BMI a better predictor than the BAI. For both the whole group of participants and the group of overweight and obese participants, using simple models (BMI, age and sex as variables) allowed obtaining similar correlations with BF as when the more complex CUN-BAE was used (rho = 0:87 vs rho= 0:86 for the whole sample and rho= 0:88 vs rho= 0:89 for overweight and obese subjects, being the second value the one for CUN-BAE). Conclusions There are simpler models than CUN-BAE equation that fits BF as well as CUN-BAE does. Therefore, it could be considered that CUN-BAE overfits. Using a simple linear regression model, the BAI, as the only variable, predicts BF better than BMI. However, when the sex variable is introduced, BMI becomes the indicator of choice to predict BF.</dcterms:abstract>

    9. <dcterms:dateAccepted>2021-08-25T06:50:22Z</dcterms:dateAccepted>

    10. <dcterms:available>2021-08-25T06:50:22Z</dcterms:available>

    11. <dcterms:created>2021-08-25T06:50:22Z</dcterms:created>

    12. <dcterms:issued>2015-03-30</dcterms:issued>

    13. <dc:type>research article</dc:type>

    14. <dc:identifier>Fuster-Parra P, Bennasar-Veny M, Tauler Riera P, Yañez AM, Lopez Gonzalez AA, Aguilo A. A Comparison between Multiple Regression Models and CUN-BAE Equation to Predict Body Fat in Adults. PLoS One. 2015 Mar 30;10(3):e0122291.</dc:identifier>

    15. <dc:identifier>1932-6203</dc:identifier>

    16. <dc:identifier>http://hdl.handle.net/20.500.13003/10904</dc:identifier>

    17. <dc:identifier>10.1371/journal.pone.0122291</dc:identifier>

    18. <dc:identifier>25821960</dc:identifier>

    19. <dc:identifier>L603554891</dc:identifier>

    20. <dc:identifier>2-s2.0-84926292396</dc:identifier>

    21. <dc:identifier>000352134700162</dc:identifier>

    22. <dc:language>eng</dc:language>

    23. <dc:relation>https://dx.doi.org/10.1371/journal.pone.0122291</dc:relation>

    24. <dc:rights>http://creativecommons.org/licenses/by/4.0/</dc:rights>

    25. <dc:rights>open access</dc:rights>

    26. <dc:rights>Attribution 4.0 International</dc:rights>

    27. <dc:publisher>Public Library Science</dc:publisher>

    </qdc:qualifieddc>

rdf

Descarregar XML

    <?xml version="1.0" encoding="UTF-8" ?>

  1. <rdf:RDF schemaLocation="http://www.openarchives.org/OAI/2.0/rdf/ http://www.openarchives.org/OAI/2.0/rdf.xsd">

    1. <ow:Publication about="oai:docusalut.com:20.500.13003/10904">

      1. <dc:title>A Comparison between Multiple Regression Models and CUN-BAE Equation to Predict Body Fat in Adults</dc:title>

      2. <dc:creator>Fuster-Parra, Pilar</dc:creator>

      3. <dc:creator>Bennasar-Veny, Miquel</dc:creator>

      4. <dc:creator>Tauler, Pedro</dc:creator>

      5. <dc:creator>Yáñez, Aina M</dc:creator>

      6. <dc:creator>Lopez-Gonzalez, A.</dc:creator>

      7. <dc:creator>Aguilo, Antoni</dc:creator>

      8. <dc:description>Background Because the accurate measure of body fat (BF) is difficult, several prediction equations have been proposed. The aim of this study was to compare different multiple regression models to predict BF, including the recently reported CUN-BAE equation. Methods Multi regression models using body mass index (BMI) and body adiposity index (BAI) as predictors of BF will be compared. These models will be also compared with the CUN-BAE equation. For all the analysis a sample including all the participants and another one including only the overweight and obese subjects will be considered. The BF reference measure was made using Bioelectrical Impedance Analysis. Results The simplest models including only BMI or BAI as independent variables showed that BAI is a better predictor of BF. However, adding the variable sex to both models made BMI a better predictor than the BAI. For both the whole group of participants and the group of overweight and obese participants, using simple models (BMI, age and sex as variables) allowed obtaining similar correlations with BF as when the more complex CUN-BAE was used (rho = 0:87 vs rho= 0:86 for the whole sample and rho= 0:88 vs rho= 0:89 for overweight and obese subjects, being the second value the one for CUN-BAE). Conclusions There are simpler models than CUN-BAE equation that fits BF as well as CUN-BAE does. Therefore, it could be considered that CUN-BAE overfits. Using a simple linear regression model, the BAI, as the only variable, predicts BF better than BMI. However, when the sex variable is introduced, BMI becomes the indicator of choice to predict BF.</dc:description>

      9. <dc:date>2021-08-25T06:50:22Z</dc:date>

      10. <dc:date>2021-08-25T06:50:22Z</dc:date>

      11. <dc:date>2015-03-30</dc:date>

      12. <dc:type>research article</dc:type>

      13. <dc:identifier>Fuster-Parra P, Bennasar-Veny M, Tauler Riera P, Yañez AM, Lopez Gonzalez AA, Aguilo A. A Comparison between Multiple Regression Models and CUN-BAE Equation to Predict Body Fat in Adults. PLoS One. 2015 Mar 30;10(3):e0122291.</dc:identifier>

      14. <dc:identifier>1932-6203</dc:identifier>

      15. <dc:identifier>http://hdl.handle.net/20.500.13003/10904</dc:identifier>

      16. <dc:identifier>10.1371/journal.pone.0122291</dc:identifier>

      17. <dc:identifier>25821960</dc:identifier>

      18. <dc:identifier>L603554891</dc:identifier>

      19. <dc:identifier>2-s2.0-84926292396</dc:identifier>

      20. <dc:identifier>000352134700162</dc:identifier>

      21. <dc:language>eng</dc:language>

      22. <dc:relation>https://dx.doi.org/10.1371/journal.pone.0122291</dc:relation>

      23. <dc:rights>http://creativecommons.org/licenses/by/4.0/</dc:rights>

      24. <dc:rights>open access</dc:rights>

      25. <dc:rights>Attribution 4.0 International</dc:rights>

      26. <dc:publisher>Public Library Science</dc:publisher>

      </ow:Publication>

    </rdf:RDF>

xoai

Descarregar XML

    <?xml version="1.0" encoding="UTF-8" ?>

  1. <metadata schemaLocation="http://www.lyncode.com/xoai http://www.lyncode.com/xsd/xoai.xsd">

    1. <element name="dc">

      1. <element name="contributor">

        1. <element name="author">

          1. <element name="none">

            1. <field name="value">Fuster-Parra, Pilar</field>

            2. <field name="authority">261</field>

            3. <field name="confidence">500</field>

            4. <field name="orcid_id">0000-0003-2929-1625</field>

            5. <field name="value">Bennasar-Veny, Miquel</field>

            6. <field name="authority">81</field>

            7. <field name="confidence">500</field>

            8. <field name="orcid_id">0000-0003-1668-2141</field>

            9. <field name="value">Tauler, Pedro</field>

            10. <field name="authority">833</field>

            11. <field name="confidence">500</field>

            12. <field name="orcid_id">0000-0003-0841-1720</field>

            13. <field name="value">Yáñez, Aina M</field>

            14. <field name="authority">956</field>

            15. <field name="confidence">500</field>

            16. <field name="orcid_id" />
            17. <field name="value">Lopez-Gonzalez, A.</field>

            18. <field name="authority">68378645-ad1c-49db-aa21-49519c47dfc5</field>

            19. <field name="confidence">500</field>

            20. <field name="orcid_id" />
            21. <field name="value">Aguilo, Antoni</field>

            22. <field name="authority">5</field>

            23. <field name="confidence">500</field>

            24. <field name="orcid_id">0000-0001-5162-0996</field>

            </element>

          </element>

        </element>

      2. <element name="date">

        1. <element name="accessioned">

          1. <element name="none">

            1. <field name="value">2021-08-25T06:50:22Z</field>

            </element>

          </element>

        2. <element name="available">

          1. <element name="none">

            1. <field name="value">2021-08-25T06:50:22Z</field>

            </element>

          </element>

        3. <element name="issued">

          1. <element name="none">

            1. <field name="value">2015-03-30</field>

            </element>

          </element>

        4. <element name="embargoEndDate">

          1. <element name="none" />

          </element>

        </element>

      3. <element name="identifier">

        1. <element name="citation">

          1. <element name="en">

            1. <field name="value">Fuster-Parra P, Bennasar-Veny M, Tauler Riera P, Yañez AM, Lopez Gonzalez AA, Aguilo A. A Comparison between Multiple Regression Models and CUN-BAE Equation to Predict Body Fat in Adults. PLoS One. 2015 Mar 30;10(3):e0122291.</field>

            </element>

          </element>

        2. <element name="issn">

          1. <element name="none">

            1. <field name="value">1932-6203</field>

            </element>

          </element>

        3. <element name="uri">

          1. <element name="none">

            1. <field name="value">http://hdl.handle.net/20.500.13003/10904</field>

            </element>

          </element>

        4. <element name="doi">

          1. <element name="none">

            1. <field name="value">10.1371/journal.pone.0122291</field>

            </element>

          </element>

        5. <element name="pmid">

          1. <element name="none">

            1. <field name="value">25821960</field>

            </element>

          </element>

        6. <element name="pui">

          1. <element name="none">

            1. <field name="value">L603554891</field>

            </element>

          </element>

        7. <element name="scopus">

          1. <element name="none">

            1. <field name="value">2-s2.0-84926292396</field>

            </element>

          </element>

        8. <element name="wos">

          1. <element name="none">

            1. <field name="value">000352134700162</field>

            </element>

          </element>

        </element>

      4. <element name="description">

        1. <element name="abstract">

          1. <element name="en">

            1. <field name="value">Background Because the accurate measure of body fat (BF) is difficult, several prediction equations have been proposed. The aim of this study was to compare different multiple regression models to predict BF, including the recently reported CUN-BAE equation. Methods Multi regression models using body mass index (BMI) and body adiposity index (BAI) as predictors of BF will be compared. These models will be also compared with the CUN-BAE equation. For all the analysis a sample including all the participants and another one including only the overweight and obese subjects will be considered. The BF reference measure was made using Bioelectrical Impedance Analysis. Results The simplest models including only BMI or BAI as independent variables showed that BAI is a better predictor of BF. However, adding the variable sex to both models made BMI a better predictor than the BAI. For both the whole group of participants and the group of overweight and obese participants, using simple models (BMI, age and sex as variables) allowed obtaining similar correlations with BF as when the more complex CUN-BAE was used (rho = 0:87 vs rho= 0:86 for the whole sample and rho= 0:88 vs rho= 0:89 for overweight and obese subjects, being the second value the one for CUN-BAE). Conclusions There are simpler models than CUN-BAE equation that fits BF as well as CUN-BAE does. Therefore, it could be considered that CUN-BAE overfits. Using a simple linear regression model, the BAI, as the only variable, predicts BF better than BMI. However, when the sex variable is introduced, BMI becomes the indicator of choice to predict BF.</field>

            </element>

          </element>

        2. <element name="fundingtext">

          1. <element name="en">

            1. <field name="value">This work was supported by the Spanish Ministry of Science and Innovation (PI 13/01477). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.</field>

            </element>

          </element>

        </element>

      5. <element name="language">

        1. <element name="iso">

          1. <element name="en">

            1. <field name="value">eng</field>

            </element>

          </element>

        </element>

      6. <element name="publisher">

        1. <element name="en">

          1. <field name="value">Public Library Science</field>

          </element>

        </element>

      7. <element name="rights">

        1. <element name="*">

          1. <field name="value">Attribution 4.0 International</field>

          </element>

        2. <element name="uri">

          1. <element name="*">

            1. <field name="value">http://creativecommons.org/licenses/by/4.0/</field>

            </element>

          </element>

        3. <element name="accessRights">

          1. <element name="en">

            1. <field name="value">open access</field>

            </element>

          </element>

        </element>

      8. <element name="subject">

        1. <element name="mesh">

          1. <element name="*">

            1. <field name="value">Anthropometry</field>

            2. <field name="authority">D000886</field>

            3. <field name="confidence">500</field>

            4. <field name="value">Aged</field>

            5. <field name="authority">D000368</field>

            6. <field name="confidence">500</field>

            7. <field name="value">European Continental Ancestry Group</field>

            8. <field name="authority">D044465</field>

            9. <field name="confidence">500</field>

            10. <field name="value">Young Adult</field>

            11. <field name="authority">D055815</field>

            12. <field name="confidence">500</field>

            13. <field name="value">Adult</field>

            14. <field name="authority">D000328</field>

            15. <field name="confidence">500</field>

            16. <field name="value">Adipose Tissue</field>

            17. <field name="authority">D000273</field>

            18. <field name="confidence">500</field>

            19. <field name="value">Humans</field>

            20. <field name="authority">D006801</field>

            21. <field name="confidence">500</field>

            22. <field name="value">Middle Aged</field>

            23. <field name="authority">D008875</field>

            24. <field name="confidence">500</field>

            25. <field name="value">Cross-Sectional Studies</field>

            26. <field name="authority">D003430</field>

            27. <field name="confidence">500</field>

            28. <field name="value">Adiposity</field>

            29. <field name="authority">D050154</field>

            30. <field name="confidence">500</field>

            31. <field name="value">Body Mass Index</field>

            32. <field name="authority">D015992</field>

            33. <field name="confidence">500</field>

            34. <field name="value">Models, Statistical</field>

            35. <field name="authority">D015233</field>

            36. <field name="confidence">500</field>

            37. <field name="value">Regression Analysis</field>

            38. <field name="authority">D012044</field>

            39. <field name="confidence">500</field>

            </element>

          </element>

        2. <element name="decs">

          1. <element name="*">

            1. <field name="value">Índice de Masa Corporal</field>

            2. <field name="authority">DECSD015992</field>

            3. <field name="confidence">500</field>

            4. <field name="value">Modelos Estadísticos</field>

            5. <field name="authority">DECSD015233</field>

            6. <field name="confidence">500</field>

            7. <field name="value">Grupo de Ascendencia Continental Europea</field>

            8. <field name="authority">DECSD044465</field>

            9. <field name="confidence">500</field>

            10. <field name="value">Tejido Adiposo</field>

            11. <field name="authority">DECSD000273</field>

            12. <field name="confidence">500</field>

            13. <field name="value">Estudios Transversales</field>

            14. <field name="authority">DECSD003430</field>

            15. <field name="confidence">500</field>

            16. <field name="value">Humanos</field>

            17. <field name="authority">DECSD006801</field>

            18. <field name="confidence">500</field>

            19. <field name="value">Persona de Mediana Edad</field>

            20. <field name="authority">DECSD008875</field>

            21. <field name="confidence">500</field>

            22. <field name="value">Adulto Joven</field>

            23. <field name="authority">DECSD055815</field>

            24. <field name="confidence">500</field>

            25. <field name="value">Anciano</field>

            26. <field name="authority">DECSD000368</field>

            27. <field name="confidence">500</field>

            28. <field name="value">Antropometría</field>

            29. <field name="authority">DECSD000886</field>

            30. <field name="confidence">500</field>

            31. <field name="value">Adulto</field>

            32. <field name="authority">DECSD000328</field>

            33. <field name="confidence">500</field>

            34. <field name="value">Análisis de Regresión</field>

            35. <field name="authority">DECSD012044</field>

            36. <field name="confidence">500</field>

            37. <field name="value">Adiposidad</field>

            38. <field name="authority">DECSD050154</field>

            39. <field name="confidence">500</field>

            </element>

          </element>

        </element>

      9. <element name="title">

        1. <element name="en">

          1. <field name="value">A Comparison between Multiple Regression Models and CUN-BAE Equation to Predict Body Fat in Adults</field>

          </element>

        </element>

      10. <element name="type">

        1. <element name="en">

          1. <field name="value">research article</field>

          </element>

        </element>

      11. <element name="issue">

        1. <element name="number">

          1. <element name="en">

            1. <field name="value">3</field>

            </element>

          </element>

        </element>

      12. <element name="journal">

        1. <element name="title">

          1. <element name="en">

            1. <field name="value">PloS One</field>

            </element>

          </element>

        </element>

      13. <element name="page">

        1. <element name="initial">

          1. <element name="en">

            1. <field name="value">e0122291</field>

            </element>

          </element>

        </element>

      14. <element name="relation">

        1. <element name="publisherversion">

          1. <element name="en">

            1. <field name="value">https://dx.doi.org/10.1371/journal.pone.0122291</field>

            </element>

          </element>

        </element>

      15. <element name="volume">

        1. <element name="number">

          1. <element name="en">

            1. <field name="value">10</field>

            </element>

          </element>

        </element>

      </element>

    2. <element name="bundles">

      1. <element name="bundle">

        1. <field name="name">ORIGINAL</field>

        2. <element name="bitstreams">

          1. <element name="bitstream">

            1. <field name="name">000352134700162.pdf</field>

            2. <field name="format">application/pdf</field>

            3. <field name="size">363353</field>

            4. <field name="url">https://docusalut.com/bitstream/20.500.13003/10904/1/000352134700162.pdf</field>

            5. <field name="checksum">6405140e5987995784df1914c9aedd87</field>

            6. <field name="checksumAlgorithm">MD5</field>

            7. <field name="sid">1</field>

            </element>

          </element>

        </element>

      2. <element name="bundle">

        1. <field name="name">CC-LICENSE</field>

        2. <element name="bitstreams">

          1. <element name="bitstream">

            1. <field name="name">license_rdf</field>

            2. <field name="format">application/octet-stream</field>

            3. <field name="size">908</field>

            4. <field name="url">https://docusalut.com/bitstream/20.500.13003/10904/2/license_rdf</field>

            5. <field name="checksum">0175ea4a2d4caec4bbcc37e300941108</field>

            6. <field name="checksumAlgorithm">MD5</field>

            7. <field name="sid">2</field>

            </element>

          </element>

        </element>

      3. <element name="bundle">

        1. <field name="name">TEXT</field>

        2. <element name="bitstreams">

          1. <element name="bitstream">

            1. <field name="name">000352134700162.pdf.txt</field>

            2. <field name="originalName">000352134700162.pdf.txt</field>

            3. <field name="description">Extracted text</field>

            4. <field name="format">text/plain</field>

            5. <field name="size">37448</field>

            6. <field name="url">https://docusalut.com/bitstream/20.500.13003/10904/3/000352134700162.pdf.txt</field>

            7. <field name="checksum">8fc135df2198dbd6684f1ff0dab18371</field>

            8. <field name="checksumAlgorithm">MD5</field>

            9. <field name="sid">3</field>

            </element>

          </element>

        </element>

      4. <element name="bundle">

        1. <field name="name">THUMBNAIL</field>

        2. <element name="bitstreams">

          1. <element name="bitstream">

            1. <field name="name">000352134700162.pdf.jpg</field>

            2. <field name="originalName">000352134700162.pdf.jpg</field>

            3. <field name="description">IM Thumbnail</field>

            4. <field name="format">image/jpeg</field>

            5. <field name="size">21394</field>

            6. <field name="url">https://docusalut.com/bitstream/20.500.13003/10904/4/000352134700162.pdf.jpg</field>

            7. <field name="checksum">10c752f9df425a67da6e8018c08fcf96</field>

            8. <field name="checksumAlgorithm">MD5</field>

            9. <field name="sid">4</field>

            </element>

          </element>

        </element>

      </element>

    3. <element name="others">

      1. <field name="handle">20.500.13003/10904</field>

      2. <field name="identifier">oai:docusalut.com:20.500.13003/10904</field>

      3. <field name="lastModifyDate">2022-09-20 10:37:00.591</field>

      </element>

    4. <element name="repository">

      1. <field name="name">Docusalut</field>

      2. <field name="mail">docusalut@bibliosalut.com</field>

      </element>

    </metadata>

Hispana

Portal d'accés al patrimoni digital i l'agregador nacional de continguts a Europeana

Contacte

Accedeix al nostre formulari i et contestarem el més aviat

Contacte

Twitter

Tweets by Hispana_roai

Facebook

HISPANA
© Ministerio de Cultura y Deporte
  • Avís legal
  • Accessibilitat