<?xml version="1.0" encoding="UTF-8" ?>
<oai_dc:dc schemaLocation="http://www.openarchives.org/OAI/2.0/oai_dc/ http://www.openarchives.org/OAI/2.0/oai_dc.xsd">
<dc:title lang="ca-ES">$K$-metric and $K$-normed linear spaces: survey</dc:title>
<dc:creator>Zabreĭko, P. P. (Petr Petrovich)</dc:creator>
<dc:description lang="ca-ES">We give a short survey on some fixed point theorems which are generalizations of the classical Banach-Caccioppoli principle of contractive mappings. All these results are gathered in three theorems about existence and uniqueness of fixed points for operators which act in $K$-metric or $K$-normed linear spaces and, in particular, in local convex spaces and scales of Banach spaces. Three fixed point theorems presented in this article cover numerous applications in numerical methods, theory of integral equations, some results on iterative methods for construction of periodic solution to ordinary differential equations, existence and uniqueness results on solvability for Cauchy and Goursat problems of Ovsjannikov - Treves - Nirenberg type and so on.</dc:description>
<dc:publisher lang="0">Universitat de Barcelona</dc:publisher>
<dc:date>1997</dc:date>
<dc:type>info:eu-repo/semantics/article</dc:type>
<dc:type>info:eu-repo/semantics/publishedVersion</dc:type>
<dc:format>text/html</dc:format>
<dc:format>application/pdf</dc:format>
<dc:identifier>https://www.raco.cat/index.php/CollectaneaMathematica/article/view/56434</dc:identifier>
<dc:identifier>2038-4815</dc:identifier>
<dc:source lang="ca-ES">Collectanea Mathematica; 1997: Vol.: 48 Núm.: 4 -6; p. 825-859</dc:source>
<dc:source lang="0">0010-0757</dc:source>
<dc:language>eng</dc:language>
<dc:relation>https://www.raco.cat/index.php/CollectaneaMathematica/article/view/56434/65856</dc:relation>
<dc:relation>https://www.raco.cat/index.php/CollectaneaMathematica/article/view/56434/66808</dc:relation>
<dc:rights>Aquesta revista ofereix el text complet de tots els seus articles, excepte els dels cinc darrers anys, que s'aniran alliberant periòdicament fins el 2010. A partir del 2011 requereix subscripció. Podeu accedir-hi aquí. L'accés als articles a text complet inclosos a RACO és gratuït, però els actes de reproducció, distribució, comunicació pública o transformació total o parcial estan subjectes a les condicions d'ús de cada revista i poden requerir el consentiment exprés i escrit dels autors i/o institucions editores.</dc:rights>
</oai_dc:dc>
<?xml version="1.0" encoding="UTF-8" ?>
<record schemaLocation="http://www.loc.gov/MARC21/slim http://www.loc.gov/standards/marcxml/schema/MARC21slim.xsd">
<leader>naa a 5a 4500</leader>
<controlfield tag="008">AAMMDDs1997||||spc|||||s|||||0|| 0|eng|c</controlfield>
<controlfield tag="007">cr |||||||||||</controlfield>
<datafield ind1="1" ind2="0" tag="245">
<subfield code="a">$K$-metric and $K$-normed linear spaces: survey</subfield>
<subfield code="h">[Recurs electrònic]</subfield>
</datafield>
<datafield ind1="1" ind2=" " tag="100">
<subfield code="a">Zabreĭko, P. P. (Petr Petrovich),</subfield>
<subfield code="d">1939-</subfield>
</datafield>
<datafield ind1=" " ind2=" " tag="520">
<subfield code="a">We give a short survey on some fixed point theorems which are generalizations of the classical Banach-Caccioppoli principle of contractive mappings. All these results are gathered in three theorems about existence and uniqueness of fixed points for operators which act in $K$-metric or $K$-normed linear spaces and, in particular, in local convex spaces and scales of Banach spaces. Three fixed point theorems presented in this article cover numerous applications in numerical methods, theory of integral equations, some results on iterative methods for construction of periodic solution to ordinary differential equations, existence and uniqueness results on solvability for Cauchy and Goursat problems of Ovsjannikov - Treves - Nirenberg type and so on.</subfield>
</datafield>
<datafield ind1="4" ind2="0" tag="856">
<subfield code="z">Accés lliure</subfield>
<subfield code="u">https://www.raco.cat/index.php/CollectaneaMathematica/article/view/56434</subfield>
</datafield>
<datafield ind1="0" ind2=" " tag="730">
<subfield code="a">RACO (Articles)</subfield>
</datafield>
<datafield ind1="1" ind2=" " tag="773">
<subfield code="t">Collectanea Mathematica</subfield>
<subfield code="d">[s.l.] : Universitat de Barcelona, 1997</subfield>
<subfield code="x">2038-4815</subfield>
<subfield code="g">1997: Vol.: 48 Núm.: 4 -6, p. 825-859</subfield>
</datafield>
<datafield ind1=" " ind2="4" tag="655">
<subfield code="a">Articles de revistes electròniques</subfield>
</datafield>
</record>
<?xml version="1.0" encoding="UTF-8" ?>
<article lang="CA" schemaLocation="http://dtd.nlm.nih.gov/publishing/2.3 http://dtd.nlm.nih.gov/publishing/2.3/xsd/journalpublishing.xsd">
<front>
<journal-meta>
<journal-id journal-id-type="other">CollectaneaMathematica</journal-id>
<journal-title>Collectanea Mathematica</journal-title>
<issn pub-type="epub">2038-4815</issn>
<issn pub-type="ppub">0010-0757</issn>
<publisher>
<publisher-name>Universitat de Barcelona</publisher-name>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="other">56434</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Articles</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>$K$-metric and $K$-normed linear spaces: survey</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author" corresp="yes">
<name name-style="western">
<surname>Zabreĭko</surname>
<given-names>P. P. (Petr Petrovich) , 1939-</given-names>
</name>
</contrib>
<contrib contrib-type="editor">
<name>
<surname>Consorci de Biblioteques Universitaries de Catalunya</surname>
<given-names>CBUC -</given-names>
</name>
</contrib>
<contrib contrib-type="editor">
<name>
<surname>Coll</surname>
<given-names>Josep</given-names>
</name>
</contrib>
<contrib contrib-type="editor">
<name>
<surname>Exportació de revistes</surname>
<given-names>UB</given-names>
</name>
</contrib>
<contrib contrib-type="editor">
<name>
<surname>Universitat de Barcelona</surname>
<given-names>CRAI</given-names>
</name>
</contrib>
<contrib contrib-type="jmanager">
<name>
<surname>Consorci de Biblioteques Universitaries de Catalunya</surname>
<given-names>CBUC -</given-names>
</name>
</contrib>
<contrib contrib-type="jmanager">
<name>
<surname>Coll</surname>
<given-names>Josep</given-names>
</name>
</contrib>
<contrib contrib-type="jmanager">
<name>
<surname>Exportació de revistes</surname>
<given-names>UB</given-names>
</name>
</contrib>
<contrib contrib-type="jmanager">
<name>
<surname>Universitat de Barcelona</surname>
<given-names>CRAI</given-names>
</name>
</contrib>
</contrib-group>
<pub-date pub-type="epub">
<day>13</day>
<month>01</month>
<year>1997</year>
</pub-date>
<pub-date pub-type="collection">
<year>1997</year>
</pub-date>
<issue-id pub-id-type="other">4552</issue-id>
<issue-title>Vol.: 48 Núm.: 4 -6</issue-title>
<permissions>
<copyright-year>1997</copyright-year>
</permissions>
<abstract lang="CA">
<p>We give a short survey on some fixed point theorems which are generalizations of the classical Banach-Caccioppoli principle of contractive mappings. All these results are gathered in three theorems about existence and uniqueness of fixed points for operators which act in $K$-metric or $K$-normed linear spaces and, in particular, in local convex spaces and scales of Banach spaces. Three fixed point theorems presented in this article cover numerous applications in numerical methods, theory of integral equations, some results on iterative methods for construction of periodic solution to ordinary differential equations, existence and uniqueness results on solvability for Cauchy and Goursat problems of Ovsjannikov - Treves - Nirenberg type and so on.</p>
</abstract>
</article-meta>
</front>
<body>
<p>Ho sentim, aquest no disposem del contingut d'aquest article.Lo sentimos, no disponemos del contenido de este artículo.Sorry, we do not have the content of this article.</p>
</body>
</article>
<?xml version="1.0" encoding="UTF-8" ?>
<oai_marc catForm="u" encLvl="3" level="m" status="c" type="a" schemaLocation="http://www.openarchives.org/OAI/1.1/oai_marc http://www.openarchives.org/OAI/1.1/oai_marc.xsd">
<fixfield id="008">"970113 1997 eng "</fixfield>
<varfield i1=" " i2=" " id="042">
<subfield label="a">dc</subfield>
</varfield>
<varfield i1="0" i2="0" id="245">
<subfield label="a">$K$-metric and $K$-normed linear spaces: survey</subfield>
</varfield>
<varfield i1=" " i2=" " id="720">
<subfield label="a">Zabreĭko, P. P. (Petr Petrovich)</subfield>
</varfield>
<varfield i1=" " i2=" " id="653">
</varfield>
<varfield i1=" " i2=" " id="520">
<subfield label="a">We give a short survey on some fixed point theorems which are generalizations of the classical Banach-Caccioppoli principle of contractive mappings. All these results are gathered in three theorems about existence and uniqueness of fixed points for operators which act in $K$-metric or $K$-normed linear spaces and, in particular, in local convex spaces and scales of Banach spaces. Three fixed point theorems presented in this article cover numerous applications in numerical methods, theory of integral equations, some results on iterative methods for construction of periodic solution to ordinary differential equations, existence and uniqueness results on solvability for Cauchy and Goursat problems of Ovsjannikov - Treves - Nirenberg type and so on.</subfield>
</varfield>
<varfield i1=" " i2=" " id="260">
<subfield label="b">Universitat de Barcelona</subfield>
</varfield>
<varfield i1=" " i2=" " id="720">
</varfield>
<varfield i1=" " i2=" " id="260">
<subfield label="c">1997-01-13 00:00:00</subfield>
</varfield>
<varfield i1=" " i2="7" id="655">
</varfield>
<varfield i1=" " i2=" " id="856">
<subfield label="q">text/html</subfield>
</varfield>
<varfield i1=" " i2=" " id="856">
<subfield label="q">application/pdf</subfield>
</varfield>
<varfield i1="4" i2="0" id="856">
<subfield label="u">https://www.raco.cat/index.php/CollectaneaMathematica/article/view/56434</subfield>
</varfield>
<varfield i1="0" i2=" " id="786">
<subfield label="n">Collectanea Mathematica; 1997: Vol.: 48 Núm.: 4 -6</subfield>
</varfield>
<varfield i1=" " i2=" " id="546">
<subfield label="a">eng</subfield>
</varfield>
<varfield i1=" " i2=" " id="500">
</varfield>
<varfield i1=" " i2=" " id="500">
</varfield>
<varfield i1=" " i2=" " id="500">
</varfield>
<varfield i1=" " i2=" " id="540">
</varfield>
</oai_marc>
<?xml version="1.0" encoding="UTF-8" ?>
<rfc1807 schemaLocation="http://info.internet.isi.edu:80/in-notes/rfc/files/rfc1807.txt http://www.openarchives.org/OAI/1.1/rfc1807.xsd">
<bib-version>v2</bib-version>
<id>https://www.raco.cat/index.php/CollectaneaMathematica/article/view/56434</id>
<entry>2014-03-14T10:41:09Z</entry>
<organization>Collectanea Mathematica</organization>
<organization>1997: Vol.: 48 Núm.: 4 -6; 825-859</organization>
<title>$K$-metric and $K$-normed linear spaces: survey</title>
<author>Zabreĭko, P. P. (Petr Petrovich)</author>
<date>1997-01-13 00:00:00</date>
<other_access>url:https://www.raco.cat/index.php/CollectaneaMathematica/article/view/56434</other_access>
<language>eng</language>
<abstract>We give a short survey on some fixed point theorems which are generalizations of the classical Banach-Caccioppoli principle of contractive mappings. All these results are gathered in three theorems about existence and uniqueness of fixed points for operators which act in $K$-metric or $K$-normed linear spaces and, in particular, in local convex spaces and scales of Banach spaces. Three fixed point theorems presented in this article cover numerous applications in numerical methods, theory of integral equations, some results on iterative methods for construction of periodic solution to ordinary differential equations, existence and uniqueness results on solvability for Cauchy and Goursat problems of Ovsjannikov - Treves - Nirenberg type and so on.</abstract>
</rfc1807>