<?xml version="1.0" encoding="UTF-8" ?>
<oai_dc:dc schemaLocation="http://www.openarchives.org/OAI/2.0/oai_dc/ http://www.openarchives.org/OAI/2.0/oai_dc.xsd">
<dc:title lang="ca-ES">$b$-weighted dyadic BMO from dyadic BMO and associated $T(b)$ theorems</dc:title>
<dc:creator>Salomone, Stephanie Anne</dc:creator>
<dc:description lang="ca-ES">Given a function $b$, and using adapted Haar wavelets, we define a $\BMO$-type norm which is dependent on $b$. In both global and local cases, we find the dependence of the bounds on $\|f\|_{\BMO}$ by the bounds on the $b$-weighted $\BMO$ norm of $f$. We show that the dependence is sharp in the global case. Multiscale analysis is used in the local case. We formulate as corollaries global and local dyadic $T(b)$ theorems whose hypotheses include a bound on the $b$-weighted $\BMO$-norm of $T^*(1)$.</dc:description>
<dc:publisher lang="0">Universitat de Barcelona</dc:publisher>
<dc:date>2010</dc:date>
<dc:type>info:eu-repo/semantics/article</dc:type>
<dc:type>info:eu-repo/semantics/publishedVersion</dc:type>
<dc:format>application/pdf</dc:format>
<dc:identifier>https://www.raco.cat/index.php/CollectaneaMathematica/article/view/173654</dc:identifier>
<dc:identifier>2038-4815</dc:identifier>
<dc:source lang="ca-ES">Collectanea Mathematica; 2010: Vol.: 61 Núm.: 2; p. 151-171</dc:source>
<dc:source lang="0">0010-0757</dc:source>
<dc:language>eng</dc:language>
<dc:relation>https://www.raco.cat/index.php/CollectaneaMathematica/article/view/173654/226006</dc:relation>
<dc:rights>Aquesta revista ofereix el text complet de tots els seus articles, excepte els dels cinc darrers anys, que s'aniran alliberant periòdicament fins el 2010. A partir del 2011 requereix subscripció. Podeu accedir-hi aquí. L'accés als articles a text complet inclosos a RACO és gratuït, però els actes de reproducció, distribució, comunicació pública o transformació total o parcial estan subjectes a les condicions d'ús de cada revista i poden requerir el consentiment exprés i escrit dels autors i/o institucions editores.</dc:rights>
</oai_dc:dc>
<?xml version="1.0" encoding="UTF-8" ?>
<record schemaLocation="http://www.loc.gov/MARC21/slim http://www.loc.gov/standards/marcxml/schema/MARC21slim.xsd">
<leader>naa a 5a 4500</leader>
<controlfield tag="008">AAMMDDs2010||||spc|||||s|||||0|| 0|eng|c</controlfield>
<controlfield tag="007">cr |||||||||||</controlfield>
<datafield ind1="1" ind2="0" tag="245">
<subfield code="a">$b$-weighted dyadic BMO from dyadic BMO and associated $T(b)$ theorems</subfield>
<subfield code="h">[Recurs electrònic]</subfield>
</datafield>
<datafield ind1="1" ind2=" " tag="100">
<subfield code="a">Salomone, Stephanie Anne</subfield>
</datafield>
<datafield ind1=" " ind2=" " tag="520">
<subfield code="a">Given a function $b$, and using adapted Haar wavelets, we define a $\BMO$-type norm which is dependent on $b$. In both global and local cases, we find the dependence of the bounds on $\|f\|_{\BMO}$ by the bounds on the $b$-weighted $\BMO$ norm of $f$. We show that the dependence is sharp in the global case. Multiscale analysis is used in the local case. We formulate as corollaries global and local dyadic $T(b)$ theorems whose hypotheses include a bound on the $b$-weighted $\BMO$-norm of $T^*(1)$.</subfield>
</datafield>
<datafield ind1="4" ind2="0" tag="856">
<subfield code="z">Accés lliure</subfield>
<subfield code="u">https://www.raco.cat/index.php/CollectaneaMathematica/article/view/173654</subfield>
</datafield>
<datafield ind1="0" ind2=" " tag="730">
<subfield code="a">RACO (Articles)</subfield>
</datafield>
<datafield ind1="1" ind2=" " tag="773">
<subfield code="t">Collectanea Mathematica</subfield>
<subfield code="d">[s.l.] : Universitat de Barcelona, 2010</subfield>
<subfield code="x">2038-4815</subfield>
<subfield code="g">2010: Vol.: 61 Núm.: 2, p. 151-171</subfield>
</datafield>
<datafield ind1=" " ind2="4" tag="655">
<subfield code="a">Articles de revistes electròniques</subfield>
</datafield>
</record>
<?xml version="1.0" encoding="UTF-8" ?>
<article lang="CA" schemaLocation="http://dtd.nlm.nih.gov/publishing/2.3 http://dtd.nlm.nih.gov/publishing/2.3/xsd/journalpublishing.xsd">
<front>
<journal-meta>
<journal-id journal-id-type="other">CollectaneaMathematica</journal-id>
<journal-title>Collectanea Mathematica</journal-title>
<issn pub-type="epub">2038-4815</issn>
<issn pub-type="ppub">0010-0757</issn>
<publisher>
<publisher-name>Universitat de Barcelona</publisher-name>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="other">173654</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Articles</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>$b$-weighted dyadic BMO from dyadic BMO and associated $T(b)$ theorems</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author" corresp="yes">
<name name-style="western">
<surname>Salomone</surname>
<given-names>Stephanie Anne</given-names>
</name>
<email>salomone@up.edu</email>
</contrib>
<contrib contrib-type="editor">
<name>
<surname>Consorci de Biblioteques Universitaries de Catalunya</surname>
<given-names>CBUC -</given-names>
</name>
</contrib>
<contrib contrib-type="editor">
<name>
<surname>Coll</surname>
<given-names>Josep</given-names>
</name>
</contrib>
<contrib contrib-type="editor">
<name>
<surname>Exportació de revistes</surname>
<given-names>UB</given-names>
</name>
</contrib>
<contrib contrib-type="editor">
<name>
<surname>Universitat de Barcelona</surname>
<given-names>CRAI</given-names>
</name>
</contrib>
<contrib contrib-type="jmanager">
<name>
<surname>Consorci de Biblioteques Universitaries de Catalunya</surname>
<given-names>CBUC -</given-names>
</name>
</contrib>
<contrib contrib-type="jmanager">
<name>
<surname>Coll</surname>
<given-names>Josep</given-names>
</name>
</contrib>
<contrib contrib-type="jmanager">
<name>
<surname>Exportació de revistes</surname>
<given-names>UB</given-names>
</name>
</contrib>
<contrib contrib-type="jmanager">
<name>
<surname>Universitat de Barcelona</surname>
<given-names>CRAI</given-names>
</name>
</contrib>
</contrib-group>
<pub-date pub-type="epub">
<day>02</day>
<month>03</month>
<year>2010</year>
</pub-date>
<pub-date pub-type="collection">
<year>2010</year>
</pub-date>
<issue-id pub-id-type="other">13423</issue-id>
<issue-title>Vol.: 61 Núm.: 2</issue-title>
<permissions>
<copyright-year>2010</copyright-year>
</permissions>
<abstract lang="CA">
<p>Given a function $b$, and using adapted Haar wavelets, we define a $\BMO$-type norm which is dependent on $b$. In both global and local cases, we find the dependence of the bounds on $\|f\|_{\BMO}$ by the bounds on the $b$-weighted $\BMO$ norm of $f$. We show that the dependence is sharp in the global case. Multiscale analysis is used in the local case. We formulate as corollaries global and local dyadic $T(b)$ theorems whose hypotheses include a bound on the $b$-weighted $\BMO$-norm of $T^*(1)$.</p>
</abstract>
</article-meta>
</front>
</article>
<?xml version="1.0" encoding="UTF-8" ?>
<oai_marc catForm="u" encLvl="3" level="m" status="c" type="a" schemaLocation="http://www.openarchives.org/OAI/1.1/oai_marc http://www.openarchives.org/OAI/1.1/oai_marc.xsd">
<fixfield id="008">"100302 2010 eng "</fixfield>
<varfield i1=" " i2=" " id="042">
<subfield label="a">dc</subfield>
</varfield>
<varfield i1="0" i2="0" id="245">
<subfield label="a">$b$-weighted dyadic BMO from dyadic BMO and associated $T(b)$ theorems</subfield>
</varfield>
<varfield i1=" " i2=" " id="720">
<subfield label="a">Salomone, Stephanie Anne</subfield>
</varfield>
<varfield i1=" " i2=" " id="653">
</varfield>
<varfield i1=" " i2=" " id="520">
<subfield label="a">Given a function $b$, and using adapted Haar wavelets, we define a $\BMO$-type norm which is dependent on $b$. In both global and local cases, we find the dependence of the bounds on $\|f\|_{\BMO}$ by the bounds on the $b$-weighted $\BMO$ norm of $f$. We show that the dependence is sharp in the global case. Multiscale analysis is used in the local case. We formulate as corollaries global and local dyadic $T(b)$ theorems whose hypotheses include a bound on the $b$-weighted $\BMO$-norm of $T^*(1)$.</subfield>
</varfield>
<varfield i1=" " i2=" " id="260">
<subfield label="b">Universitat de Barcelona</subfield>
</varfield>
<varfield i1=" " i2=" " id="720">
</varfield>
<varfield i1=" " i2=" " id="260">
<subfield label="c">2010-03-02 00:00:00</subfield>
</varfield>
<varfield i1=" " i2="7" id="655">
</varfield>
<varfield i1=" " i2=" " id="856">
<subfield label="q">application/pdf</subfield>
</varfield>
<varfield i1="4" i2="0" id="856">
<subfield label="u">https://www.raco.cat/index.php/CollectaneaMathematica/article/view/173654</subfield>
</varfield>
<varfield i1="0" i2=" " id="786">
<subfield label="n">Collectanea Mathematica; 2010: Vol.: 61 Núm.: 2</subfield>
</varfield>
<varfield i1=" " i2=" " id="546">
<subfield label="a">eng</subfield>
</varfield>
<varfield i1=" " i2=" " id="500">
</varfield>
<varfield i1=" " i2=" " id="500">
</varfield>
<varfield i1=" " i2=" " id="500">
</varfield>
<varfield i1=" " i2=" " id="540">
</varfield>
</oai_marc>
<?xml version="1.0" encoding="UTF-8" ?>
<rfc1807 schemaLocation="http://info.internet.isi.edu:80/in-notes/rfc/files/rfc1807.txt http://www.openarchives.org/OAI/1.1/rfc1807.xsd">
<bib-version>v2</bib-version>
<id>https://www.raco.cat/index.php/CollectaneaMathematica/article/view/173654</id>
<entry>2010-03-02T09:29:18Z</entry>
<organization>Collectanea Mathematica</organization>
<organization>2010: Vol.: 61 Núm.: 2; 151-171</organization>
<title>$b$-weighted dyadic BMO from dyadic BMO and associated $T(b)$ theorems</title>
<author>Salomone, Stephanie Anne</author>
<date>2010-03-02 00:00:00</date>
<other_access>url:https://www.raco.cat/index.php/CollectaneaMathematica/article/view/173654</other_access>
<language>eng</language>
<abstract>Given a function $b$, and using adapted Haar wavelets, we define a $\BMO$-type norm which is dependent on $b$. In both global and local cases, we find the dependence of the bounds on $\|f\|_{\BMO}$ by the bounds on the $b$-weighted $\BMO$ norm of $f$. We show that the dependence is sharp in the global case. Multiscale analysis is used in the local case. We formulate as corollaries global and local dyadic $T(b)$ theorems whose hypotheses include a bound on the $b$-weighted $\BMO$-norm of $T^*(1)$.</abstract>
</rfc1807>