Logotipo de HISPANA
Logotipo del Ministerio de Cultura
  • Què és Hispana?
  • Cerca
  • Directori de col.leccions
  • Contacte
  • ca
    • Español
    • Euskara
    • English
    • Galego
    • Català
    • Valencià
Está en:  › Dades de registre
Linked Open Data
The Invariant Two-Parameter Function of Algebras ψ
Identificadores del recurso
Escobar, J. M., Núñez-Valdés, J., & Pérez-Fernández, P. (2019). The Invariant Two-Parameter Function of Algebras ψ. Mathematical and Computational Applications, 24(4), 89.
http://hdl.handle.net/10481/58913
10.3390/mca24040089
Procedència
(Ilíberis: fondo bibliográfico histórico de la Universidad de Granada)

Fitxa

Títol:
The Invariant Two-Parameter Function of Algebras ψ
Tema:
Invariant functions
Contractions of algebras
Lie algebras
Malcev algebras
Heisenberg algebras
Descripció:
At present, the research on invariant functions for algebras is very extended since Hrivnák and Novotný defined in 2007 the invariant functions y and j as a tool to study the Inönü–Wigner contractions (IW-contractions), previously introduced by those authors in 1953. In this paper, we introduce a new invariant two-parameter function of algebras, which we call ¯y, as a tool which makes easier the computations and allows researchers to deal with contractions of algebras. Our study of this new function is mainly focused in Malcev algebras of the type Lie, although it can also be used with any other types of algebras. The main goal of the paper is to prove, by means of this function, that the five-dimensional classical-mechanical model built upon certain types of five-dimensional Lie algebras cannot be obtained as a limit process of a quantum-mechanical model based on a fifth Heisenberg algebra. As an example of other applications of the new function obtained, its computation in the case of the Lie algebra induced by the Lorentz group SO(3, 1) is shown and some open physical problems related to contractions are also formulated.
This research was funded by the Spanish Ministerio de Ciencia e Innovación and Junta de Andalucía via grants No. MTM2013-40455-P and No. FQM-326 (J.N.-V.) and No. FQM-160 (P.P.-F.).
Idioma:
English
Autor/Productor:
Escobar, José María
Núñez-Valdés, Juan
Pérez Fernández, Pedro
Editor:
MDPI
Drets:
Atribución 3.0 España
http://creativecommons.org/licenses/by/3.0/es/
info:eu-repo/semantics/openAccess
Data:
2020-01-20T08:34:35Z
2019-10-14
Tipo de recurso:
info:eu-repo/semantics/article

oai_dc

Descarregar XML

    <?xml version="1.0" encoding="UTF-8" ?>

  1. <oai_dc:dc schemaLocation="http://www.openarchives.org/OAI/2.0/oai_dc/ http://www.openarchives.org/OAI/2.0/oai_dc.xsd">

    1. <dc:title>The Invariant Two-Parameter Function of Algebras ψ</dc:title>

    2. <dc:creator>Escobar, José María</dc:creator>

    3. <dc:creator>Núñez-Valdés, Juan</dc:creator>

    4. <dc:creator>Pérez Fernández, Pedro</dc:creator>

    5. <dc:subject>Invariant functions</dc:subject>

    6. <dc:subject>Contractions of algebras</dc:subject>

    7. <dc:subject>Lie algebras</dc:subject>

    8. <dc:subject>Malcev algebras</dc:subject>

    9. <dc:subject>Heisenberg algebras</dc:subject>

    10. <dc:description>At present, the research on invariant functions for algebras is very extended since Hrivnák and Novotný defined in 2007 the invariant functions y and j as a tool to study the Inönü–Wigner contractions (IW-contractions), previously introduced by those authors in 1953. In this paper, we introduce a new invariant two-parameter function of algebras, which we call ¯y, as a tool which makes easier the computations and allows researchers to deal with contractions of algebras. Our study of this new function is mainly focused in Malcev algebras of the type Lie, although it can also be used with any other types of algebras. The main goal of the paper is to prove, by means of this function, that the five-dimensional classical-mechanical model built upon certain types of five-dimensional Lie algebras cannot be obtained as a limit process of a quantum-mechanical model based on a fifth Heisenberg algebra. As an example of other applications of the new function obtained, its computation in the case of the Lie algebra induced by the Lorentz group SO(3, 1) is shown and some open physical problems related to contractions are also formulated.</dc:description>

    11. <dc:description>This research was funded by the Spanish Ministerio de Ciencia e Innovación and Junta de Andalucía via grants No. MTM2013-40455-P and No. FQM-326 (J.N.-V.) and No. FQM-160 (P.P.-F.).</dc:description>

    12. <dc:date>2020-01-20T08:34:35Z</dc:date>

    13. <dc:date>2020-01-20T08:34:35Z</dc:date>

    14. <dc:date>2019-10-14</dc:date>

    15. <dc:type>info:eu-repo/semantics/article</dc:type>

    16. <dc:identifier>Escobar, J. M., Núñez-Valdés, J., & Pérez-Fernández, P. (2019). The Invariant Two-Parameter Function of Algebras ψ. Mathematical and Computational Applications, 24(4), 89.</dc:identifier>

    17. <dc:identifier>http://hdl.handle.net/10481/58913</dc:identifier>

    18. <dc:identifier>10.3390/mca24040089</dc:identifier>

    19. <dc:language>eng</dc:language>

    20. <dc:rights>Atribución 3.0 España</dc:rights>

    21. <dc:rights>http://creativecommons.org/licenses/by/3.0/es/</dc:rights>

    22. <dc:rights>info:eu-repo/semantics/openAccess</dc:rights>

    23. <dc:publisher>MDPI</dc:publisher>

    </oai_dc:dc>

edm

Descarregar XML

    <?xml version="1.0" encoding="UTF-8" ?>

  1. <rdf:RDF schemaLocation="http://www.w3.org/1999/02/22-rdf-syntax-ns# http://www.europeana.eu/schemas/edm/EDM.xsd">

    1. <edm:ProvidedCHO about="http://hdl.handle.net/10481/58913">

      1. <dc:creator>Escobar, José María</dc:creator>

      2. <dc:creator>Núñez-Valdés, Juan</dc:creator>

      3. <dc:creator>Pérez Fernández, Pedro</dc:creator>

      4. <dc:date>2019-10-14</dc:date>

      5. <dc:description>At present, the research on invariant functions for algebras is very extended since Hrivnák and Novotný defined in 2007 the invariant functions y and j as a tool to study the Inönü–Wigner contractions (IW-contractions), previously introduced by those authors in 1953. In this paper, we introduce a new invariant two-parameter function of algebras, which we call ¯y, as a tool which makes easier the computations and allows researchers to deal with contractions of algebras. Our study of this new function is mainly focused in Malcev algebras of the type Lie, although it can also be used with any other types of algebras. The main goal of the paper is to prove, by means of this function, that the five-dimensional classical-mechanical model built upon certain types of five-dimensional Lie algebras cannot be obtained as a limit process of a quantum-mechanical model based on a fifth Heisenberg algebra. As an example of other applications of the new function obtained, its computation in the case of the Lie algebra induced by the Lorentz group SO(3, 1) is shown and some open physical problems related to contractions are also formulated.</dc:description>

      6. <dc:identifier>http://hdl.handle.net/10481/58913</dc:identifier>

      7. <dc:language>eng</dc:language>

      8. <dc:publisher>MDPI</dc:publisher>

      9. <dc:title>The Invariant Two-Parameter Function of Algebras ψ</dc:title>

      10. <dc:type>info:eu-repo/semantics/article</dc:type>

      11. <edm:type>TEXT</edm:type>

      </edm:ProvidedCHO>

    2. <ore:Aggregation about="http://hdl.handle.net/10481/58913#aggregation">

      1. <edm:aggregatedCHO resource="http://hdl.handle.net/10481/58913" />
      2. <edm:dataProvider>DIGIBUG. Repositorio Institucional de la Universidad de Granada</edm:dataProvider>

      3. <edm:isShownAt resource="http://hdl.handle.net/10481/58913" />
      4. <edm:isShownBy resource="https://digibug.ugr.es/bitstream/10481/58913/1/Escobar-Invariant.pdf" />
      5. <edm:provider>Hispana</edm:provider>

      6. <edm:rights resource="http://creativecommons.org/licenses/by/4.0/" />

      </ore:Aggregation>

    3. <edm:WebResource about="https://digibug.ugr.es/bitstream/10481/58913/1/Escobar-Invariant.pdf">

      1. <edm:rights resource="http://creativecommons.org/licenses/by/4.0/" />

      </edm:WebResource>

    </rdf:RDF>

Hispana

Portal d'accés al patrimoni digital i l'agregador nacional de continguts a Europeana

Contacte

Accedeix al nostre formulari i et contestarem el més aviat

Contacte

X

Tweets by Hispana_roai

Facebook

HISPANA
© Ministeri de Cultura
  • Avís legal